FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD

Name in Polish: Teoria optymalizacji Name in English: Optimization Theory Main field of study (if applicable): Applied Mathematics Specialization (if applicable): Level and form of studies: 1st/ 2nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code MAT001588 Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of	20	20			
University (ZZU)	50	50			
Number of hours of total student workload (CNPS)	180				
Form of crediting	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*
For group of courses mark (X) final course	Х				
Number of ECTS points	6				
including number of ECTS points for practical (P) classes	2	2			
including number of ECTS points for direct teacher- student contact (BK) classes	1,5	1,5			

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. The student has basic knowledge of calculus and algebra.

SUBJECT OBJECTIVES

- C1 Student is understanding the concepts and methods of mathematical programming.
- C2 He knows and understands the formulation of the linear and quadratic programming.
- C3 He has knowledge of the theoretical background of mathematical programming.
- C4 He knows the computer methods of mathematical programming.
- He is able to apply the acquired knowledge to create and analyze mathematical models to solve theoretical and practical study in various fields of science and technology.

SUBJECT EDUCATIONAL EFFECTS

The scope of the student's knowledge:

PEK_W01: Student knows the formulation of mathematical programming problems.

- PEK_W02: He has a basic knowledge about the usage and importance of mathematical programming methods.
- PEK_W03: He knows the limitations of analytical methods and the possibility of numerical analysis of optimization problems.

The scope of the student's skills:

PEK_U01. Student is able to formulate mathematical programming problem in a

convenient form for analysis.

PEK_U02. He can use the appropriate algorithm to solve tasks in the mathematical programming.

PEK_U03. He can apply optimization methods, and analytical methods or numerical analysis, in order to solve practical problems.

The scope of the student's social skills:

PEK_K01 The student is able to find and use the recommended literature course and independently acquire knowledge

PEK_K02 The student is able to use the basic tools for the analysis of mathematical models PEK_K03 The student understands the need for systematic and independent work on mastery of course material.

Course content				
	Form of activities - lectures	Hours load		
Wy1	Introduction to mathematical programming. Optimization without constraints. Global and local extremes. Optimality conditions.	2		
Wy2	Gradient methods. Steepest descent method. Newton's method and its variants. Analysis of convergence.	6		
Wy3	Linear programming. Geometric interpretation. Simplex algorithm.	4		
Wy4	Dual problem. Duality theory for linear programming. Sensitivity analysis.	2		
Wy5	Integer programming. Linear programming relaxation. Branch and bound method.	2		
Wyб	The theory of Lagrange multipliers. The necessary and sufficient conditions for extreme for constraints in the equality form. Lagrange multipliers in sensitivity analysis.	4		
Wy7	Constraints in the form of inequality. Optimality conditions of Karush-Kuhn-Tucker.	2		
Wy8	Quadratic programming. Wolfe's algorithm.	2		
Wy9	Elements of convex analysis. Projection theorem. Supporting hyperplane theorem. Separating hyperplane theorem.	2		
Wy10	Optimization on a convex set. Frank-Wolfe's method. Gradient projection method.	2		
Wy11	Convex programming. Duality for convex programming. Subgradient. Subgradient methods.	2		
	Total load (in hours)	30		

	Form of activities: classes, practice	Number of hours
Ćw1.	Necessary and sufficient optimality conditions.	2
Ćw2.	Properties of convex functions and convex sets.	2
Ćw3.	Illustration of gradient methods.	4
Ćw4.	Simplex method. Practical applications of linear programming. Sensitivity	8

	analysis.	
Ćw5.	Applications of Lagrange multiplier theory in practical optimization	6
	problems.	
Ćw6.	Quadratic programming problems.	4
Ćw7.	Applications of convex analysis in solving optimization problems.	2
Ćw8.	Test.	2
	Total hours	30

TOOLS FOR TEACHING

1 Lecture - traditional method.

2 Exercise and accounting problems - the traditional method.

3 Consultation.

4 Student's own work - preparing to exercise and test.

OCENA OSIĄGNIĘCIA EFEKTÓW KSZTAŁCENIA

Evaluation (F – forming (during semester), P – concluding (at semester	Educational effect number	Way of evaluating educational effect achievement
end)		
F1	PEK_W01, PEK_W02, PEK_W03,	oral
	PEK_K01, PEK_K02	presentations, quizzes, t
		ests
F2	PEK_W01, PEK_W02, PEK_W03,	exam
	PEK_U01, PEK_U02, PEK_U03,	
	PEK_K01, PEK_K02, PEK_K03	
P=0.4*F1+0.6*F2		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] S.P. Bradley, A.C. Hax, T.L. Magnanti, Applied Mathematical Programming, Addison-Wesley Publishing Company, 1977
- [2] D.P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, MA: 1999.
- [3] I. Nykowski, Programowanie liniowe, PWE Warszawa 1980.
- [4] W. Grabowski, Programowanie matematyczne, PWE Warszawa 1980.
- [5] R.S. Garfinkel, G.L. Nemhauser, Programowanie całkowitoliczbowe, PWN, 1978.
- [6] B. Martos, Programowanie nieliniowe, Warszawa: PWN, 1983.

SECONDARY LITERATURE:

- [7] D.P. Bertsekas, A. Nedic, A.E. Ozdaglar, Convex Analysis and Optimization, Athena Scientific, Belmont, MA: 2003.
- [8] A. Ruszczyński, Nonlinear optimization, Princeton University Press, Princeton, NJ, 2006.
- [9] R. Dautray, J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Springer, Berlin 1988-1993.
- [10] S. Boyd, L. Vanderberghe, Convex Optimization, Cambridge University Press,

2004

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr hab. inż. Anna Jaśkiewicz (<u>anna.jaskiewicz@pwr.edu.pl</u>) Dr inż. Piotr Więcek (<u>Piotr.wiecek@pwr.edu.pl</u>)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT OPTIMIZATION METHODS MAT001588

AN.	D EDUCATIONAL	EFFECTS FO	OR MAIN FI	ELD OF STUD	Y APPLIED
	MATHEMATICS	AND SPECIA	LIZATION	MODELLING	G, SIMULATION,
	OPTIMIZATION				

Subject	Correlation between subject	Subject	Programme	Teaching tool		
educational effect	educational effect and educational	objectives***	content***	number***		
	effects defined for main field of	9				
	study and specialization (if					
	study and specialization (if					
	applicable)**					
	K2MST_W01					
PEK_W01	K2MST_W06	C1 $C2$	$\mathbf{W}_{\mathbf{v}}1$ $\mathbf{W}_{\mathbf{v}}11$	124		
(knowledge)	K2MST_W10	CI = C2	vv y1— vv y11	1,5,4		
× 8/	K2MST_mso_W01					
	K2MST_W02					
PEK W02	K2MST_W07	C5	Wv1 Wv6	134		
1 LK_W02	K2MST_W15	CJ	••• y1—••• y0	1,5,4		
	K2MST_mso_W02					
DEL MOO	K2MST_W03	α	XX7 1 XX7 11	124		
PEK_W03	K2MST_W08	C3-C4	wyl—wyl1	1,3,4		
	K2MST_II01					
PEK_U01	K2MS1_001 K2MST_U11	C1 $C2$ $C5$	$C_{\rm W1}$ $C_{\rm W0}$	234		
(skills)	K2MST_011	C1 = C2, C3	Cw1-Cw9	2,3,4		
	K2MST_III9					
PEK U02	K2MST U24	C4—C5	Ćw1-Ćw9	2.3.4		
	K2MST_mso_U02	0. 00		_,,,,		
	K2MST_U25	C1 - C2	, ,			
PEK_U03	K2MST_U29	C1 C2,	Cw1-Cw9	2,3,4		
	K2MST_mso_U03	C4—C5				
PEK_K01	K2MST K01	C1 $C2$ $C3$	$W_{x}1 W_{x}11$			
(competences,	K2MST_K04	C1, C2, C3,	ŵy1-ŵy11,	1, 2, 3, 4		
social skills)	K2MST_mso_K01	C4, C5	Cw1-Cw9	, , ,		
social skills)	K2MST K02		XX7 1 XX7 1 1			
PEK K02	K2MST_K02	C1 - C5	wyi-wyii,	1234		
1211_1102	K2MST_mso_K02	01 05	Cw1-Cw9	1, 2, 3, 4		
	K2MST_K03		$W_{\rm W}1_{\rm W}W_{\rm W}11$			
PEK_K03	K2MST_K06	C1—C5		1, 2, 3, 4		
	K2MST_K07		CW1-CW9			

** - from table above