FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD

Name in Polish: MODELE UBEZPIECZENIOWE W PRZEMYŚLE

Name in English: Insurance models for industry

Main field of study (if applicable): Applied Mathematics

Specialization (if applicable): Financial and Actuarial Mathematics Level and form of studies: 1st/ 2nd* level, full-time / part-time*

Kind of subject: obligatory / optional / university-wide*

Subject code MAT001567 Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	150				
Form of crediting	Examination / crediting with grade*				
For group of courses mark (X) final course	X				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes			2		
including number of ECTS points for direct teacher-student contact (BK) classes			1,5		

^{*}delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Student knows and can apply basic concepts of the stochastic processes
- 2. Student knows principles of MATLAB numerical computing environment

SUBJECT OBJECTIVES

C1 Study of the classical concepts and acquisition of the knowledge of insurance models in industry

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 knows the most important concepts of insurance models in industry

PEK_W02 knows principles of stochastic modeling in actuarial mathematics

relating to skills:

PEK_U01 can construct actuarial models, that can be applied to industry insurance

relating to social competences:

PEK_K01 can, without assistance, search for necessary information in the literature, also in foreign languages

PROGRAMME CONTENT				
Form of classes - lecture	Number of hours			

Lec 1	Types of insurance policies in industry. Solvency II in Non-Life	2
	Insurance.	
Lec 2	Premium principles, risk measures.	2
Lec 3	Franchises and their types. Pricing of net premiums with franchise.	2
Lec 4	Individual risk model.	2
Lec 5	Approximations for total loss in individual risk model	2
Lec 6	Collective risk model. Frequency and severity distributions of claims. Parameters and distributions of aggregate claim amount.	2
	Compound Poisson model. Practical consequences of the theorem on the sum of compund Poisson risk.	2
Lec 8	The (a,b) class of distribution. Mixed Poisson model.	2
Lec 9	Risk proces. The adjustment coefficient. The probability of ruin.	4
	Distribution of the maximal aggregate coefficient and ruin probability. Pollaczek-Khinchin formula.	3
Lec 11	Approximations of ruin probability in finite and infinite time horizon	2
Lec 12	System Bonus-Malus	2
Lec 13	Credibility theory	3
	Total hours	30
Form of classes - laboratory		Number of hours
Lab 1 S	olving of problems illustrating theory given in the lectures	30
T	otal hours	30

TEACHING TOOLS USED

- N1. Lecture traditional method
- N2. Computer laboratory with MATLAB numerical computation environment
- N3. Consultations
- N4. Student's self-work preparation for the laboratory

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_W01 PEK_W02 PEK_K01	exam
F2	PEK_U01 PEK_K01	oral presentations, tests
P=0.5*F1+0.5*F2		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] N. L. Bowers i inni, Actuarial Mathematics, The Society of Actuaries, Itasca, Illinois 1997
- [2] P. Cizek, W. Haerdle, R. Weron (red.), Statistical tools for finance and insurance, Springer, Berlin, 2011

SECONDARY LITERATURE:

- [1] E.Banks, Alternative risk transfer, Wiley, 2003
- [2] S. A. Klugman, H. H. Panjer, G. E. Willmot, Loss Models: From Data to Decisions, Wiley, 2012
- [3] H. H. Panjer, G. E. Willmot, Insurance risk models, Society of Actuaries, 1992

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr hab. inż. Krzysztof Burnecki, prof. nadzw. (Krzysztof.Burnecki@pwr.edu.pl)

Dr hab. inż. Agnieszka Wyłomańska, prof. nadzw. (Agnieszka.Wylomanska@pwr.edu.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT

INSURANCE MODELS FOR INDUSTRY MAT001567 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS

AND SPECIALIZATION FINANCIAL AND ACTUARIAL MATHEMATICS

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***
PEK_W01 (knowledge)	K2MST_W03 K2MST_fam_W01 K2MST_fam_W02	C1	Lec 1- Lec 12	1,3
PEK_W02	K2MST_W09 K2MST_fam_W03	C1	Lec 1- Lec 12	1,3
PEK_U01 (skills)	K2MST_U15 K2MST_U24 K2MST_U25 K2MST_fam_U01 K2MST_fam_U02 K2MST_fam_U03	C1	Lab 1	2,3,4
PEK_K01 (competences)	K2MST_K06 K2MST_fam_K01 K2MST_fam_K02	C1	Lec 1- Lec 12, Lab 1	1,2,3,4

^{** -} enter symbols for main-field-of-study/specialization educational effects

^{*** -} from table above