FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD Name in Polish: Wybrane Zagadnienia Analizy Funkcjonalnej Name in English: Selected Problems of Functional Analysis Main field of study: Specialization (if applicable): Level and form of studies: 3rd level Kind of subject: general course Subject code: MAT1307 Group of courses: TAK / NIE*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of	30				
organized classes in					
University (ZZU)					
Number of hours of total	90				
student workload					
(CNPS)					
Form of crediting	Examination	Examination	Examination	Examination	Examination
	/ crediting	/ crediting	/ crediting	/ crediting	/ crediting
	with grade*	with grade*	with grade*	with grade*	with grade*
For group of courses					
mark (X) final course					
Number of ECTS points	3				
including number of ECTS					
points for practical (P)					
classes					
including number of ECTS	2				
points for direct teacher-					
student contact (BK)					
classes					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Student is able to handle methods of functional analysis.
- 2. Student is able to study supplementary areas of knowledge and skills.

SUBJECT OBJECTIVES

C1 Students will learn selected notions of advanced functional analysis, including notions of unbounded operators, distributions and Sobolev spaces,

C2 The student should acquire the ability to critical analysis of a given phenomenon that allows for the creation of a theoretical model

C3 The student should acquire the skills of oral and written presentation of results of scientific work in a form accessible for non-specialists in the field related to the present issue

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 complex systems and interdisciplinary application of agent-based modeling PEK_W02 analysis and modeling complex systems relating to skills:

PEK_U01 critical analysis of natural and social phenomena

PEK_U02 discussion and presenting knowledge in writing and oral form for non-specialists relating to social competences:

PEK_K01 awareness of the role of interdisciplinary collaboration

PEK_K02 awareness of the role of popularization of science

PROGRAMME CONTENT				
	Form of classes - lecture	Number of hours		
Lec1	Unbounded operators: definition, operator extention, graph, closability,spectrum, examples.	2		
Lec2	Self-adjoint operators: adjointness, symmetry, self-adjointness and essential self-adjointness, criteria for self-adjointness	2		
Lec3	Spectral theorem for bounded hermitian operators: functional calculus, spectral projectors and measures.	2		
Lec4	Spectral theorem for unbounded self-adjoint operators: three forms of the spectral theorem.	2		
Lec5	Illustration of the spectral theorem: Laplacian and harmonic oscillator.	2		
Lec6	Mathematical model of quantum mechanics.	2		
Lec7	Semigroups of operators: heat and Poisson semigroups for positive self-adjoint operators with illustration for Laplacian and harmonic oscillator, one-dimensional unitary groups of operators, Stone's theorem.	2		
Lec8	Introduction to the distribution theory: basic ideas, weak derivatives, test functions.	2		
Lec9	Elements of Fourier analysis: Schwartz' space, convolutions.	2		
Lec10	Distributions: operations on distributions, convergence in the spaces of distributions, different kinds of distributions.	2		
Lec11	Tempered distributions: Fourier transform of a distribution,	2		
Lec12	Applications to main equations of mathematical physics: fundamental solutions, examples of fundamental solutions for classic differential operators.	2		
Lec13	Sobolev spaces H_s : definition, basic properties, Sobolev embedding theorem.	2		
Lec14	Local Sobolev spaces $H_{s,loc}$: definition and properties, elliptic operators, elliptic regularity theorem.	2		
Lec15	Sobolev spaces W ^{k,p} : basic properties.	2		
	Total hours	30		

TEACHING TOOLS USED

N1 lecture

N2 consultations

N3 written assignments: problem solutions

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming	Educational effect number	Way of evaluating educational effect
(during semester), P –		achievement
concluding (at the semester		
end)		
F1	PEK_U01, PEK_U02	participation in the course
F2	PEK_W01, PEK_W02,	solutions of the problems
	PEK_U01, PEK_U02,	
	PEK_K01, PEK_K02	
P=0.5*F1+0.5*F2		
1		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- J. Conway, "A course in Functional Analysis", Graduate Texts in Mathematics, Springer 1997
- [2] M. Reed and B. Simon, "Methods of modern mathematical physics", vols. 1-4, Academic Press, New York 1972
- [3] W. Rudin "Analiza Funkcjonalna", PWN 2001

SECONDARY LITERATURE:

- R. Strichartz, "A Guide to Distribution theory and Fourier transforms", World Scientific (1994)
- [2] S. Ramamurti, "Mechanika kwantowa", PWN 2007

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS) PROF. DR HAB. KRZYSZTOF STEMPAK , krzysztof.stempak@pwr.edu.pl

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT SELECTED PROBLEMS OF FUNCTIONAL ANALYSIS AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY

Subject educational	Correlation between subject educational effect and educational	Subject objectives***	Programme content***	Teaching tool number***
effect	effects defined for main field of			
	applicable)**			
PEK_W01	I3_W06	C1,C2	Lec1-15	N1,N2,N3
PEK_W02	I3_W06	C1,C2	Lec1-15	N1,N2,N3
PEK_U01	I3_W06	C1,C2	Lec1-15	N1,N2,N3
PEK_U02	I3_U02	C2	Lec1-15	N2,N3
PEK_U03	I3_U05	C2,C3	Lec1-15	N2,N3
PEK_K01	I3_K01	C3	Lec1-15	N2,N3
PEK_K02	I3_K04	C3	Lec1-15	N2,N3

** - enter symbols for main-field-of-study/specialization educational effects *** - from table above