FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD

Name in Polish METODY NIELINIOWE

Name in English NONLINEAR METHODS

Main field of study (if applicable): APPLIED MATHEMATICS

Specialization (if applicable): MATHEMATICS FOR INDUSTRY AND COMMERCE Level and form of studies: 1st/ 2nd* level, full-time / part-time*

Kind of subject: obligatory / optional / university-wide*

Subject code MAT1551

Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	90		60		
Form of crediting	Examination / crediting with grade*				
For group of courses mark (X) final course	Х				
Number of ECTS points	3		2		
including number of ECTS points for practical (P) classes			2		
including number of ECTS points for direct teacher-student contact (BK) classes			1.5		

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Student has knowledge of concepts, theorems and methods of mathematical analysis

2. Student has knowledge of concepts and methods of differential equations

SUBJECT OBJECTIVES

C1 Study basic concepts and nonlinear methods used in applications

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 has advanced knowledge concerning nonlinear methods

PEK_W02 knows numerical methods applied for approximate solving of mathematical problems in applied sciences

relating to skills:

PEK_U01 is able to construct mathematical models in advanced applications of mathematics relating to social competences:

PEK_K01 can, without assistance, search for necessary information in the literature, also in foreign languages

PROGRAMME CONTENT					
Form of classes - lecture					
Lec 1	Examples of nonlinear phenomena				
Lec 2	Examples of nonlinear phenomena	2			
Lec 3	Nonlinear oscillators	2			
Lec 4	Bifurcation and stability	2			
Lec 5	Van der Pol equation	2			
Lec 6	Duffig equation	2			
Lec 7	7 2-D systems of nonlinear equations – equilibrium points				
Lec 8	Classification of the equilibrium points				
Lec 9	Systems of nonlinear equations - attractors	2			
Lec 10	Lorenc equation	2			
Lec 11	Strange attractors	2			
Lec 12	Belolusov-Zabotynski equation	2			
Lec 13	Benard cells – equations of hydrodynamics	2			
Lec 14	Examples of nonlinear optimisation	2			
Lec 15	Some methods of nonlinear optimisation	2			
	Total hours	30			
Form of classes - laboratory					
LabSolving of problems illustrating theory given in the lectures by analytic1methods and with MATLAB					
Total hours					
	TEACHING TOOLS USED				
	ture – traditional method				
N2. Laboratory- solving problems with computers N3. Consultations					
	sultations dent's self work – preparation for the laboratory				

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_W01 PEK_W02	test
F2	PEK_U01 PEK_K01	oral answers, calculus trainings, presentations, short tests, tests
P==0.5*F1+0.5*F2		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] D.W. Jordan, P. Smith, Nonlinear Ordinary Differential Equations
- [2] G. Nicolis, Introduction to Nonlinear Science.

SECONDARY LITERATURE:

[1] D. P. Bertsekas, Nonlinear Programming

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Prof. dr hab. Wojciech Okrasiński (Wojciech.Okrasinski@pwr.wroc.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT NONLINEAR METHODS MAT1551 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS

AND SPECIALIZATION MATHEMATICS FOR INDUSTRY AND COMMERCE

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***
PEK_W01 (knowledge)	K2MIC_W04	C1	Lec1-Lec15	1,3
PEK_W02	K2MIC_W10	C1	Lec1-Lec15	1,3
PEK_U01 (skills)	K2MIC_U15	C1	Lab1	2,3,4
PEK_K01 (competences)	K2MIC_K06	C1	Lec1-Lec15 Lab1	1,2,3,4

** - enter symbols for main-field-of-study/specialization educational effects

*** - from table above