FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD Name in Polish: *Teoria statystycznych funkcji decyzyjnych* Name in English: *Theory of statistical decision functions* Main field of study: Specialization (if applicable): Level and form of studies: 3rd level Kind of subject: Interdisciplinary faculty course Subject code: MAT1314 Group of courses: TAK / NIE*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of	30				
organized classes in					
University (ZZU)					
Number of hours of total	90				
student workload					
(CNPS)					
Form of crediting	Examination	Examination	Examination	Examination	Examination
	/ crediting				
	with grade*				
For group of courses					
mark (X) final course					
Number of ECTS points	3				
including number of ECTS					
points for practical (P)					
classes					
including number of ECTS	2				
points for direct teacher-					
student contact (BK)					
classes					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Student knows probability and elementary algebra.
- 2. Student is able to search and master supplementary skills and areas of knowledge.

SUBJECT OBJECTIVES

C1 The student will learn general concepts of statistical inference C2 The student should acquire the ability to construct optimal decisions of the statistician in general stochastic models

C3 The student should acquire the skills of oral and written presentation of results of scientific work in a form accessible for non-specialists in the field related to the present issue.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 the fundamentals of general theory of statistical decision functions. PEK_W02 sufficiency and invariant principle in mathematical statistics. PEK_W03 decision-theoretic approach to nonparametric estimation of CDF relating to skills: PEK_U01 master methodology of scientific study PEK_U02 leading a scientific project

relating to social competences:

PEK K01 awareness of the role of scientific collaboration, including international

PEK K02 awareness of the importance to create original research

PROGRAMME CONTENT				
Form of classes - lecture				
	I. Sufficiency principle in mathematical statistics.			
Lec1	Sufficient sigma-fields and statistics	2		
Lec2	Complete and essentially complete classes of decision functions	2		
Lec3	Classes of decision functions based on sufficient statistics	2		
	II. Inwariant principle in mathematical statistics.			
Lec4	Invariant families of distributions	2		
Lec5	Location and scale parameter distribution families	2		
Lec6	Invariant statistics. Maximal invariants	2		
Lec7	Invariant decision problem. Invariant decision functions	2		
Lec8	Minimal risk invariant decision functions	2		
Lec9	Equivariant estimators. Pitman's estimators	2		
Lec10	Invariant tests	2		
Lec11	Invariant sequential decision function	2		
	III. Decision-theoretic approach to nonparametric estimation of a cumulative distribution function.			
Lec12	Loss function in nonparametric estimation of a cumulative distribution function	2		
Lec13	<i>Minimal risk equivariant estimators of a continuous cumulative distribution function</i>	2		
Lec14	Minimax estimation of a cumulative distribution function	2		
Lec15	Minimax prediction of a sample distribution function	2		
	Total hours	30		

TEACHING TOOLS USED

N1 lecture

N2 consultations

N3 written assignments: problem solutions

Evaluation (F – forming	Educational effect number	Way of evaluating educational effect
(during semester), P –		achievement
concluding (at the semester		
end)		
F1	PEK_U01, PEK_U02	participation in the course
F2	PEK_W01, PEK_W02,	solutions of the problems
	PEK_W03	
	PEK_U01, PEK_U02,	
	PEK_K01, PEK_K02	
P=0.5*F1+0.5*F2		
	•	

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Berger J. O. (1985). Statistical Decision Theory and Bayesian Analysis. Springer Series in Statistics. Springer-Verlag, New York, second edition.
- [2] Lehmann E.~L., Casella G. (2003). Theory of Point Estimation. Springer Texts in Statistics. Springer-Verlag, New York, second edition.
- [3] Shao J. (2003). Mathematical Statistics. Springer Texts in Statistics. Springer. Verlag, New York, second edition.

SECONDARY LITERATURE:

[1] Magiera R. (2007). Modele i metody statystyki matematycznej. Część II. Wnioskowanie statystyczne. GiS, Wrocław, wydanie II

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS) PROF. DR HAB. INŻ. KRZYSZTOF SZAJOWSKI, krzysztof.szajowski@pwr.edu.pl

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT *THEORY OF STATISTICAL DECISION FUNCTIONS* AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Program content***	Teaching tool number***
PEK_W01	I3_W06	C1,C2	Lec1-15	N1,N2,N3
PEK_W02				
PEK_W03				
PEK_U01	I3_W06	C1,C2	Lec1-15	N1,N2,N3
PEK_U02	I3_U02	C2	Lec1-15	N2,N3
PEK_U03	I3_U05	C2,C3	Lec1-15	N2,N3
PEK_K01	I3_K01	C3	Lec1-15	N2,N3
PEK K02	I3 K04	C3	Lec1-15	N2,N3

** - enter symbols for main-field-of-study/specialization educational effects

*** - from table above