FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD

Name in Polish: MODELE UBEZPIECZENIOWE W PRZEMYŚLE Name in English: Insurance models for industry Main field of study (if applicable): Applied Mathematics Specialization (if applicable): Mathematics for Industry and Commerce Level and form of studies: 1st/ 2nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code MAT1375 Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	30			
Number of hours of total student workload (CNPS)	60	60			
Form of crediting	Examination / crediting with grade*				
For group of courses mark (X) final course	Х				
Number of ECTS points	2	2			
including number of ECTS points for practical (P) classes		2			
including number of ECTS points for direct teacher-student contact (BK) classes		1,5			

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Student knows and can apply basic concepts of the stochastic processes

2. Student knows principles of MATLAB numerical computing environment

SUBJECT OBJECTIVES

C1 Study of the classical concepts and acquisition of the knowledge of insurance models in industry

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 knows the most important concepts of insurance models in industry PEK_W02 knows principles of stochastic modeling in actuarial mathematics

relating to skills: PEK_U01 can construct actuarial models, that can be applied to industry insurance

relating to social competences:

PEK_K01 can, without assistance, search for necessary information in the literature, also in foreign languages

	PROGRAMME CONTENT				
Form of classes - lecture			nber of hours		
Lec 1	ec 1 Types of insurance policies in industry. Solvency II in Non-Life Insurance.				
Lec 2	Premium principles.	2			
Lec 3	Franchises and their types. Pricing of net premiums with franchise.	2			
Lec 4	Collective risk model. Parameters and distributions of aggregate claim amount.	2			
Lec 5	Compound Poisson model. Practical consequences of the theorem on the sum of compund Poisson risk.	2			
Lec 6	Approximating the indiviudal risk model.	2			
Lec 7	The (a,b) class of distribution. Mixed Poisson model.	2			
Lec 8	Risk proces. The adjustment coefficient. The probability of ruin.	4			
Lec 9	Distribution of the maximal aggregate coefficient and ruin probability. Pollaczek-Khinchin formula.	4			
Lec 10	10 Approximations of ruin probability in finite and infinite time horizon 2				
Lec 11	Types of proportional and non-proportional reinsurance. Recursive formula of the reinsurance premium.	4			
Lec 12	Lec 12 Alternative risk transfer. Pricing of CAT bonds. 2				
	Total hours	30			
Form of classes - laboratory			Number of hours		
Lab 1 Solving of problems illustrating theory given in the lectures			30		
Total hours			30		
TEACHING TOOLS USED					
N2. Co	ecture – traditional method omputer laboratory with MATLAB numerical computation environment				

N3. Consultations N4. Student's self-work – preparation for the laboratory EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_W01 PEK_W02 PEK_K01	tests
F2	PEK_U01 PEK_K01	oral presentations, tests
P=0.5*F1+0.5*F2		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] N. L. Bowers i inni, Actuarial Mathematics, The Society of Actuaries, Itasca, Illinois 1997
- [2] P. Cizek, W. Haerdle, R. Weron (red.), Statistical tools for finance and insurance, Springer, Berlin, 2011

SECONDARY LITERATURE:

- [1] E.Banks, Alternative risk transfer, Wiley, 2003
- [2] S. A. Klugman, H. H. Panjer, G. E. Willmot, Loss Models: From Data to Decisions, Wiley, 2012
- [3] H. H. Panjer, G. E. Willmot, Insurance risk models, Society of Actuaries, 1992

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr Krzysztof Burnecki (Krzysztof.Burnecki@pwr.wroc.pl) Dr Agnieszka Wyłomańska (Agnieszka.Wylomanska@pwr.wroc.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT INSURANCE MODELS FOR INDUSTRY MAT1375 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION MATHEMATICS FOR INDUSTRY AND COMMERCE

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***
PEK_W01 (knowledge)	K2MIC_W03	C1	Lec 1- Lec 12	1,3
PEK_W02	K2MIC_W09	C1	Lec 1- Lec 12	1,3
PEK_U01 (skills)	K2MIC_U15	C1	Lab 1	2,3,4
PEK_K01 (competences)	K2MIC_K06		Lec 1- Lec 12, Lab 1	1,2,3,4

** - enter symbols for main-field-of-study/specialization educational effects

*** - from table above