FACULTY OF FUNDAMENTAL PROBLEMS OF TECHNOLOGY SUBJECT CARD

Name in Polish Teoria estymacji

Name in English: Estimation theory

Main field of study (if applicable): APPLIED MATHEMATICS Specialization (if applicable): COMPUTATIONAL MATHEMATICS

Level and form of studies: 1st/ 2nd* level, full-time / part-time*

Kind of subject: obligatory-/ optional / university-wide*

Subject code MAT001581

Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	150				
Form of crediting	Examination / crediting with grade*				
For group of courses mark (X) final course	Х				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes	2		2		
including number of ECTS points for direct teacher-student contact (BK) classes	1,5		1,5		

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Student knows how to use statistical packages
- 2. Student has a basic knowledge of mathematical statistics.
- 3. Student has a basic knowledge of mathematical analysis and functional analysis
- 4. Student has basic programming skills.

SUBJECT OBJECTIVES

C1 Learning of statistical criteria for assessing the quality of statistical estimation

C2 Learning basic parametric estimation methods and their properties.

- C3 Learning basic non-parametric estimation methods and their properties.
- C4 Ability to program advanced statistical methods.

C5 Ability to carry out simulation studies.

C6 Ability to evaluate properties of statistical methods based on simulation studies.

C7 Mastering of English vocabulary in the field of estimation methods .

C8 Report writing skills in English.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 knows the basic parametric estimation methods.

PEK_W02 knows the basic non-parametric estimation methods.

PEK_W03 knows the basic criteria for assessing the quality of the estimation.

PEK_W04 knows the theoretical basis of statistical simulation.

PEK_W05 knows English in the extent necessary for the creation of simulation reports.

PEK_W06 knows Programming Languages enable to carry out the simulation study.

relating to skills:

PEK_U01 able to apply advanced statistical methods to analyze real data.

PEK_U02 can use programming languages to program the high-order complex statistical methods and simulation tests and to carry out simulation studies.

PEK_U03 able to assess the properties of statistical methods based on simulation studies.

PEK_U04 can develop a report in English summarizing the results of simulation studies.

relating to social competences:

PEK_K01 can benefit from the scientific literature in English, including reaching the source materials and review them.

PEK_K02 understands the need for systematic work to improve knowledge

PROGRAMME CONTENT

	Number of hours	
Lec 1	Basic concepts of estimation theory: bias, variance, mean square error matrix of Fisher information, efficiency, asymptotic normality	2
Lec 2	Theoretical basis of simulation methods and replication	2
Lec 3	Bias and variance estimation - bootstrap, Jacknife, the delta method	2
Lec 4	Construction of confidence intervals - classic and boostrap intervals	2
Lec 5	Nonparametric density estimation - histogram and its properties	2
Lec 6	Nonparametric density estimation - kernel estimator and its properties	2
Lec 7	Selection of bandwidth in the kernel estimator	2
Lec 8	Modifications of kernel estimator - variable bandwidth, higher- order kernels	2
Lec 9	Estimation of density through orthogonal expansions	2
Lec 10	Estimation of density - local likelihood function and maximum likelihood method with smoothing	2
Lec 11	Nonparametric regression function estimation - estimation of kernel	2

Lec 12	ec 12 Selection of the bandwidth and modification of the kernel estimator of regression function.				
Lec 13	Hazard function estimation - parametric and non-parametric Lec 13 methods. 2				
Lec 14	Empirical Bayesian methods - Stein estimator	2			
Lec 15	Lec 15 Test 2				
	Total hours 30				
	Form of classes – laboratory		Number of hours		
Lab 1	Lab 1 Parametric estimation - method of maximum likelihood. Bias, variance, mean square error - estimation using computer simulations.				
Lab 2	Lab 2Estimation of bias, variance and construction of confidence intervals using the method of substitution and replication methods (bootstrap, jackknife). Estimating the quality of estimators based on simulation studies.				
Lab 3	ab 3Estimating the several parameters - asymptotic covariance matrix, the covariance matrix estimation using the method of substitution and replication methods. Estimating the quality of estimators based on simulation studies.				
Lab 4	 Nonparametric estimation of density - the histogram, method of the nearest neighbor, kernel estimator, orthogonal expansions. Smoothing parameter selection. Quality rating based on simulation studies. 				
Lab 5	Lab 5Nonparametric estimation of the regression function. Estimators: kernel, local polynomial, the nearest neighbor, the smooth spline functions. Construction of confidence intervals and bands using the bootstrap method. Smoothing parameter selection. Quality rating based on simulation studies.				
Lab 6	ab 6 Estimation of survival function and hazard function with parametric and nonparametric methods. Construction of confidence intervals through approximation with the normal distribution and the bootstrap method. Quality rating based on simulation studies.				
Lab 7	Empirical Bayesian methods. Quality assessment using simulation s	studies.	4		
	Total hours		30		
TEACHING TOOLS USED					
N1. Le N2. La N3. Co N4. Stu	cture problem - computer presentation and traditional method boratory - self development of programs for simulation, reports from onsultations ident's self work – preparation for the laboratory	n analyses			

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	All subject effects of the course	Reports and activity during the laboratory.
F2	PEK_W01 PEK_W02 PEK_W03 PEK_W04 PEK_W05	Test

P=0,75*F1+0,25*F2

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] L. Devroye, A Course in Density Estimation

[2] B. Efron, R. Tibshirani, Introduction to the Bootstrap

[3] B. Silverman, Density Estimation for Statistics and Data Analysis.

[4] W. Härdle, Smoothing Techniques with implementation in S

[5] A.W.Bowman and A. Azzalini, Applied Smoothing Techniques for Data Analysis, The kernel approach with S-Plus Illustrations

[6] P.J. Green and B.W.Silverman, Nonparametric regression and Generalized Linear Models

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr hab. Małgorzata Bogdan (Malgorzata.Bogdan@pwr.edu.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT ESTIMATION THEORY MAT001581 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION COMPUTATIONAL MATHEMATICS

Subject educational **Correlation between subject** Subject **Programme content***** Teaching effect objectives*** educational effect and educational tool number*** effects defined for main field of study and specialization (if applicable)** K2MST W04 PEK_W01 C2 Lec 1-Lec 4, Lec 13, Lec 1-4 K2MST_cm_W01 (knowledge) 14 Lab 1-Lab 3, Lab 6, Lab 7 K2MST_W15 Lec 5-Lec 4, PEK_W02 C3 1-4 K2MST_cm_W02 Lab 4-Lab 7 K2MST_W16 PEK_W03 C1 Lec 1-Lec 14, 1-4 K2MST_cm_W03 Lab 1-Lab 7 PEK_W04 K2MST_W18 Lec 2-Lec 14. C5,C6 1-4Lab 1-Lab 7 K2MST_W13 PEK_W05 C7, C8 Lec 1-Lec 14, 1-4 Lab 1-Lab 7 PEK_W06 K2MST_W12 C4, C5, C6 Lec 2-Lec 14, 1-4 Lab 1-Lab 7 K2MST U11. PEK U01 (skills) C1-C4 Lec 1-Lec 14. 1-4 K2MST U24 Lab 1-Lab 7 K2MST_cm_U01 K2MST U12 PEK_U02 C4-C6 Lab 1-Lab 7 2, 3, 4 K2MST_U02, K2MST_cm_U02 PEK_U03 K2MST_U20, C5-C6 Lec 2, Lab 1-Lab 7 1-4 K2MST_U25 K2MST_cm_U03 K2MST_U21 **PEK U04** C7-C8 Lab 1-Lab 7 2, 3, 4 **PEK K01** K2MST K06 C4-C8 Lab 1-Lab 7 2, 3, 4 (competences) K2MST_cm_K01 PEK_K02 K2MST K01 C1-C8 Lec 1-Lec 14, 1-4 K2MST_cm_K02 Lab 1-Lab 7

** - enter symbols for main-field-of-study/specialization educational effects *** - from table above