FACULTY OF MECHANICAL ENGINEERING SUBJECT CARD Name in English MATHEMATICAL ANALYSIS II Name in Polish ANALIZA MATEMATYCZNA II Main field of study (if applicable) Specialization (if applicable) Level and form of studies I level, full time Kind of subject obligatory

MAT001649

NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	of hours of organized n University (ZZU)1515				
Number of hours of total student workload (CNPS)					
Form of crediting	exam	crediting with grade			
For a group of courses mark the final course (X)					
Number of ECTS points	2	2			
including number of ECTS points for practical (P) classes					
including number of ECTS points for direct teacher-student contact (BK) classes					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

Knowledge of differential calculus and integration for functions of one variable.

SUBJECT OBJECTIVES

C1 Exposition of basic notions and laws of multivariable differential calculus and its applications.C2 Exposition of basic notions and laws for double integrals and their applications in geometry.C3 Exposition of basic notions and laws concerning improper integrals. Exposition of the basic criteria for convergence of numerical series and properties of power series.

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge a student:

Subject code

Group of courses

PEK_W1 knows rudiments of multivariable differential calculus,

PEK_W2 has basic knowledge of double integrals and knows their applications,

PEK_W3 has basic knowledge of improper integrals of type I and numerical and function series.

Relating to skills a student:

- PEK_U1 can compute partial derivatives, the gradient and directional derivatives of multivariate functions and use them to find local extrema of multivariate functions,
- PEK_U2 can calculate integrals of functions of two variables and apply integral calculus geometry and physics,

PEK_U3 can verify convergence of improper integrals of type I and numerical and function series and can construct power series approximating given functions of one variable.

Relating to social competences a student:

PEK_K01_understands the need of systematic and independent work on mastery of the course material.

PROGRAMME CONTENT			
	Form of classes - lecture	Hours	
Lec1	Functions of several variables. The domain of a function of two variables. Graphs of	2	
	typical functions of two variables. The partial derivative. The plane tangent to the graph of		
	a function of two variables. The differential of multivariate function and its applications.		
Lec2	Directional derivatives. Gradient of a function. Higher order partial derivatives.	2	
Lec3	Local and global extrema. Sufficient conditions for the existence of the extreme.	2	
Lec4	The definite integral of a function of two variables. Geometric interpretation. Double	2	
	integrals over normal and regular regions.		
Lec5	Change of variables in double integrals. Double integrals in polar coordinates.	2	
	Applications of double integrals in geometry.		
Lec6	Improper integrals of type I. Comparison and limit comparison test.	1	
Lec7	Infinite numerical series. The basic criteria for convergence of series. Absolute	2	
	convergence.		
Lec8	Power series. Taylor and Maclaurin series.	2	
	Total hours	15	
	Form of classes – classes	Hours	
Cl1	Partial derivatives. The plane tangent to the graph of a function of two variables.	2	
	Applications of the differential of multivariate function.		
Cl2	Directional derivatives. Gradient. Higher order partial derivatives.	2	
Cl3	Local and global extrema.	1	
Cl4	Calculation of double integrals over normal regions.	2	
C15	Double integrals in polar coordinates. Applications of double integrals in geometry.	2	
Cl6	Improper integrals of type I.	1	
Cl7	Infinite numerical series.	2	
C18	Power series.	2	
Cl9	Test.	1	
	Total hours	15	

TEACHING TOOLS USED

N1. Lecture - traditional method.

- N2. Classes traditional method (problems sessions and discussion).
- N3. Student's self-study with the assistance of mathematical packages.
- N4. Tutorial.

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F-forming; P - concluding)	Educational effect number	Way of evaluating educational effect achievement				
F1	PEK_U1-PEK_U3, PEK_K1	tests, oral presentations, quizzes				
F2	PEK_W1-PEK_W3	exam				
P - rules set by the lecturer						

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] W.G. McCallum et al., Multivariable calculus, John Wiley & Sons, Inc.1997G.
- [2] M. Gewert, Z. Skoczylas, Analiza matematyczna 2. Definicje, twierdzenia, wzory, Oficyna Wydawnicza GiS, Wrocław 2016.
- [3] F. Leja, Rachunek różniczkowy i całkowy, PWN, Warszawa 2012.
- [4] W.Żakowski, W.Kołodziej, Matematyka, cz. II, WNT, Warszawa 2014.

SECONDARY LITERATURE:

- M. Gewert, Z. Skoczylas, Analiza matematyczna 2. Przykłady i zadania, Oficyna a. Wydawnicza GiS, Wrocław 2016.
- [2] W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach, Cz. II, PWN, Warszawa 2006.
- [3] R. Leitner, Zarys matematyki wyższej dla studiów technicznych, Cz. 1-2, WNT, Warszawa 2006.

SUBJECT SUPERVISORS

Wydziałowa Komisja Programowa ds. Kursów Ogólnouczelnianych dr Marian Gewert (marian.gewert@pwr.edu.pl) doc. dr Zbigniew Skoczylas (zbigniew.skoczylas@pwr.edu.pl)

CORRELATION MATRIX BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT MATHEMATICAL ANALYSIS II MAT001649

AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY

AND SPECIALIZATION

Subject	Correlation between subject	Subject	Programme content	Teaching tool
educational	educational effect and educational	objectives		number
effect	effects defined for main field of			
	study and specialization (if			
	applicable)			
PEK_W1		C1	Lec1-Lec3	N1-N4
PEK_W2		C2	Lec4-Lec5	N1-N4
PEK_W3		C3	Lec6-Lec8	N1-N4
PEK_U1		C1	C11-C13	N1-N4
PEK_U2		C2	C14-C15	N1-N4
PEK_U3		C3	C16-C18	N1-N4
PEK_K1		C1-C3	Lec1-Lec8, Cl1-Cl9	N1-N4