FACULTY OF ARCHITECTURE

COURSE SYLLABUS

Course title in Polish: Wstęp do modelowania matematycznego Course title in English: An Introduction to Mathematical Modelling Specialization (if applicable): Architecture Profile (if applicable): Architecture and Urban Planning Level and form of studies: 2nd level, full-time Semester: 1 Course type: obligatory Course code: MAT001755W Group of courses: NO

	Lecture	Tutorial	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15				
Number of hours of total student workload (CNPS)	30				
Form of crediting	Crediting with grade				
For group of courses mark (X) final course					
Number of ECTS points	1				
including number of ECTS points for practical (P) classes					
including number of ECTS points for direct teacher-student contact classes or other people conducting classes (BU)	0,8				

PREREQUISITES RELATED TO KNOWLEDGE, COMPETENCES AND SOCIAL SKILLS

No prerequisites.

COURSE OBJECTIVES

- C1 Presenting the Fibonacci sentence and the principle of mathematical induction.
- C2 Presenting the theory of convex sets.
- C3 Giving basic knowledge related to tilings of surfaces and to filling spaces.
- C4 Passing on basic knowledge related to lattice polygons.
- **C5** Giving basic understanding of graph theory.
- C6 Passing on knowledge related to curves and surfaces.

COURSE LEARNING OUTCOMES

Relating to knowledge:

PEK_W1	The graduate knows the properties of the Fibonacci sequence.
PEK_W2	The graduate has basic knowledge related to convex set.
PEK_W3	The graduate knows solids and tilings.
PEK_W4	The graduate has basic knowledge related to lattice polygons.
PEK_W5	The graduate knows basic classes of graphs.

PEK W6	The graduate knows basic curves and surfaces.
1 LIX_110	The graduate knows busic curves and surraces.

Relating to competences:

Relating to social skills:		
PEK_U4	The graduate is able to investigate properties of curves on the plane.	
PEK_U3	The graduate is able to describe areas in diverse coordinates sets	
PEK_U2	The graduate is able to investigate basic properties of graphs.	
PEK_U1	The graduate s able to apply Euler's formula to investigate polyhedral solids.	

- PEK_K01 The graduate can, without assistance, search for necessary information in the literature.
- PEK_K02 The graduate understands necessity of systematic and individual work on the material of the course.

PROGRAMME CONTENT				
	Number of hours			
Lec 1	Golden ratio. The Fibonacci sequence. The principle of mathematical induction.	2		
Lec 2	Convex and starshaped sets. Helly's and Krasnosel'skii's theorems.	2		
Lec 3	Planar tilings. Euler's polyhedral formula. Euler characteristic. Platonic and Archimedean solids.	2		
Lec 4	Lattice polygons and Pick's theorem.	2		
Lec 5	Elements of graph theory. Eulerian and Hamiltonian graphs. Platonic graphs. Planar graphs and Kuratowski's theorem.	2		
Lec 6	Curves on the plane. Conic sections. Parametric curves.	2		
Lec 7	Cylindrical and spherical coordinates. Description of regions and surfaces in cylindrical and spherical coordinates.	2		
Lec 8	Final test.	1		
	Total hours	15		

TEACHING TOOLS

- N1 Lectures traditional and using multimedia tools.
- N2 Discussions.
- N3 Tutorial.

ASSESSMENT OF ACHIEVEMENT OF LEARNING OUTCOMES **Evaluation** (F – forming Number of learning Method of assessing the achievement of learning (during semester), C outcome outcome concluding (at semester end) F1 - DisPEK_U1 Oral presentations PEK_U4 PEK_K01 F2 – Lec PEK_W1 Final test PEK_W6 PEK_U1 PEK_U4 PEK_K02 **C** = rules set by the lecturer

BASIC AND ADDITIONAL LITERATURE

BASIC LITERATURE:

- [1] Webster, R., *Convexity*, Oxford 1994.
- [2] Roman, St., An Introduction to Discrete Mathematics, Innovative Textbooks, 2004.
- [3] Wilson, R. J., *Introduction to Graph Theory*, Prentice Hall 2010.

ADDITIONAL LITERATURE:

- [1] Strzelecki, P., Matematyka współczesna dla myślących laików, Warszawa 2011.
- [2] Tarczewski, R., *Topologia form strukturalnych*, Wrocław 2011.
- [3] Gewert, M., Skoczylas, Z., *Elementy analizy wektorowej. Teoria, przykłady zadania*, Wrocław 2012.
- [4] Zakrzewski, M., *Markowe Wykłady z Matematyki, Matematyka Dyskretna*, Wrocław 2014.
- [5] Gewert, M., Skoczylas, Z., *Analiza matematyczna 2, Definicje, twierdzenia, wzory*, Wrocław 2016.

COURSE SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Wydziałowa Komisja Programowa ds. Kursów Ogólnouczelnianych

mgr Bogusław Merdas

boguslaw.merdas@pwr.edu.pl