FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD Name in Polish: Wprowadzenie do Problemów Odwrotnych

Name in English: Introduction to Inverse Problems Main field of study (if applicable): APPLIED MATHEMATICS Specialization (if applicable): MATHEMATICS FOR INDUSTRY AND COMMERCE, MODELLING, SIMULATION, OPTIMIZATION Level and form of studies: 1st/2nd* level, full-time / part-time* Kind of subject: obligatory-/ optional / university-wide*

Subject code MAT001575

Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	150				
Form of crediting	Examination / crediting with grade*				
For group of courses mark (X) final course	Х				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes	2		2		
including number of ECTS points for direct teacher-student contact (BK) classes *delete as applicable	1,5		1,5		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Student knows basic facts of mathematical analysis.
- 2. Knows MATLAB package for mathematical computing.

SUBJECT OBJECTIVES

C1 Study of classical examples of inverse problems.

- C2 Study of theory and basic concepts for inverse problems.
- C3 Study of numerical methods for solving inverse, ill-posed problems.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 knows the definition of well-posedness

PEK_W02 knows classical examples of inverse problems

PEK_W03 knows basic methods of regularization

PEK_W04 knows numerical methods for solving inverse problems

relating to skills:

PEK_U01 understand the definition of well-posedness

PEK_U02 be able to demonstrate examples of inverse problems

PEK_U03 be able to apply numerical methods to solve inverse problems

relating to social competences:

PEK_K01 can, without assistance, search for necessary information in the literature.

PEK_K02 understands the need for systematic work on course material

PROGRAMME CONTENT		
	Number of hours	
	Introduction to inverse problems. Definition of the well-posedness. Important classes of inverse problems.	2
Lec 2	Differentiation of a noisy data.	2
Lec 3	Computerized tomography. The Radon transform.	2
Lec 4	Inverse problems in image processing.	2
Lec 5	Parameter identification problems.	4
Lec 6	Ill-conditioned matrix equations	2
Lec 7	Regularization of linear ill-posed problems.	4
Lec 8	Tikhonov regularization.	2
Lec 9	Maximum entropy regularization.	2
Lec 10	Total variation regularization.	2
Lec 11	Estimation of the regularization parameters.	2
Lec 12	Iterative regularization	4
	Total hours	30

Form of classes - laboratory		
Lab 1	Solving problems illustrating the methods given in the lecture using MATLAB package for scientific computing	30
	Total hours	30

TEACHING TOOLS USED

N1. Lecture – traditional method

N2. Computer laboratory – working on a computer using MATLAB package for numerical computations

N3. Consultations

N4. Student's self work – preparation for the laboratory

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_W03, PEK_W04, PEK_U03, PEK_K01, PEK_K02	activity in the laboratory, oral presentation
F2	PEK_W01, PEK_W02, PEK_W03, PEK_W04, PEK_U01, PEK_U02, PEK_U03, PEK_K01, PEK_K02,	test
P==0.5*F1+0.5*F2		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] C. W. <u>Groetsch</u>. "Inverse Problems in the Mathematical Sciences". <u>Vieweg</u>, <u>Braunschweig</u>, 1993.
- [2] C. R. Vogel. "Computational Methods for Inverse Problems". SIAM, Philadelphia, PA, USA, 2002.

SECONDARY LITERATURE:

- H. W. Engl, M. Hanke, and A. Neubauer. "Regularization of Inverse Problems". <u>Kluwer</u> Academic Publishers, <u>Dordrecht</u>, 1996.
- [2] A. A. <u>Samarskii</u> and P. N. <u>Vabishchevich</u>. "Numerical Methods for <u>Solving</u> Inverse Problems of Mathematical Physics". Walter de <u>Gruyter</u>, 2007.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr Monika Muszkieta (monika.muszkieta@pwr.edu.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT INTRODUCTION TO INVERSE PROBLEMS MAT001575 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION MATHEMATICS FOR INDUSTRY AND COMMERCE

MODELLING, SIMULATION, OPTIMIZATION

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**lności (o ile dotyczy)	Subject objectives***	Programme content***	Teaching tool number***
PEK_W01 (knowledge)	K2MST_W06 K2MST_W08, K2MST_mic_W01 K2MST_mso_W01	C1, C2, C3	Lec 1,	1
PEK_W02	K2MST_W07 K2MST_W10 K2MST_mic_W02 K2MST_ mso _W02	C1, C2, C3	Lec 1 - Lec 6, Lab 1	1, 2, 3
PEK_W03	K2MST_W13 K2MST_W12 K2MST_mic_W03 K2MST_mso_W03	C1, C2, C3	Lec 7 – Lec 12, Lab 1	1, 2, 3
PEK_W04	K2MST_W04	C1, C2, C3	Lec 2 - Lec 12, Lab 1	1, 2, 3, 4
PEK_U01 (skills)	K2MST_U04, K2MST_U05, K2MST_U16, K2MST_mic_U01 K2MST_ mso _U01	C1, C2, C3	Lec 1	1
PEK_U02	K2MST_U06, K2MST_U09 K2MST_U17 K2MST_mic_U02 K2MST_ mso _U02	C1, C2, C3	Lec 1 - Lec 6, Lab 1	1, 2, 3
PEK_U03	K2MST_U24 K2MST_U25 K2MST_mic_U03 K2MST_ mso _U03	C1, C2, C3	Lec 7 – Lec 12, Lab 1	1, 2, 3
PEK_K01 (competences)	K2MST_K05, K2MST_K06 K2MST_mic_K01 K2MST_ mso _K01	C1, C2, C3	Lec 1- Lec 12, Lab 1	1, 2, 3, 4
PEK_K02	K2MST_K03, K2MST_K04 K2MST_mic_K02 K2MST_ mso _K02	C1, C2, C3	Lec 1- Lec 12, Lab 1	1, 2, 3, 4

** - enter symbols for main-field-of-study/specialization educational effects *** - from table above