FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD

Name in Polish: **Optymalne sterowanie Name in English: Optimal control Main field of study (if applicable): APPLIED MATHEMATICS Specialization (if applicable): MODELLING, SIMULATION, OPTIMIZATION Level and form of studies:** 1st/ 2nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code MAT001586 Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	150				
Form of crediting	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*
For group of courses mark (X) final course	Х				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes	1		3		
including number of ECTS points for direct teacher- student contact (BK) classes	3				

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. The student has basic knowledge of calculus, algebra and the probability theory.

SUBJECT OBJECTIVES

- C1 Understanding the concepts and methods of control.
- C2 Understanding the wording optimal control tasks.
- C3 Knowledge of the backgrounds for the analysis of dynamic systems.
- C4 Understanding models and analysis of stochastic control systems.
- C5 Application of acquired knowledge to create and analyze mathematical models to solve theoretical and practical problems in various fields of science and technology.

SUBJECT EDUCATIONAL EFFECTS

The scope of the student's knowledge:

- PEK_W01: Student knows the formulation of operational research problems.
- PEK_W02: He recognizes situations that require the application of operations
 - research methods to solve practical problems.
- PEK_W03: He knows the limitations of analytical methods and the possibility of numerical analysis of dynamic models.
- *PEK_W04:* He knows the stochastic methods in operations research.

The scope of the student's skills:

PEK_U01. Student is able to formulate modeling task for analysis in a convenient form.PEK_U02. He can use the appropriate algorithm to solve tasks in the operational research.PEK_U03.Student is able to recognize issues that competent optimization methods are based on the use of stochastic camera.

The scope of the student's social skills:

PEK_K01 The student is able to find and use the recommended literature course and independently acquire knowledge

PEK_K02 The student is able to use the basic tools for the analysis of mathematical models PEK_K03 The student understands the need for systematic and independent work on mastery of course material.

	Course content	
Form of activities - lectures		
Wy1	Deterministic control system with discrete time. Algorithm of dynamic programming.	2
Wy2	Processes with discrete time. Markov chains. Conditional expectation. Martingales and Markov times.	
Wy3	Markov decision processes. Bellman equation.	2
Wy4	Introduction to models with infinite horizon. Markov decision models with discounted payments, minimizing the average cost per unit and other criteria.	4
Wy5	Applications Markov decision processes in the reliability theory, the renewal theory, the queue theory.	2
Wy6	Optimal control of the continuous time. The Hamilton-Jacobi-Bellman equation.	2
Wy7	Linear systems with quadratic cost function and a complete state observation. The inventory control systems.	2
Wy8	Systems with uncertain state observation. Iterative determination of the value functions.	2
Wy9	The approximated solution of the Bellman equation.	2
Wy10	Optimal stopping of finite sequences.	2
Wy11	Optimal stopping of finite Markov sequences. Examples.	2
Wy12	Infinite horizon optimal stopping problem.	2
Wy13	The disorder detection problem.	2
Wy14	Suboptimal solutions of operation models. Adaptive systems.	2
	Total load (in hours)	30

	Form of activities: classes, practice	Number of hours
Ćw1	Examples of deterministic control systems with discrete time.	2
Ćw2	Properties of Markov chains and their analysis. Checking	2
	stationarity and ergodicity of stochastic sequences. Classification	
	of states. Conditional expectation. Martingales and Markov moments.	
Ćw3	Markov decision process for selected practical problems. Analysis of the	2
	Bellman equation for the constructed MDPs.	

	Total hours	30
Ćw13	Suboptimal solutions. Adaptive systems.	2
Ćw12	Analysis of selected disorder problems.	2
Ćw11	Optimal stopping of finite Markov sequences. Examples.	4
Ćw10	Optimal stopping of finite sequences.	2
Ćw9	The approximated solution of the Bellman equation.	2
Ćw8	Systems with uncertain state observation. Iterative determination of the value functions.	2
Ćw7	Linear systems with quadratic cost function and a complete state observation. The inventory control systems.	2
Ćw6	Optimal control of the continuous time. The Hamilton-Jacobi-Bellman equation.	2
Ćw5	Applications Markov decision processes in the reliability theory, the renewal theory, the queue theory-examples.	2
Ćw4	Investigation of infinite horizon models. Markov decision models with discounted payoffs, the average cost per unit, and other criteria.	4

TOOLS FOR TEACHING

1 Lecture - traditional method.

2 Exercise and accounting problems - the traditional method.

3 Consultation.

4 Student's own work - preparing to exercise and test.

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_W01, PEK_W02, PEK_W03 PEK_W04, PEK_W05 PEK_K01, PEK_K02	oral presentations, quizzes, test s
F2	PEK_W01, PEK_W02, PEK_W03 PEK_W04, PEK_W05 PEK_U01, PEK_U02, PEK_U03, PEK_U04 PEK_K01, PEK_K02, PEK_K03	exam
P=0,4*F1+0,6*F2		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Dimitri P. Bertsekas, Dynamic Programming and Optimal Control, vol. 1, Athena Scientific, Belmont, MA: 2005.
- [2] Dimitri P. Bertsekas, Dynamic Programming and Optimal Control, vol. 2, Athena Scientific, Belmont, MA: 2007.
- [3] Harold Kushner: Wprowadzenie do teorii sterowania stochastycznego. WNT, 1983.
- [4] A.N. Shiryaev. Optimal Stopping Rules. Springer-Verlag, New York, Heidelberg, Berlin, 1978.

SECONDARY LITERATURE:

- [1] J. P. Aubin, Optima and Equilibria. An Introduction to Nonlinear Analysis, Springer, Berlin 1993.
- [2] Wayne l. Winston: introduction to mathematical programming: applications and algorithms, 1991.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr hab. inż. Anna Jaśkiewicz

Prof. Dr Hab. Eng. Krzysztof Szajowski (krzysztof.szajowski@pwr.edu.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT Optimal Control MAT001586

AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION MODELLING, SIMULATION, OPTIMIZATION

	OPTIMIZAT		Duo guo unu -	Teo altin a 4a - l
AND	Correlation between subject educational	Subject	Programme	Teaching tool
SPECIALIZ	effect and educational effects defined for	objectives***	content***	number***
ATION	main field of study and specialization (if			
Subject	applicable)**			
educational				
effect				
	K2MST_W01,			
	K2MST_W02,			
	K2MST_W03,			
PEK_W01	K2MST_W06,			
PEK_W02	K2MST_W07,	C1—C6	Wy1—Wy9	1,3,4
PEK W03	K2MST_W08,	CI = C0	wy1—wy9	1,3,4
PEK W04	K2MST_W10			
I LIK_WOI	K2MST_mso_W01			
	K2MST_mso_W02			
	K2MST_mso_W03			
	K2MST_U01,			
	K2MST_U02,			
	K2MST_U03,			
	K2MST_U15,			
DEV LIGI	K2MST_U16,			
PEK_U01	K2MST_U17,		4 . 4 .	
PEK_U02	K2MST_U18,	C1—C5	Ćw1-Ćw9	2,3,4
PEK U03	K2MST_U19			
	K2MST_U24			
	K2MST_U25			
	K2MST_mso_U01			
	K2MST_mso_U02			
	K2MST_mso_U03			
	K2MST_K0,			
	K2MST_K02,			
PEK_K01	K2MST_K03,			
	K2MST_K04,	C1, C2, C3,	Wy1-Wy14,	1 2 2 4
PEK_K02	K2MST_K05, K2MST_K06	C4, C5, C6	Ćw1-Ćw9	1, 2, 3, 4
PEK_K03	K2MS1_K00 K2MST_K07	.,,,		
	K2MS1_K07 K2MST_mso_K01			
	K2MST_mso_K01 K2MST_mso_K02			
	K21VI31_11180_K02			

** - from table above