FACULTY ****

SUBJECT CARD

Name in English: LINEAR ALGEBRA 1

Name in Polish: ALGEBRA LINIOWA 1

Main field of study (if applicable): Specialization (if applicable):

Level and form of studies: I level, full time
Kind of subject: obligatory
Subject code: MAT001400

Group of courses: NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	30			
Number of hours of total student workload (CNPS)	60	60			
Form of crediting	exam	crediting with grade			
For group of courses mark (X) final course					
Number of ECTS points	3	2			
including number of ECTS points for practical (P) classes		2			
including number of ECTS points for direct teacher-student contact (BK) classes	1,5	1,5			

PREREQUISITIES

It is recommended to know the basic algebraic operations on rational and real numbers, and knowledge of basic geometric figures and shapes.

SUBJECT OBJECTIVES

- C1. Understanding the basic properties of complex numbers.
- C2. Learning basic algebraic properties of polynomials.
- C3. Mastering the concept of a vector, a vector space and the base of a linear space.
- C4. Learning how to calculate the distance between the points in the space Rⁿ, how to determine the equations of lines and planes and understanding the concept of conic sections.
- C5. Mastering the concepts of matrices, matrix operations, and learning the methods of solving systems of linear equations.

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge student:

PEK_W01 knows basic properties of complex numbers

PEK_W02 knows basic algebraic properties of polynomials

PEK_W03 knows basic concepts of theory of linear spaces and methods of description of lines, planes and conic sections

PEK_W04 knows basic methods of solving systems of linear equations

Relating to skills student:

PEK_U01 can carry out calculations with complex numbers

PEK_U02 can add, multiply and divide polynomials

PEK_U03 can find the equations of planes and lines in three dimensional space

PEK_U04 can add and multiply matrices and calculate determinants

PEK_U05 can solve systems of linear equations

Relating to social competences:

PROGRAM CONTENT			
	Hours		
W1	Natural, rational and real numbers. Mathematical induction. Newton's binomial formula.		
W2	Complex numbers. Basic operations, modulus, complex conjugate.	2	
W3	Polar form of complex number. De Moivre's formula. Roots of complex numbers. The notion of algebraic field.	2	
W4	Polynomials. Addition and multiplication of polynomials. Roots of polynomial. Polynomial remainder theorem. Fundamental theorem of algebra.	2	
W5	The decomposition of a polynomial with real coefficients into product of linear and quadratic factors. Rational functions. Real simple rational factors. Decomposition of the functions into rational simple factors.	2	
W6	Vectors in the space R ⁿ . Addition and multiplication by scalars. Distance between points. Scalar product. Length of vector. Cauchy-Schwarz inequality. The angle between vectors.	2	
W7	Analytic geometry of the plane. Straight line formulas (normal parametric and directional form). Distance of a point from a line. The angle between lines.	2	
W8	Analytic geometry of the space R ³ . Equations of lines and planes. Distance between point and a plane. Intersection of planes.	2	
W9	Linear combinations of vectors. Linearly independent vectors. The base of a space. Linear mappings. Matrix representation of linear mappings.	2	
W10	Addition and multiplication of matrices and its correlation with operations on linear mappings. Example of matrices.	2	
W11	Permutations and its sign. Definition of determinant and methods of calculation of determinant. Algebraic complement of an element of a matrix. Laplace' formula for determinant. Determinant and volume.	2	

W12	Inverse matrix. Systems od linear equations. Cramer's formulas. Examples. Homogeneous and non-homogeneous systems.	2
W13	Properties of linear mappings (kernel, image, rank). Rouché-Capelli theorem. Gaussian elimination.	2
W14	Eigenvalues and eigenvectors.	2
W15	Conic sections.	2
	Total hours	30

	Hours	
Cw1	Real and complex numbers.	4
Cw2	Polynomials.	4
Cw3	Geometry of the plane.	4
Cw4	Geometry of the space \mathbb{R}^3 .	4
Cw5	Basis and linear mappings.	4
Cw6	Matrices and determinants.	4
Cw7	Systems of linear equations.	4
Cw8	Test.	2
	Total hours	30

TEACHING TOOLS USED

- 1. Lecture traditional method.
- 2. Classes traditional method.
- 3. Student's self work with the assistance of mathematical packages.

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F -forming;	Educational effect	Way of evaluating educational effect
P - concluding)	number	achievement
F - Cw	PEK_U01 - PEK_U05	Oral answers, quizzes, written tests and/or e-
		tests
P – W	PEK_W01 - PEK_W04	Exam or e-exam

LITERATURE

PRIMARY:

- [1] A. Białynicki Birula, Algebra liniowa z geometrią, PWN 1976.
- [2] F. Leja, Geometria analityczna, PWN, Warszawa 1972.
- [3] A. Mostowski, M. Stark, Elementy algebry wyższej, PWN, Warszawa 1963.
- [4] G. Banaszak, W. Gajda, Elementy algebry liniowej, część I, WNT, Warszawa 2002.

SECONDARY:

- [1] G. Farin, D. Hansford, Practical Linear Algebra: A Geometry Toolbox 2004, AK Peters, 2005.
- [2] T. Jurlewicz, Z. Skoczylas, Algebra i geometria analityczna. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław 2015.

- [3] T. Jurlewicz, Z. Skoczylas, Algebra liniowa. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław 2014.
- [4] T. Jurlewicz, Z. Skoczylas, Algebra i geometria analityczna. Definicje, twierdzenia, wzory. Oficyna Wydawnicza GiS, Wrocław 2014.
- [5] T. Jurlewicz, Z. Skoczylas, Algebra liniowa. Definicje, twierdzenia, wzory. Oficyna Wydawnicza GiS, Wrocław 2015.
- [6] E. Kącki, D. Sadowska, L. Siewierski, Geometria analityczna w zadaniach, PWN, Warszawa 1993.
- [7] W. Stankiewicz, Zadania z matematyki dla wyższych uczelni technicznych, Cz. A, PWN, Warszawa 2003.

SUBJECT SUPERVISORS

Wydziałowa Komisja Programowa ds. Kursów Ogólnouczelnianych dr hab. Agnieszka Wyłomańska (Agnieszka. Wylomanska@pwr.edu.pl)

Subject	Correlation between subject	Subject	Programme	Teaching
educational	educational effect and	objectives**	content**	tool
effect**	educational effects defined for			number**
	main field of study and			
	specialization (if applicable)			
PEK_W01		C1	W1, W2, W3,	1,3
			W14	
PEK_W02		C2	W4, W5	1,3
PEK_W03		C3, C4	W6, W7, W8,	1,3
			W9, W15	
PEK_W04		C5	W10, W11, W12,	1,3
			W13	
PEK_U01		C1	Cw1, Cw6, Cw7	1,2,3
PEK_U02		C2	Cw2	1,2,3
PEK_U03		C3, C4	Cw3, Cw4, Cw5	1,2,3
PEK_U04		C5	Cw6, Cw7	1,2,3
PEK_U05		C5	Cw6, Cw7	1,2,3

^{** -} from tables above