Name in Polish: Równania różniczkowe cząstkowe z zastosowaniami w fizyce i przemyśle Name in English: Partial differential equations with applications in physics and industry Main field of study (if applicable): APPLIED MATHEMATICS Specialization (if applicable): Mathematics for Industry and Commerce

Specialization (II applicable): Mathematics for Industry and Commer

Level and form of studies: 1st/ 2nd* level, full-time / part-time*

Kind of subject: obligatory / optional / university-wide*

Subject code MAT001536

Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	30			
Number of hours of total student workload (CNPS)	180				
Form of crediting	Examination / crediting with grade*				
For group of courses mark (X) final course	Х				
Number of ECTS points	6				
including number of ECTS points for practical (P) classes		4			
including number of ECTS points for direct teacher-student contact (BK) classes		2			

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

Student knows and can apply classical notions and methods of real and complex analysis.
 Student knows and can apply elementary notions and methods of ordinary differential equations.

SUBJECT OBJECTIVES

C1 Study of basic notions and acquisition of knowledge in the area of differential equations. C2 Study of basic applications of partial differential equations in science, technology and industry. C3 Acquisition of basic abilities in mathematical modelling by partial differential equations.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge the student:

PEK_W01 knows the most important theorems from main areas of differential equations PEK_W02 knows basics of modelling by differential equations in technology and natural

sciences, especially in physics, chemistry and biology

relating to skills the student:

PEK_U01 can analyze basic problems of differential equations,

PEK_U02 can construct mathematical models with the usage of differential equations in concrete applications of mathematics.

relating to social competences the student:

PEK_K01 can, without assistance, search for necessary information in the literature, also in foreign languages

PEK_K02 understands necessity of systematic and individual work on the material of the course.

	PROGRAMME CONTENT				
	Form of classes - lecture	Number of hours			
Lec1	Lec1 A reminder of information concerning first order partial differential equations. Methods of characteristics, weak solutions and shock waves.				
Lec2	Second order partial differential equations and their classification. Physical motivations.	2			
Lec3	Parabolic equations and their applications (heat, diffusion). Initial- boundary problems, method of separation of variables, Fourier transform, fundamental solution, maximum principle.	8			
Lec4	Hyperbolic equations and their applications (vibration of strings, membranes and beams; acoustical, mechanical and electromagnetic waves). D'Alembert's solution, initial-boundary problems, method of separation of variables, Kirchhoff's solution, Huygens' principle.	8			
Lec5	Elliptic equations and their applications (stationary temperature distribution, gravitational and electrostatic potential). Boundary value problems, eigenfunctions, Poisson's equation, Green's function.	6			
Lec6	The calculus of variations and its applications. Euler-Lagrange equation, Lagrangian mechanics, geodesic equation, minimal surface equation.	2			
	Total hours	30			
	Form of classes - Class	Number of hours			
C11	Solving of problems for differential equations and their applications.	30			
	Total hours	30			
	TEACHING TOOLS USED				
N1. L	ecture – traditional method				
	utorial class				
	onsultations				
N4. S1	tudent's personal work – preparation for the laboratory				

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	number	Way of evaluating educational effect achievement
	PEK_W01 PEK_W02 PEK_K01	exam
	PEK_U01 PEK_U02 PEK_K01	Oral presentations, tests, written reports.

P=0.5*F1+0.5*F2

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] S.J.Farlow, Partial Differential Equations for Scientists and Engineers, Dover Publications, 1993.
- [2] R.Haberman, Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, Pearson, 2012.

[3] A. N. Tichonow, A. A. Samarski, Równania fizyki matematycznej, PWN 1963.

SECONDARY LITERATURE:

- J. Ockendon, S. Howison, A. Lacey & A. Movchan, Applied Partial Differential Equations, Oxford University Press, Oxford 1999.
- [2] L. C. Evans, Równania różniczkowe cząstkowe, PWN 2002.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Prof. dr hab. Wojciech Okrasiński (wojciech.okrasinski@pwr.edu.pl)

dr inż. Łukasz Płociniczak (<u>lukasz.plociniczak@pwr.edu.pl</u>)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT DIFFERENTIAL EQUATIONS MAT001536 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION MATHEMATICS FOR INDUSTRY AND COMMERCE

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***
PEK_W01 (knowledge)	K2MST_W03 K2MST_mic_W01 K2MST_mic_W02	C1-C3	Lec1-Lec15	1, 3
PEK_W02	K2MST_W07 K2MST_mic_W03	C1-C3	Lec1-Lec15	1, 3
PEK_U01 (skills)	K2MST_U06 K2MST_U08 K2MST_U09 K2MST_U15 K2MST_mic_U01	C1-C3	C11	2, 3, 4
PEK_U02	K2MST_U16 K2MST_U24 K2MST_U25 K2MST_mic_U02 K2MST_mic_U03	C1-C3	Cl1	2, 3, 4
PEK_K01 (competences)	K2MST_K06 K2MST_mic_K01	C1-C3	Lec1-Lec15 Cl1	1, 2, 3, 4
PEK_K02	K2MST_K01 K2MST_mic_K02	C1-C3	Lec1-Lec15 Cl1	1, 2, 3, 4

** - enter symbols for main-field-of-study/specialization educational effects *** - from table above

Name in Polish: Matematyka finansowa Name in English: Economathematics Main field of study (if applicable): Applied Mathematics Specialization (if applicable): Financial and Actuarial Mathematics Level and form of studies: 1st/ 2nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code MAT001562 Group of courses YES /-NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	30			
Number of hours of total student workload (CNPS)	150				
Form of crediting	crediting with	Examination / crediting with grade*	crediting with	Examination / crediting with grade*	Examination / crediting with grade*
For group of courses mark (X) final course	Х				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes	2	2			
including number of ECTS points for direct teacher- student contact (BK) classes	1,5	1,5			

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Student has an elementary knowledge of financial markets and discrete models of financial mathematics

SUBJECT OBJECTIVES

C1 Learning and mastery of key concepts and methods in the field of financial mathematics

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 knows the most important theorems and hypotheses of financial mathematics PEK_W02 knows the basics of stochastic modeling in financial mathematics relating to skills:

PEK_U01 can construct mathematical models used in financial mathematics relating to social competences:

PEK_K01 can by hisself search for information in the literature, even in foreign languages

PROGRAMME CONTENT

	Form of classes - lecture	Number of hours
Lec 1	Black-Scholes model	4
Lec 2	Stochastic calculus and its application to the valuation of assets and liabilities and design hedging strategies	4
Lec 3	c 3 Feynman-Kac formula and Blacka-Scholes formula	
Lec 4	Bachelier model	2
Lec 5	Risk-Neutral and Real World scenarios, deflator and its applications	2
Lec 6	Modeling of term structure	2
Lec 7	Vasicek and Cox-Ingerson-Ross models, HJM model, LIBOR model	4
Lec 8	Calibration of interest rate instruments	2
Lec 9	Valuation of debt instruments and interest rate derivatives (bonds, cap/ floor, caplet/floorlet and swaptions)	2
Lec10	Subdiffusive Black-Scholes and Bachelier models	2
Lec11	Fractional Brownian motion in finance	2
Lec12	Gerber-Shiu model, Esscher transform	2
	Total hours	.30
	Form of classes - class	Number of hours
Cl 1	Illustration of all models. Analytical and computer methods. Examples pricing derivatives.	
	Total hours	30
	TEACHING TOOLS USED	
N2. P1 N3. C	ecture problem - traditional method. roblem and counting exercises. onsultations. tudent's self work - preparation for exercises.	

N4. Student's self work - preparation for exercises. EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
	PEK_W01 PEK_W02	exam

	PEK_K01	
F2	PEK_U01 PEK_K01	oral responses, tests, small tests

P=0.5*F1+0.5*F2

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] A. Weron, R. Weron (1998) Inżynieria finansowa, WNT

SECONDARY LITERATURE:

[1] A. Jakubowski, A. Palczewski, M. Rutkowski, Ł. Stettner (2003) Matematyka finansowa, WNT. [2] M. Musiela, M. Rutkowski (1997) Martingale methods in financial modelling, Springer.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr hab. Marcin Magdziarz (Marcin.Magdziarz@pwr.edu.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT ECONOMATHEMATICS MAT001562 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION FINANCIAL AND ACTUARIAL MATHEMATICS

AND ACTUARIAL MATHEMATICS						
Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***		
PEK_W01 (knowledge)	K2MST_W03 K2MST_W09 K2MST_fam_W01	C1	Lec 1-Lec 10	1, 3		
PEK_W02	K2MST_W16 K2MST_W17 K2MST_W18 K2MST_fam_W02 K2MST_fam_W03	C1	Lec 1-Lec 10	1, 3		
PEK_U01 (skills)	K2MST_U15 K2MST_U20 K2MST_U24 K2MST_U25 K2MST_fam_U01 K2MST_fam_U02 K2MST_fam_U03	C1	Cl 1	2, 3, 4		
PEK_K01 (competences)	K2MST_K06 K2MST_fam_K01 K2MST_fam_K02	C1	Lec 1-Lec 10, Cl 1	1, 2, 3, 4		

** - enter symbols for main-field-of-study/specialization educational effects *** - from table above

Name in Polish: MODELE UBEZPIECZEŃ ŻYCIOWYCH Name in English: Life insurance models Main field of study (if applicable): Applied Mathematics Specialization (if applicable): Financial and Actuarial Mathematics Level and form of studies: 1st/ 2nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code MAT001564 Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	30			
Number of hours of total student workload (CNPS)	150				
Form of crediting	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*
For group of courses mark (X) final course	Х				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes	2	2			
including number of ECTS points for direct teacher-student contact (BK) classes	1.5	1.5			

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES 1. Student knows and can apply basic concepts of the probability theory

SUBJECT OBJECTIVES

C1 Study of the classical concepts and acquisition of the knowledge of life insurance mathematics

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 knows the most important concepts of life insurance mathematics

PEK_W02 knows principles of stochastic modeling in life insurance mathematics relating to skills:

PEK_U01 can construct mathematical models used in life insurance mathematics relating to social competences:

PEK_K01 can, without assistance, search for necessary information in the literature, also in foreign languages

	PROGRAMME CONTENT					
	Form of classes - lecture Number of hours					
Lec 1	Distribution of the future lifetime including probability of	2				

	survival and death, force of mortality.			
Lec 2	Life tables	2		
Lec 3	Assumptions for fractional ages	2		
Lec 4	Analytical laws of mortality	2		
Lec 5	Multiple state models with estimation methods of their parameters and estimation methods of future lifetime (including Nelson-Aalen and Kaplan-Meier estimators)	4		
Lec 6	Life insurance payable at the moment death and at the end of the year of death	3		
Lec 7	Discrete and continuous annuities	3		
Lec 8	Net premiums in fully discrete and continuous insurance contracts	4		
Lec 9	Commutation functions	2		
Lec 10	Gross premiums	2		
Lec 11	Pension funds	4		
	Total hours	30		
	Form of classes - class		Number of hours	
Cl 1	Solving of problems illustrating theory given in the lectures, solving of problems from actuarial exams		30	
	Total hours			
	TEACHING TOOLS USED			
N2. Prob	ure – traditional method. lem-solving classes. ultations.			
	ent's self-work – preparation for the classes.			

N4. Student's self-work – preparation for the classes.

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_W01 PEK_W02 PEK_K01	exam
F2	PEK_U01 PEK_K01	oral presentations, tests

P=0.5*F1+0.5*F2

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] N. L. Bowers i inni "Actuarial Mathematics", The Society of Actuaries, Itasca, Illinois 1997

[2] H. U. Gerber "Life insurance mathematics", Springer-Verlag, Berlin 1997

[3] D. Dickson, M. Hardy, H. Waters "Actuarial mathematics for life contingent risks" 2nd ed.; Cambridge University Press, Cambridge 2013

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr hab. inż. Krzysztof Burnecki, prof. nadzw. (Krzysztof.Burnecki@pwr.edu.pl)

Dr hab. inż. Agnieszka Wyłomańska, prof. nadzw. (<u>Agnieszka.Wylomanska@pwr.edu.pl</u>)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT LIFE INSURANCE MODELS MAT001564 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION FINANCIAL AND ACTUARIAL MATHEMATICS

	ACTUARIAL MATHEN	IATICS		T
Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***
PEK_W01 (knowledge)	K2MST_W03 K2MST_fam_W01	C1	Lec 1- Lec 15	1,3
PEK_W02	K2MST_W09 K2MST_W22 K2MST_fam_W02 K2MST_fam_W03	C1	Lec 1- Lec 15	1,3
PEK_U01 (skills)	K2MST_U15 K2MST_U24 K2MST_U25 K2MST_fam_U01 K2MST_fam_U02 K2MST_fam_U03	C1	Cl 1	2,3,4
PEK_K01 (competences)	K2MST_K06 K2MST_fam_K01 K2MST_fam_K02	C1	Lec 1- Lec 15, Cl 1	1,2,3,4

** - enter symbols for main-field-of-study/specialization educational effects

*** - from table above

Name in Polish: Zarządzanie Ryzykiem Finansowym Name in English: Financial Risk Management Main field of study (if applicable): Applied Mathematics Specialization (if applicable): Financial and Actuarial Mathematics Level and form of studies: 1st/ 2nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code MAT001565 Group of courses YES /-NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	30			
Number of hours of total student workload (CNPS)	150				
Form of crediting	Examination / crediting with grade *	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*
For group of courses mark (X) final course	X				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes	Z	2			
including number of ECTS points for direct teacher-student contact (BK) classes	1,5	1,5			

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Student has an elementary knowledge of financial markets and (discrete and continuous) models of financial mathematics

SUBJECT OBJECTIVES

C1 Learning and mastery of key concepts and methods in the field of financial mathematics

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 knows the most important models and techniques of financial engineering PEK_W02 knows the basics of stochastic and numerical modeling in financial engineering relating to skills:

PEK_U01 can construct mathematical models used in financial engineering relating to social competences:

PEK_K01 can by himself search for information in the literature, even in foreign languages

	Form of classes – lecture	Number of hours
Lec 1	Fundamental theorems of asset pricing - overview	2
Lec 2	Greek parameters, delta/gamma hedging	2
Lec 3	Volatility modeling	2
Lec 4	Exotic options – overview	4
Lec 5	Stochastic control	2
Lec 6	Risk measures and financial risk	2
Lec 7	Portfolio pricing	2
Lec 8	Construction of optimal portfolio, effectiveness measures of investment portfolio	2
Lec 9	Measuring of default, asset and liability management and hedging strategies, immunization	2
Lec 10	Credit risk management	4
Lec 11	Operational risk management	2
Lec 12	Time variation in risk	2
Lec 13	Backtesting and stress testing	2
	Total hours	.30
	Form of classes - class	Number of hours
Cl 1	Illustration of all models Analytical and computer methods. Examples of pricing derivatives.	30
	Total hours	30
	TEACHING TOOLS USED	
N2. Pro	ture problem - traditional method. blem and counting exercises. sultations.	

N4. Student's self work - preparation for exercises. EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
	PEK_W01 PEK_W02	exam

	PEK_K01	
F2	PEK_U01	oral responses, tests, small tests
	PEK_K01	

P=0.5*F1+0.5*F2

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

A. Weron, R. Weron (1998) Inżynieria finansowa, WNT

P. Jorion (2003) Financial risk manager handbook, Wiley.

SECONDARY LITERATURE:

P. Willmott (2006) On Quantitative Finance, Wiley.

A. J. McNeil R. Frey, P. Embrechts (2015) Quantitative Risk Management Concepts, Techniques and Tools, Princeton University Press.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Prof. dr hab. Zbigniew Palmowski (Zbigniew.Palmowski@pwr.edu.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT FINANCIAL RISK MANAGEMENT MAT001565 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION FINANCIAL AND ACTUARIAL MATHEMATICS

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***
PEK_W01 (knowledge)	K2MST_W03 K2MST_fam_W01	C1	Lec 1-Lec 10	1, 3
PEK_W02	K2MST_W09 K2MST_fam_W02 K2MST_fam_W03	C1	Lec 1-Lec 10	1, 3
PEK_U01 (skills)	K2MST_U24 K2MST_U25 K2MST_fam_U01 K2MST_fam_U02 K2MST_fam_U03	C1	Cl 1	2, 3, 4
PEK_K01 (competences)	K2MST_K06 K2MST_fam_K01 K2MST_fam_K02	C1	Lec 1-Lec 10, Cl 1	1, 2, 3, 4

** - enter symbols for main-field-of-study/specialization educational effects

*** - from table above

Name in Polish: Finanse Obliczeniowe

Name in English: Computational Finance

Main field of study (if applicable): APPLIED MATHEMATICS

Specialization (if applicable): FINANCIAL AND ACTUARIAL MATHEMATICS,

COMPUTATIONAL MATHEMATICS

Level and form of studies: 1st/ 2nd* level, full-time / part-time*

Kind of subject: obligatory-/ optional / university-wide*

Subject code MAT001566

Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	150				
Form of crediting	Crediting with grade				
For group of courses mark (X) final course	X				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes	2		2		
including number of ECTS points for direct teacher-student contact (BK) classes	1,5		1,5		

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Student knows and can apply basic notions of financial mathematics.

2. Student knows basics of computer programming.

SUBJECT OBJECTIVES

C1 Study of concepts and acquisition of knowledge concerning algorithms and methods in computational finance

C2 Acquisition of abilities in implementing selected models and methods

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge the student:

PEK_W01 knows basic models and algorithms used in finance

PEK_W02 has in-depth knowledge regarding numerical implementation of selected derivatives pricing techniques

relating to skills the student:

PEK_U01 can implement and apply in practice computational techniques used in finance relating to social competences the student:

PEK_K01 can, without assistance, search for necessary information in the scientific literature

	PROGRAMME CONTENT			
	Form of classes - lecture	Number of hours		
Lec1-2	Derivatives: forwards, futures, swaps and options. Portfolio construction and pricing. Sensitivity analysis.	4		
Lec3-4	Binomial pricing: CRR, JR and "exact" trees. Hedging strategies. Trinomial trees.	4		
Lec5-6	Binomial and trinomial pricing of path dependent derivatives.	4		
Lec7-8	Monte Carlo (MC): Euler and Milstein schemes, variance reduction, correlated variates, quasi-random numbers.	4		
Lec9- 10	MC pricing of American options.	4		
Lec11- 12	Finite difference schemes: explicit, implicit, Crank-Nicolson, hopscotch.	4		
Lec13- 14	Partial differential equations technique.	4		
Lec15	Test	2		
	Total hours	30		

Form of classes - Class	Number of hours			
Implementation (Matlab, R, Excel/VB, C++, Java and/or Python) of algorithms and methods discussed during lectures	2			
Total hours	30			
TEACHING TOOLS USED				
 N1. Lecture – traditional method N2. Laboratory – traditional method				

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	number	Way of evaluating educational effect achievement
	PEK_W01 PEK_W02	Written test
	PEK_U01 PEK_K01	Discussions, tests, projects.

P=0.5*F1+0.5*F2

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] J. Hull (2008) Options, Futures and Other Derivatives (7th Edition), Prentice Hall
- [2] J. London (2005) Modeling Derivatives in C, Wiley
- [3] A. Weron, R. Weron (1998, ..., 2009) Inżynieria finansowa, WNT.

SECONDARY LITERATURE:

- [4] Z. Bodie, A. Kane, A.J. Marcus (2007) Essentials of Investments (6th ed.), McGraw-Hill
- [5] M. Capiński, T. Zastawniak (2003) Mathematics for Finance: An Introduction to Financial Engineering, Springer
- [6] P.Cizek, W.Härdle, R.Weron, eds. (2011) Statistical Tools for Finance and Insurance, Springer
- [7] J. Franke, W. Härdle, C Hafner (2005) Introduction to Statistics of Financial Markets, Springer
- [8] P. Glasserman (2004) Monte Carlo Methods in Financial Engineering, Springer
- [9] P. Wilmott (2000) Paul Wilmott on Quantitative Finance, Wiley

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS) Prof. dr hab. Pafel Woron (rafal woron@pwr.edu.pl)

Prof. dr hab. Rafał Weron (rafal.weron@pwr.edu.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT COMPUTATIONAL FINANCE MAT001566 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION FINANCIAL AND ACTUARIAL MATHEMATICS, COMPUTATIONAL MATHEMATICS

Subject educational effect PEK_W01 (knowledge)	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)** K2MST_W04,	Subject objectives*** C1, C2	Programme content*** Lec1-Lec15	Teaching tool number*** 1
	K2MST_W09 K2MST_fam_W01 K2MST_cm_W01			
PEK_W02	K2MST_W08, K2MST_W10 K2MST_fam_W02 K2MST_fam_W03 K2MST_cm_W02 K2MST_cm_W03	C1, C2	Lec1-Lec15	1
PEK_U01 (skills)	K2MST_U15, K2MST_U16, K2MST_U17, K2MST_U23 K2MST_U24 K2MST_U25 K2MST_fam_U01 K2MST_fam_U02 K2MST_fam_U03 K2MST_cm_U01 K2MST_cm_U02 K2MST_cm_U03	C2	Lec1-Lec15 La1-La15	1,2
PEK_K01 (competences)	K2MST_K02, K2MST_K06 K2MST_fam_K01 K2MST_fam_K02 K2MST_cm_K01 K2MST_cm_K02	C1, C2	La1-La15	2

** - enter symbols for main-field-of-study/specialization educational effects *** - from table above

Name in Polish: MODELE UBEZPIECZENIOWE W PRZEMYŚLE Name in English: Insurance models for industry Main field of study (if applicable): Applied Mathematics Specialization (if applicable): Financial and Actuarial Mathematics Level and form of studies: 1st/ 2nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code MAT001567 Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	150				
Form of crediting	Examination / crediting with grade *				
For group of courses mark (X) final course	X				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes			2		
including number of ECTS points for direct teacher-student contact (BK) classes			1,5		

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Student knows and can apply basic concepts of the stochastic processes

2. Student knows principles of MATLAB numerical computing environment

SUBJECT OBJECTIVES

C1 Study of the classical concepts and acquisition of the knowledge of insurance models in industry

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 knows the most important concepts of insurance models in industry PEK_W02 knows principles of stochastic modeling in actuarial mathematics

relating to skills:

PEK_U01 can construct actuarial models, that can be applied to industry insurance relating to social competences:

PEK_K01 can, without assistance, search for necessary information in the literature, also in foreign languages

	PROGRAMME CONTENT					
	Form of classes - lecture Number of hours					
Lec 1	Types of insurance policies in industry. Solvency II in Non-Life Insurance.	2				
Lec 2	Premium principles, risk measures.	2				

T	otal hours	30
	olving of problems illustrating theory given in the lectures	30
	Form of classes - laboratory	Number of hours
	Total hours	30
Lec 13	Credibility theory	3
Lec 12	System Bonus-Malus	2
Lec 11	Approximations of ruin probability in finite and infinite time horizon	2
	Distribution of the maximal aggregate coefficient and ruin probability. Pollaczek-Khinchin formula.	3
Lec 9	Risk proces. The adjustment coefficient. The probability of ruin.	4
Lec 8	The (a,b) class of distribution. Mixed Poisson model.	2
	Compound Poisson model. Practical consequences of the theorem on the sum of compund Poisson risk.	2
	Collective risk model. Frequency and severity distributions of claims. Parameters and distributions of aggregate claim amount.	2
Lec 5	Approximations for total loss in individual risk model	2
Lec 4	Individual risk model.	2
Lec 3	Franchises and their types. Pricing of net premiums with franchise.	2

TEACHING TOOLS USED

N1. Lecture – traditional method

N2. Computer laboratory with MATLAB numerical computation environment

N3. Consultations

N4. Student's self-work – preparation for the laboratory

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_W01 PEK_W02 PEK_K01	exam
F2	PEK_U01 PEK_K01	oral presentations, tests

P=0.5*F1+0.5*F2

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] N. L. Bowers i inni, Actuarial Mathematics, The Society of Actuaries, Itasca, Illinois 1997

[2] P. Cizek, W. Haerdle, R. Weron (red.), Statistical tools for finance and insurance, Springer, Berlin, 2011

SECONDARY LITERATURE:

[1] E.Banks, Alternative risk transfer, Wiley, 2003

[2] S. A. Klugman, H. H. Panjer, G. E. Willmot, Loss Models: From Data to Decisions, Wiley, 2012

[3] H. H. Panjer, G. E. Willmot, Insurance risk models, Society of Actuaries, 1992

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr hab. inż. Krzysztof Burnecki, prof. nadzw. (<u>Krzysztof.Burnecki@pwr.edu.pl</u>) Dr hab. inż. Agnieszka Wyłomańska, prof. nadzw. (<u>Agnieszka.Wylomanska@pwr.edu.pl</u>)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT INSURANCE MODELS FOR INDUSTRY MAT001567 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION FINANCIAL AND ACTUARIAL MATHEMATICS

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***
PEK_W01 (knowledge)	K2MST_W03 K2MST_fam_W01 K2MST_fam_W02	C1	Lec 1- Lec 12	1,3
PEK_W02	K2MST_W09C1Lec 1- Lec 12K2MST_fam_W03C1		Lec 1- Lec 12	1,3
PEK_U01 (skills)	K2MST_U15 K2MST_U24 K2MST_U25 K2MST_fam_U01 K2MST_fam_U02 K2MST_fam_U03	C1	Lab 1	2,3,4
PEK_K01 (competences)	K2MST_K06 K2MST_fam_K01 K2MST_fam_K02	C1 Lec 1- Lec 12, 1,2,3,4 Lab 1		1,2,3,4

** - enter symbols for main-field-of-study/specialization educational effects

*** - from table above

Name in Polish: REZERWY W UBEZPIECZENIACH ŻYCIOWYCH I MAJATKOWYCH

Name in English: Reserves in life and non-life insurance Main field of study (if applicable): Applied Mathematics Specialization (if applicable): Financial and Actuarial Mathematics Level and form of studies: 1st/ 2nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code MAT001568 Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	30			
Number of hours of total student workload (CNPS)	150				
Form of crediting	Examination / crediting with grade*				
For group of courses mark (X) final course	X				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes	2	2			
including number of ECTS points for direct teacher-student contact (BK) classes	1.5	1.5			

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Student knows and can apply basic concepts of the probability theory
- 2. Student knows and can apply basic concepts of actuarial mathematics including life and non-life insurance.

SUBJECT OBJECTIVES

C1 Study of the classical concepts and acquisition of the knowledge of reserving in life and non-life insurance

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 knows the most important concepts of reserving in life and non-life insurance mathematics PEK_W02 knows principles of stochastic modeling in life and non-life insurance mathematics relating to skills:

PEK_U01 can construct mathematical models used in reserving in life and non-life insurance mathematics

relating to social competences:

PEK_K01 can, without assistance, search for necessary information in the literature, also in foreign languages

	PROGRAMME CONTENT	
	Form of classes - lecture	Number of hours
Lec 1	Introduction to the course, survey over provision types.	2
Lec 2	Net reserves in life insurance.	4
Lec 3	Decomposition of the loss random variable (Hattendorff's theorem).	2
Lec 4	Technical gain.	2
Lec 5	Gross reserves in life insurance, Zillmer's reserve	2
Lec 6	Multiple decrement model: net premiums and reserves	4
Lec 7	Multiple life insurance: net premiums and reserves	6
Lec 8	Provisions in non-life insurance, including loss data triangles, chain-ladder method, IBNR, premium reserve	4
Lec 9	Solvency II - technical provisions, best estimate, risk margin, technical provisions for accounting purposes	4
	Total hours	30
	Form of classes - class	Number of hours
Cl 1	Solving of problems illustrating theory given in the lectures, solving of problems from actuarial exams	30
	Total hours	30

TEACHING TOOLS USED

N1. Lecture – traditional method.

N2. Problem-solving classes.

N3. Consultations.

N4. Student's self-work – preparation for the classes.

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_W01 PEK_W02 PEK_K01	exam
F2	PEK_U01 PEK_K01	oral presentations, tests

P=0.5*F1+0.5*F2

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- C1 N. L. Bowers at al "Actuarial Mathematics", The Society of Actuaries, Itasca, Illinois 1997.
- C2 H. U. Gerber "Life insurance mathematics", Springer-Verlag, Berlin 1997.
- C3 M. J. Goovaerts et al. "Effective Actuarial Methods"; North Holland, 1990.
- C4 R. Kaas et al. "Modern Actuarial Risk Theory"; Kluwer Academic Publishers, 2001.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr hab. inż. Krzysztof Burnecki, prof. nadzw. (<u>Krzysztof.Burnecki@pwr.edu.pl</u>) Dr inż. Marek Teuerle (<u>Marek.Teuerle@pwr.edu.pl</u>)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT RESERVES IN LIFE AND NONLIFE INSURANCE MAT001568 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION FINANCIAL AND ACTUARIAL MATHEMATICS

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if	Subject objectives***	Programme content***	Teaching tool number***
	applicable)**	01		1.2
PEK_W01 (knowledge)	K2MST_W03 K2MST_fam_W01	C1	Lec 1- Lec 8	1,3
PEK_W02	K2MST_W09 K2MST_fam_W02 K2MST_fam_W03	C1	Lec 1- Lec 8	1,3
PEK_U01 (skills)	K2MST_U15 K2MST_U24 K2MST_U25 K2MST_fam_U01 K2MST_fam_U02 K2MST_fam_U03	C1	Cl 1	2,3,4
PEK_K01 (competences)	K2MST_K06 K2MST_fam_K01 K2MST_fam_K02	C1	Lec 1- Lec 8, Cl 1	1,2,3,4

** - enter symbols for main-field-of-study/specialization educational effects

*** - from table above

Name in Polish: ZARZĄDZANIE RYZYKIEM W UBEZPIECZENIACH Name in English: Risk management in insurance Main field of study (if applicable): Applied Mathematics Specialization (if applicable): Financial and Actuarial Mathematics Level and form of studies: 1st/2nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code MAT001569 Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30			30	
Number of hours of total student workload (CNPS)	150				
Form of crediting	Examination / crediting with grade*				
For group of courses mark (X) final course	Х				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes	2			2	
including number of ECTS points for direct teacher-student contact (BK) classes	1.5			1.5	

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Student knows and can apply basic concepts of the probability theory
- 2. Student knows and can apply basic concepts of actuarial mathematics including life and non-life insurance.
- 3. Student knows and can apply basic concepts of reserving in life and non-life insurance mathematics

SUBJECT OBJECTIVES

C1 Study of the classical concepts and acquisition of the knowledge of risk management in life and non-life insurance

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 knows the most important concepts of risk management in life and non-life insurance mathematics

PEK_W02 knows principles of stochastic modeling in risk management

relating to skills:

PEK_U01 can construct mathematical models and apply methods used in risk management in life and non-life insurance mathematics

relating to social competences:

PEK_K01 can, without assistance, search for necessary information in the literature, also in foreign languages

	PROGRAMME CONTENT	
	Form of classes - lecture	Number of hours
Lec 1	Risk management in insurance, actuarial function, risk management function	2
Lec 2	Capital management, risk appetite, risk measures (including RAROC, RORAC)	2
Lec 3	Solvency II: capital requirements, standard formula, internal models, risk categories	6
Lec 4	Profitability and risk exposure tests, monitoring of actuarial assumptions or parameters	4
Lec 5	Risk exposure reduction methods, methods and instruments of risk transfer including alternative risk transfers (ART)	4
Lec 6	Proportional and non-proportional reinsurance as method of risk exposure reduction	4
Lec 7	Actuarial pricing in life and non-life insurance, risk factors.	2
Lec 8	Application of derivatives in insurance	3
Lec 9	Pricing of catastrophe bonds.	3
	Total hours	30
	Form of classes - project	Number of hours
Pr 1	Preparation and presentations of projects illustrating theory given in the lectures.	30
	Total hours	30
	TEACHING TOOLS USED	
N2. Stu	ture – traditional method and presentations dent partial project presentation and final presentation asultations	
N4. Stu	dent's self-work – work on the project development	
	EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEV	VEMENT

Evaluation (F – forming	Educational effect	Way of evaluating educational effect achievement
(during semester), P –	number	

concluding (at semester end)		
	PEK_W01 PEK_W02 PEK_K01	exam
		Partial project presentations, final project presentation

P=0.5*F1+0.5*F2

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] N. L. Bowers i inni, "Actuarial mathematics", The Society of Actuaries, Itasca, Illinois, 1997.
- [2] H. U. Gerber, "Life insurance mathematics", Springer-Verlag, Berlin, 1997.
- [3] C. D. Daykin i inni, "Practical risk theory for actuaries", Chapman & Hall, London, 1996.
- [4] R. Kaas, M. Gooveaerts, J. Dhaene, M. Denuit "Modern actuarial Risk Theory", Springer-Verlag, Berlin Heidelberg, 2008.
- [5] P.M. Booth, R. G. Chadburn, S. Haberman et al. "Modern actuarial theory and practice" 2nd ed.; Chapman & Hall, 2005
- [6] M. V. Wüthrich, M. Merz,"Financial Modeling, Actuarial Valuation and Solvency in Insurance", Springer-Verlag Berlin Heidelberg, 2013.
- [7] DIRECTIVE 2009/138/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 25 November 2009 on the taking-up and pursuit of the business of Insurance and Reinsurance (Solvency II)

PRIMARY LITERATURE:

[1] L. Hölscher, P. Harding, G. M. Becker, "Financing the Embedded Value of Life Insurance Portfolios", HfB – Working Paper Series, 2005.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr inż. Marek Teuerle (<u>Marek.Teuerle@pwr.edu.pl</u>)

Dr hab. inż. Krzysztof Burnecki, prof. nadzw. (Krzysztof.Burnecki@pwr.edu.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT ACTUARIAL METHODS IN RISK MANAGEMENT MAT001569 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION FINANCIAL AND ACTUARIAL MATHEMATICS

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***
PEK_W01 (knowledge)	K2MST_W03 K2MST_fam_W01	C1	Lec 1- Lec 9	1,3
PEK_W02	K2MST_W09 K2MST_fam_W02 K2MST_fam_W03	C1	Lec 1- Lec 9	1,3
PEK_U01 (skills)	K2MST_U15 K2MST_U24 K2MST_U25 K2MST_fam_U01 K2MST_fam_U02 K2MST_fam_U03	C1	Pr 1	2,3,4
PEK_K01 (competences)	K2MST_K06 K2MST_fam_K01 K2MST_fam_K02	C1	Lec 1- Lec 9, Pr 1	1,2,3,4

** - enter symbols for main-field-of-study/specialization educational effects *** - from table above

FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD Name in Polish: METODY NUMERYCZNE W RÓWNANIACH RÓŻNICZKOWYCH Name in English: Numerical methods in differential equations Main field of study (if applicable): APPLIED MATHEMATICS Specialization (if applicable): Mathematics for Industry and Commerce

Level and form of studies: 1st/ 2nd* level, full-time / part-time*

Kind of subject: obligatory / optional / university-wide*

Subject code MAT001570

Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	150				
Form of crediting	Examination / crediting with grade*				
For group of courses mark (X) final course	Х				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes	2		2		
including number of ECTS points for direct teacher-student contact (BK) classes	1,5		1,5		

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Student has basic knowledge and abilities on mathematical analysis.

2. Student has basic knowledge concerning programming environments:

Matlab/Mathematica/Mapple.

SUBJECT OBJECTIVES

C1 Study of basic notions and knowledge in the area of numerical methods applied in differential equations

C2 Study of basic numerical techniques used in discretization of differentia equations.

C3 Acquisition of basis abilities in construing and analyzing difference schemes for differential equations

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge student:

PEK_W01 knows the most important numerical techniques used in solving problems for differential equations

PEK_W02 knows bases of construing own numerical schemes

relating to skills student:

PEK_U01 is able to analyze basic problems in differential equations with respect to application of suitable approximate methods

PEK_U02 is able to construct mathematical models used in concrete applications of mathematics, based on differential equations and their discrete forms.

. . .

relating to social competences:

PEK_K01 can, without assistance, search for necessary information in the literature
 PEK_K02 understands necessity of systematic and individual work on the material of the course.

	PROGRAMME CONTENT	
	Form of classes - lecture	Number of hours
Lec 1	Recalling basic facts of theory of ordinary differential equations.	2
Lec 2	Explicit and implicit Euler method of approximate solving of ordinary differential equations and their systems.	2
Lec 3	Runge-Kutta type methods and other schemes of approximation of ordinary differential equations and their systems.	2
Lec 4	Multi-step methods, stability of numerical methods. Stiff problems.	2
Lec 5	Methods of approximation of boundary value problems for second order ordinary differentia equations: shooting methods and difference methods.	2
Lec 6	Methods of approximation of boundary value problems for second order ordinary differentia equations: Ritz-Galerkin method.	2
Lec 7	Difference methods for first order partial differentia equations. CFL condition.	2
Lec 8	Recalling basic facts of theory of second order partial differential equations.	2
Lec 9	Difference approximation of elliptic boundary value problems on the plane.	2
Lec 10	Variational formulation of boundary value problems for elliptic type equations.	2
Lec 11	Ritz-Galerkin and finite element methods for elliptic problems.	2
Lec 12	Difference methods for parabolic problems. Explicit and implicit schemes for heat conduction equation.	2
Lec 13	Stability of approximate method. Cranck-Nicholson scheme for equations of parabolic type.	2
Lec 14	Difference methods for the vibrating string problem and other	4

	hyperbolic problems.	
	Total hours	30

	Form of classes - laboratory	Number of hours
Lab 1	Computer construction of solution of ordinary differentia equations.	4
Lab 2	Practical verifying of efficacy of automatic exactness control.	2
Lab 3	Visualization and comparison of usefulness of various methods.	4
Lab 4	Algorithms for numerical methods of solution of one-dimensional boundary value problems for elliptic equations.	4
Lab 5	Discretisation of hyperbolic first order problems. Conditions of stability and convergence of approximate methods.	4
Lab 6	Discretization of two-dimensional boundary value problem for elliptic equations.	4
Lab 7	Difference schemes of approximation of one-dimensional parabolic equation.	4
Lab 8	Difference method of discretization of the vibrating string equation.	4
	Total hours	

TEACHING TOOLS USED

N1. Lecture – traditional method.

N2. Problem and computing laboratory – traditional and using computers method.

N3. Consultations.

N4. Student's personal work – preparation for the laboratory. EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_W01 PEK_W02 PEK_K01	Presentation of given problems.
F2	PEK_U01 PEK_U02 PEK_K01	Oral presentations, tests.
P=0.5*F1+0.5*F2		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Richard L. Burden, J. Douglas Faires, Numerical Analysis.
- [2] R. M. Mattheij, S. W. Rienstra, J.H.M. ten Thije Boonkkamp, Partial differential equations. Modeling, analysis and computations.
- [3] Stig Larsson, Vidar Thomee, Partial differential equations with numerical methods.

SECONDARY LITERATURE

- [1] L. Lapidus, G. F. Pinder, Numerical solution of partial differential equations in science and engineering, John Wiley & Sons, 1998
- [2] R. J. Le Vegue, Numerical Methods for conservation laws, Birkhauser, Basel 1990
- [3] J. W. Thomas, Numerical partial differential equations: conservation laws and elliptic equations, Springer, New York 1999

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr hab. Wojciech Mydlarczyk (Wojciech.Mydlarczyk@pwr.edu.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT NUMERICAL METHODS IN DIFFERENTIAL EQUATIONS MAT001570 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY MATHEMATICS AND SPECIALIZATION MATHEMATICS FOR INDUSTRY AND COMMERCE

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***
PEK_W01 (knowledge)	K2MST_W03 K2MST_mic_W01	C1-C3	Lec1- Lec14	1,3
PEK_W02	K2MST_W10 K2MST_mic_W02 K2MST_mic_W03	C1-C3	Lec1- Lec14	1,3
PEK_U01 (skills)	K2MST_U15, K2MST_U24 K2MST_U25 K2MST_U28 K2MST_U29 K2MST_mic_U01	C1-C3	La1-La8	2,3,4
PEK_U02	K2MST_U16 K2MST_mic_U02 K2MST_mic_U03	C1-C3	La1-La8	2,3,4
PEK_K01 (competences)	K2MST_K06 K2MST_mic_K01	C1-C3	Lec1- Lec14, La1-La8	1,2,3,4
PEK_K02	K2MST_K01 K2MST_mic_K02	C1-C3	Lec1- Lec14, La1-La8	1,2,3,4

** - enter symbols for main-field-of-study/specialization educational effects *** - from table above

FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD Name in Polish WSTĘP DO STOSOWANEJ DYNAMIKI CIECZY Name in English INTRODUCTION TO APPLIED FLUID DYNAMICS Main field of study (if applicable): APPLIED MATHEMATICS Level and form of studies: 1st/ 2nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code MAT001571 Group of courses YES / NO*

	Lecture	Classes	Laboratory	Droject	Seminar
	Lecture	Classes	Laboratory	FIOJECI	Seminar
Number of hours of organized classes in University (ZZU)	30			30	
Number of hours of total student workload (CNPS)	150				
Form of crediting	Examination / crediting with grade*				
For group of courses mark (X) final course	Х				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes				2	
including number of ECTS points for direct teacher-student contact (BK) classes				1,5	

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- [1] Student has the standard knowledge of the classical concepts , theorems and methods of real and complex analysis
- [2] Student has basic knowledge of concepts and methods of the ordinary differential equations

SUBJECT OBJECTIVES

[1] Study of the advanced methods of mathematical analysis in mathematical model ling of the dynamics fluid phenomena.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 knows advanced theorems of the Real and complex analysis related to the fluid dynamics

PEK_W02 has advanced knowledge concerning mathematical analysis: is able to understand formulations of the studied problems related to the fluid dynamics

relating to skills:

PEK_U01 can construct mathematical models applied in the fluid dynamics

relating to social competences:

	PROGRAMME CONTENT		
	Form of classes - lecture	Numb	er of hours
Lec 1	Reminder of the vector analysis elements	2	
Lec 2	Reminder of the vector analysis elements	2	
Lec 3	Reminder of the complex analysis elements	2	
Lec 4	Conformal mappings	2	
Lec 5	Laws of conservation	2	
Lec 6	Equations of motion for an ideal fluid	2	,
Lec 7	Elementary viscous flow	2	,
Lec 8	Waves	2	,
Lec 9	Waves	2	
Lec 10	Shock waves modelling	2	
Lec 11	Classical aerofoil theory	2	, ,
Lec 12	Classical aerofoil theory	2	
Lec 13	Nonlinear models in diffusion phenomena	2	
Lec 14	Boundary layers	2	
Lec 15	Computational fluid dynamics (CFD)	2	
	Total hours	3(0
	Form of classes - project		Number of hours
Pr Prep 1 lectu	aration and presentations of projects illustrating theory given in the res.	;	30
Total	hours		30

N2. Student partial project presentation and final presentation N3. Consultations

N4. Student's self work – work on the project development EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

	Educational effect number	Way of evaluating educational effect achievement
	PEK_W01 PEK_W02	exam
	PEK_K01	
F2	PEK_U01	Partial project presentations,

PEK_K01

final project presentation

C P==0.5*F1+0.5*F2

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

C5 B. J. Acheson, Elementary Fluid Dynamics.

C6 H.Ockendon, A.B.Tayler, Inviscid Fluid Flows.

SECONDARY LITERATURE:

[1] J.D. Logan, Applied Mathematics. A Contemporary Approach.

[2] K. Ericsson, D. Estep, P. Hansbo, C. Johnson, Computational Differential Equations

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Prof. dr hab. Wojciech Okrasiński (<u>Wojciech.Okrasinski@pwr.edu.pl</u>) Dr inż. Łukasz Płociniczak (Lukasz.Plociniczak@pwr.edu.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT INTRODUCTION TO APPLIED FLUID DYNAMICS MAT001571 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY

APPLIED MATHEMATICS AND SPECIALIZATION MATHEMATICS FOR INDUSTRY AND COMMERCE

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***
PEK_W01 (knowledge)	K2MST_W03 K2MST_mic_W01	C1	Lec1-Lec15	1,3
PEK_W02	K2MST_W06 K2MST_mic_W02 K2MST_mic_W03	C1	Lec1-Lec15	1,3
PEK_U01 (skills)	K2MST_U15 K2MST_U24 K2MST_U25 K2MST_mic_U01 K2MST_mic_U02 K2MST_mic_U03	C1	Pr 1	2,3,4
PEK_K01 (competences)	K2MST_K06 K2MST_mic_K01 K2MST_mic_K02	C1	Lec1-Lec15 Pr 1	1,2,3,4

** - enter symbols for main-field-of-study/specialization educational effects *** - from table above

Name in Polish METODY PERTURBACYJNE Name in English Perturbation Methods Main field of study (if applicable): APPLIED MATHEMATICS Specialization (if applicable): Mathematics for Industry and Commerce Level and form of studies: 1st/ 2nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code MAT001572 Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	150				
Form of crediting	Examination / crediting with grade*				
For group of courses mark (X) final course	Х				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes	Z		2		
including number of ECTS points for direct teacher-student contact (BK) classes *delete as applicable	1,5		1,5		

*delete as applicable

MathematicsPREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

The student knows and he is able to use the classic concepts and theorems of mathematical analysis

Second He knows and is able to apply basic concepts and methods in the field of differential equations

SUBJECT OBJECTIVES

C1 Understanding the basic concepts and mastering the basic techniques used in the methods of perturbation **Mathematics**

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 has in-depth knowledge of the methods of perturbation

PEK_W02 know the numerical methods used to find approximate solutions mathematical problems (for example, differential equations) pose in the field of applied domain

relating to skills:

PEK_U01 can construct mathematical models used in concrete advanced applications of mathematics

relating to social competences:

PEK_K01 can benefit from the scientific literature in English, including reaching the source materials and make them review

	Number of hours	
Lec 1	Examples of problems leading to perturbation method	2
Lec 2	Regular perturbation method	2
Lec 3	Poincare-Lindstedt method	2
Lec 4	Asymptotes	2
Lec 5	Unreliability of the regular perturbation method	2
Lec 6	Singular perturbation method	2
Lec 7	The inner and outer approximations	2
Lec 8	Analysis of shoreline layer	2
Lec 9	Inner approximation and scaling	2
Lec 10	Combining internal and external approximation	2
Lec 11	Uniform approximation	2
Lec 12	Examples of uniform approximation	2
Lec 13	Phenomena associated with the film edge	2
Lec 14	Partial differential equations and perturbation methods	2
Lec 15	Algebraic equations and perturbation methods	2
	Total hours	30
	Number of hours	
Lab 1	Solving problems illustrating a lecture given theory using MATLAB	30
	Total hours	30
	TEACHING TOOLS USED	
N1. Lectu	re - traditional method	
	puter laboratory	
	vidual consultation ent's own work - to prepare for the lab	

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Educational effect number	Way of evaluating educational effect achievement
PEK_W1 PEK_W2	test
 PEK_U1 PEK-K1	verbal responses, short tests, tests, reports

C=0.5*F1+0.5*F2

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] E. J. Hinch, Perturbation Methods.

[2] J. David Logan, Applied Mathematics.

SECONDARY LITERATURE:

[1] C.C.Lin, L.A.Segel, Mathematics Applied to Deterministic Problems in the Natural Sciencec, SIAM 1988

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Prof. dr hab. Wojciech Okrasiński (Wojciech.Okrasinski@pwr.edu.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT **Perturbation Methods MAT001572** AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION MATHEMATICS FOR INDUSTRY AND COMMERCE

MATHEMATICS FOR INDUSTRY AND COMMERCE					
Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***	
PEK_W01 (knowledge)	K2MST_W04 K2MST_mic_W01	C1	Lec1-Lec15	1, 3	
PEK_W02	K2MST_W10 K2MST_mic_W02 K2MST_mic_W03	C1	Lec1-Lec15	1, 3	
PEK_U01 (skills)	K2MST_U15 K2MST_mic_U01 K2MST_mic_U02 K2MST_mic_U03	C1	Lab1	2, 3, 4	
PEK_K01 (competences)	K2MST_K06 K2MST_mic_K01 K2MST_mic_K02	C1	Lec1-Lec15, Lab1	1, 2, 3, 4	

** - enter symbols for main-field-of-study/specialization educational effects *** - from table above

Zał. nr 4 do ZW 64/2012

FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD Name in Polish: Analiza Funcjonalna i jej zastosowania Name in English: Applied Functional_analysis Main field of study (if applicable): APPLIED MATHEMATICS Specialization (if applicable): Mathematics for Industry and Commerce Level and form of studies: 1st/ 2nd* level, full-time / part-time* Kind of subject: obligatory/ optional / university-wide* Subject code MAT0001573 Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	150				
Form of crediting	Egamination				
For group of courses mark (X) final course	Х				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes	2		2		
including number of ECTS points for direct teacher-student contact (BK) classes	1,5		1,5		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1 Student knows and can apply basic concepts of mathematical analysis
- 2 Student knows and can apply basic concepts of linear algebra

SUBJECT OBJECTIVES

1 Study of the classical concepts of topology, elements of optimization and functional analysis and its application to solve simple inverse problems

*delete as applicable

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 knows the most important theorems and hypothesis of functional analysis, topology

PEK_W02 knows basic methods of optimisation

relating to skills:

PEK_U01 knows and can apply methods of functional analysis

relating to social competences:

PEK_K01 can, without assistance, search for necessary information in the literature, also in foreign languages

	PROGRAMME CONTENT			
	Form of classes - lecture			
Lec1	Introduction to functional analysis – real world problems modeled by operator equations	4		
Lec 2	Elements of topology and linear spaces	2		
Lec 3	Linear normed spaces	2		
Lec 4	Hilbert spaces	2		
Lec 5	Linear operators	4		
Lec 6	Elements of spectra theory	4		
Lec 7	Fundaments of optimisation	4		
Lec 8	Role of functional analysis in solving inverse problems	4		
Lec 9	Elements of functional analysis in numerical methods	4		
	Total hours	30		

	Form of classes - laboratory	Number of hours
Lab1	Solving of problems illustrating theory given in the lectures using mathematical packages for numerical computing	30
	Total hours	30

TEACHING TOOLS USED		
N1. Lecture – traditional method		
N2. Computer laboratory		
N3. Consultations		
N4. Student's self work – preparation for the laboratory		

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_W01	examination
	PEK_W02	
	PEK_K01	
F2	PEK_U01	oral presentations, tests, projects, raports
	PEK-K01	
P=0.5*F1+0.5*F2		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

 E. Zeidler, Applied Functional Analysis, Springer-Verlag 1995
 Ch.W. Groetsch, Inverse Problems in the Mathematical Science, Vieweg-Verlag 1993

PRIMARY LITERATURE:

L. Debnath, P. Mikusiński, Introduction to Hilbert Spaces with Applictions, Academic Press 2005

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Prof. dr hab. Wojciech Okrasiński (Wojciech.Okrasinski@pwr.edu.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT **APPLIED FUNCTIONAL ANALYSIS OPTIMIZATION MAT001573** AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY **APPLIED MATHEMATICS** AND SPECIALIZATION **MATHEMATICS FOR INDUSTRY AND COMMERCE**

MATHEMATICS FOR INDUSTRY AND COMMERCE						
Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***		
PEK W01	K2MST_W03	C1	Lec 1-Lec 9	1, 3		
(knowledge)	K2MST_mic_W01					
PEK_W02	K2MST_W07	C1	Lec 1-Lec 9	1, 3		
	K2MST_mic_W02					
	K2MST_mic_W03					
PEK_U01	K2MST_U24	C1	Lab 1	2, 3, 4		
(skills)	K2MST_U25					
	K2MST_mic_U01					
	K2MST_mic_U02					
	K2MST_mic_U03					
PEK_K01	K2MST_K06	C1	Lec 1- Lec 9,	1, 2, 3, 4		
(competences)	K2MST_mic_K01		Lab 1			
	K2MST_mic_K02					

** - enter symbols for main-field-of-study/specialization educational effects

*** - from table above

FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD

Name in Polish METODY NIELINIOWE

Name in English NONLINEAR METHODS

Main field of study (if applicable): APPLIED MATHEMATICS

Specialization (if applicable): MATHEMATICS FOR INDUSTRY AND COMMERCE Level and form of studies: 1st/ 2nd* level, full-time / part-time*

Kind of subject: obligatory / optional / university-wide*

Subject code MAT001574

Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	150				
Form of crediting	Examination / crediting with grade*				
For group of courses mark (X) final course	Х				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes			2		
including number of ECTS points for direct teacher-student contact (BK) classes	1,5		1,5		

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Student has knowledge of concepts, theorems and methods of mathematical analysis

2. Student has knowledge of concepts and methods of differential equations

SUBJECT OBJECTIVES

C1 Study basic concepts and nonlinear methods used in applications

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 has advanced knowledge concerning nonlinear methods

PEK_W02 knows numerical methods applied for approximate solving of mathematical problems in applied sciences

relating to skills:

PEK_U01 is able to construct mathematical models in advanced applications of mathematics relating to social competences:

PEK_K01 can, without assistance, search for necessary information in the literature, also in

	PROGRAMME CONTENT	
	Form of classes - lecture	Number of hours
Lec 1	Examples of nonlinear phenomena	2
Lec 2	Examples of nonlinear phenomena	2
Lec 3	Nonlinear oscillators	2
Lec 4	Bifurcation and stability	2
Lec 5	Van der Pol equation	2
Lec 6	Duffig equation	2
Lec 7	2-D systems of nonlinear equations – equilibrium points	2
Lec 8	Classification of the equilibrium points	2
Lec 9	Systems of nonlinear equations - attractors	2
Lec 10	Lorenc equation	2
Lec 11	Strange attractors	2
Lec 12	Belolusov-Zabotynski equation	2
Lec 13	Benard cells – equations of hydrodynamics	2
Lec 14	Examples of nonlinear optimisation	2
Lec 15	Some methods of nonlinear optimisation	2
	Total hours	30
	Form of classes - laboratory	Number of hours
	lving of problems illustrating theory given in the lectures by analytic thods and with MATLAB	30
Tot	tal hours	30
	TEACHING TOOLS USED	

N2. Laboratory- solving problems with computers N3. Consultations

N4. Student's self work – preparation for the laboratory

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_W01 PEK_W02	test
F2		oral answers, calculus trainings, presentations, short tests, tests
P==0.5*F1+0.5*F2		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] D.W. Jordan, P. Smith, Nonlinear Ordinary Differential Equations
- [2] G. Nicolis, Introduction to Nonlinear Science.

SECONDARY LITERATURE:

[1] D. P. Bertsekas, Nonlinear Programming

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Prof. dr hab. Wojciech Okrasiński (Wojciech.Okrasinski@pwr.edu.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT NONLINEAR METHODS MAT001574 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION MATHEMATICS FOR INDUSTRY AND COMMERCE

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***
PEK_W01 (knowledge)	K2MST_W04 K2MST_mic_W01	C1	Lec1-Lec15	1,3
PEK_W02	K2MST_W10 K2MST_mic_W02 K2MST_mic_W03	C1	Lec1-Lec15	1,3
PEK_U01 (skills)	K2MST_U15 K2MST_U24 K2MST_U25 K2MST_mic_U01 K2MST_mic_U02 K2MST_mic_U03	C1	Lab1	2,3,4
PEK_K01 (competences)	K2MST_K06 K2MST_mic_K01 K2MST_mic_K02	C1	Lec1-Lec15 Lab1	1,2,3,4

** - enter symbols for main-field-of-study/specialization educational effects *** - from table above

FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD Name in Polish: Wprowadzenie do Problemów Odwrotnych

Name in English: Introduction to Inverse Problems

Main field of study (if applicable): APPLIED MATHEMATICS

Specialization (if applicable): MATHEMATICS FOR INDUSTRY AND COMMERCE,

MODELLING, SIMULATION, OPTIMIZATION

Level and form of studies: 1st/ 2nd* level, full-time / part-time*

Kind of subject: obligatory-/ optional / university-wide*

Subject code MAT001575

Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	150				
Form of crediting	Examination / crediting with grade*				
For group of courses mark (X) final course	Х				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes	Δ.		2		
including number of ECTS points for direct teacher-student contact (BK) classes *delete as applicable	1,5		1,5		

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 Student knows basic facts of mathematical analysis.

2 Knows MATLAB package for mathematical computing.

SUBJECT OBJECTIVES

C1 Study of classical examples of inverse problems.

C2 Study of theory and basic concepts for inverse problems.

C3 Study of numerical methods for solving inverse, ill-posed problems.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 knows the definition of well-posedness

PEK_W02 knows classical examples of inverse problems

PEK_W03 knows basic methods of regularization

PEK_W04 knows numerical methods for solving inverse problems

relating to skills:

PEK_U01 understand the definition of well-posedness

PEK_U02 be able to demonstrate examples of inverse problems

PEK_U03 be able to apply numerical methods to solve inverse problems

relating to social competences:

PEK_K01 can, without assistance, search for necessary information in the literature.

PEK_K02 understands the need for systematic work on course material

	PROGRAMME CONTENT						
	Form of classes - lecture						
Lec 1	Lec 1 Introduction to inverse problems. Definition of the well-posedness. Important classes of inverse problems.						
Lec 2	Differentiation of a noisy data.	2					
Lec 3	Computerized tomography. The Radon transform.	2					
Lec 4	Inverse problems in image processing.	2					
Lec 5	Parameter identification problems.	4					
Lec 6	Ill-conditioned matrix equations	2					
Lec 7	Regularization of linear ill-posed problems.	4					
Lec 8	Tikhonov regularization.	2					
Lec 9	Maximum entropy regularization.	2					
Lec 10	Total variation regularization.	2					
Lec 11	Estimation of the regularization parameters.	2					
Lec 12	Iterative regularization	4					
	Total hours	30					

	Form of classes - laboratory				
Lab 1	Solving problems illustrating the methods given in the lecture using MATLAB package for scientific computing	30			
	Total hours	30			

TEACHING TOOLS USED

N1. Lecture – traditional method

N2. Computer laboratory – working on a computer using MATLAB package for numerical computations

N3. Consultations

N4. Student's self work – preparation for the laboratory

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_W03, PEK_W04, PEK_U03, PEK_K01, PEK_K02	activity in the laboratory, oral presentation
F2	PEK_W01, PEK_W02, PEK_W03, PEK_W04, PEK_U01, PEK_U02, PEK_U03, PEK_K01, PEK_K02,	test
P==0.5*F1+0.5*F2		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- 1 C. W. <u>Groetsch</u>. "Inverse Problems in the Mathematical Sciences". <u>Vieweg</u>, <u>Braunschweig</u>, 1993.
- 2 C. R. Vogel. "Computational Methods for Inverse Problems". SIAM, Philadelphia, PA, USA, 2002.

SECONDARY LITERATURE:

- H. W. Engl, M. Hanke, and A. Neubauer. "Regularization of Inverse Problems". <u>Kluwer</u> Academic Publishers, <u>Dordrecht</u>, 1996.
- [2] A. A. <u>Samarskii</u> and P. N. <u>Vabishchevich</u>. "Numerical Methods for <u>Solving</u> Inverse Problems of Mathematical Physics". Walter de <u>Gruyter</u>, 2007.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr Monika Muszkieta (monika.muszkieta@pwr.edu.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT INTRODUCTION TO INVERSE PROBLEMS MAT001575 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION MATHEMATICS FOR INDUSTRY AND COMMERCE MODELLING, SIMULATION, OPTIMIZATION

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**lności (o ile dotyczy)	Subject objectives***	Programme content***	Teaching tool number***
PEK_W01 (knowledge)	K2MST_W06 K2MST_W08, K2MST_mic_W01 K2MST_mso_W01	C1, C2, C3	Lec 1,	1
PEK_W02	K2MST_W07 K2MST_W10 K2MST_mic_W02 K2MST_ mso _W02	C1, C2, C3	Lec 1 - Lec 6, Lab 1	1, 2, 3
PEK_W03	K2MST_W13 K2MST_W12 K2MST_mic_W03 K2MST_mso_W03	C1, C2, C3	Lec 7 – Lec 12, Lab 1	1, 2, 3
PEK_W04	K2MST_W04	C1, C2, C3	Lec 2 - Lec 12, Lab 1	1, 2, 3, 4
PEK_U01 (skills)	K2MST_U04, K2MST_U05, K2MST_U16, K2MST_mic_U01 K2MST_mso_U01	C1, C2, C3	Lec 1	1
PEK_U02	K2MST_U06, K2MST_U09 K2MST_U17 K2MST_mic_U02 K2MST_ mso _U02	C1, C2, C3	Lec 1 - Lec 6, Lab 1	1, 2, 3
PEK_U03	K2MST_U24 K2MST_U25 K2MST_mic_U03 K2MST_ mso _U03	C1, C2, C3	Lec 7 – Lec 12, Lab 1	1, 2, 3
PEK_K01 (competences)	K2MST_K05, K2MST_K06 K2MST_mic_K01 K2MST_ mso _K01	C1, C2, C3	Lec 1- Lec 12, Lab 1	1, 2, 3, 4
PEK_K02	K2MST_K03, K2MST_K04 K2MST_mic_K02 K2MST_ mso _K02	C1, C2, C3	Lec 1- Lec 12, Lab 1	1, 2, 3, 4

** - enter symbols for main-field-of-study/specialization educational effects *** - from table above

FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD

Name in Polish: Zagadnienia ze swobodnym brzegiem Name in English: Free boundary problems Main field of study (if applicable): APPLIED MATHEMATICS Specialization (if applicable): Mathematics for Industry and Commerce Level and form of studies: 1st/ 2nd* level, full-time / part-time* Kind of subject: obligatory/ optional / university-wide* Subject code XXX Group of courses YES / NO*

Lecture	Classes	Laboratory	Project	Seminar
30	30			
150				
Crediting with grade				
Х				
5				
2	2			
1,5	1,5			
	30 150 Crediting with grade X 5 2	3030150Crediting with gradeX522	3030150	30 30 30 150

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Student has basic knowledge and abilities in the area of ordinary and partial differential equations.

SUBJECT OBJECTIVES

C1 Study of mathematical models of phenomena in science and technology leading to free boundary problems.

C2 Study of basic analytical methods in examining free boundary problems.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge: student

PEK_W01 knows basic mathematical models connected with free boundary problems.

PEK_W02 knows basic analytical methods in examining free boundary problems.

relating to skills: student

PEK_U01 can build mathematical models leading to free boundary problems.

PEK_U02 can examine free boundary problems.

relating to social competences: student

PEK_K01 is able to take benefits form scientific literature

PEK_K02 knows limitations of his knowledge and understands the need of further education

	PROGRAMME CONTENT				
	Form of classes - lecture	Number of hours			
Lec 1	Remaining basic theory of elliptic and parabolic partial differential equations.	2			
Lec 2	Stefan problem, notion of the free boundary. Inverse Stefan problem.	2			
Lec 3	Free boundary problems in melting and freezing. Modeling of problems connected with phase transition.	4			
Lec 4	Modeling of flows in porous media: Boussinesq equation, porous media equation.	2			
Lec 5	Self-similar solutions of porous media equation.	2			
Lec 6	Free boundary in solutions of porous media equation, finite speed of propagation of disturbances. Retention and penetration property. Large time behavior of solutions.	2			
Lec 7	Free boundary in reaction-diffusion-convection equations.	4			
Lec 8	Diffusion in solids. Free boundary problems.	2			
Lec 9	Modeling of flows in deformable media, spreading of impurities.	4			
Lec 10	Free boundary problems in digital image processing.	2			
Lec 11	Free boundary problems in financial mathematics.	2			
Lec 12	Stationary free boundary problems: dam problem, obstacle problems in calculus of variations.	2			
	Total hours	30			
	Form of classes - class	Number of hours			
	lving of problems illustrating theory given on lectures.	30			
То	Total hours 30				
	TEACHING TOOLS USED				
	ecture – traditional method. asses – traditional method.				

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_W1, PEK_K1	Final test
F2	PEK_U1, PEK_U2, PEK_K1	Oral presentations, tests.
P=0.5*F1+0.5*F2		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- R. M. Mattheij, S. W. Rienstra, J.H.M. ten Thije Boonkkamp, Partial Differential Equations, Modeling, Analysis, Computation, SIAM, Philadelphia 2005
- J. Ockendon, S. Howison, A. Lacey & A. Movchan, Applied Partial Differential Equations, Oxford University Press, Oxford 1999.
- A. Fasano, Parabolic Free Boundary Problems in Industrial and Biological Applications, SIMAI e-Lecture Notes, Volume 9, 2011

SECONDARY LITERATURE:

V. Alexiades, A.D. Solomon, Mathematical Modeling of Melting and Freezing Processes, Hemisphere – Taylor & Francis, Washington, DC, USA, 1983

J.L. Vazquez, The Porous Media Equation, Mathematical Theory, Clarendon Press, Oxford 2007

A.Friedman, Variational Principles and Free Boundary Problems, John Wiley and Sons, Inc

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr hab. Jan Goncerzewicz (Jan.Goncerzewicz@pwr.edu.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT FREE BOUNDARY PROBLEMS MAT001576 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION MATHEMATICS FOR INDUSTRY AND COMMERCE

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***
PEK_W01 (knowledge)	K2MST_W03 K2MST_mic_W01	C1, C2	Lec 1 - Lec 12	F1
PEK_W02	K2MST_W10 K2MST_mic_W02 K2MST_mic_W03	C1, C2	Lec 1 - Lec 12	F1
PEK_U01 (skills)	K2MST_U15 K2MST_U24 K2MST_U25	C1, C2	Cl 1	F2
PEK_U02	K2MST_U28 K2MST_U29 K2MST_U16	C1, C2	Cl 1	F2
PEK_K01 (competences)	K2MST_K06 K2MST_mic_K01	C1, C2,	Lec 1 - Lec 12, Cl 1	F2
PEK_K02	K2MST_K01 K2MST_mic_K02	C1-C2	Wy1-Wy11, Ćw1	1, 2, 3, 4

** - enter symbols for main-field-of-study/specialization educational effects *** - from table above

FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD Name in Polish DYFUZJA NA SIECIACH ZŁOŻONYCH Name in English DIFFUSION PROCESSES ON COMPLEX NETWORKS Main field of study (if applicable): APPLIED MATHEMATICS Specialization (if applicable): COMPUTATIONAL MATHEMATICS Level and form of studies: 1st/ 2nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code MAT001577 Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	150				
Form of crediting	Crediting with grade				
For group of courses mark (X) final course					
Number of ECTS points	3		3		
including number of ECTS points for practical (P) classes			2		
including number of ECTS points for direct teacher-student contact (BK) classes			1,5		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES Student has basic programming skills.

SUBJECT OBJECTIVES

Mastering knowledge of computer simulation of diffusion processes on complex networks.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W04 has in-depth knowledge in a subfield of theoretical or applied mathematics

PEK_W09 knows basic stochastic modelling methods in financial and actuarial mathematics or in science

relating to skills:

PEK_U18 can use stochastic processes as a tool for modelling complex phenomena and analysis of their evolution

relating to social competences:

K2MIC_K06 can, without assistance, search for necessary information in the literature, also in foreign languages

K2MIC_K02 can accurately formulate questions for deeper understanding of a given topic

PROGRAMME CONTENT				
	Form of classes - lecture	Number of	f hours	
Lec 1	Introduction to complex networks	10		
Lec 2	Diffusion and random walks	2		
Lec 3	Epidemic spreading in population networks	6		
Lec 4	Rumor and information spreading	2		
Lec 5	Opinion formation processes	4		
Lec 6	Diffusion of innovation	6		
	Total hours	30		
	Form of classes - laboratory	Nur hou	nber of rs	
La 1 Sol	ving problems illustrating the content presented in the lectures		30	
Total hours				

TEACHING TOOLS USED

N1. Lecture – traditional method and presentations

N2. Problem and computing laboratory – using computer based methods

N3. Consultations

N4. Student's self work – preparation for the laboratory

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_W04 PEK_W09	Mid-term exams
F2	PEK_U18 PEK_K02 PEK_K06	Oral presentations

C P==0.5*F1+0.5*F2

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

Alain Barrat, Marc Barthelemy, Alessandro Vespignani, "Dynamical Processes on Complex Networks"

Romualdo Pastor-Satorras, Claudio Castellano, Piet Van Mieghem, Alessandro Vespignani, "Epidemic processes in complex networks", Revies of Modern Physics 87 (2015) 925-979

SECONDARY LITERATURE:

David Easley, Jon Kleinberg, "Networks, Crowds, and Markets: Reasoning about a Highly Connected World"

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT DIFFUSION PROCESSES ON COMPLEX NETWORKS MAT001577 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION COMPUTATIONAL MATHEMATICS

Subject educational effect	Subject educational effect Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**		Programme content***	Teaching tool number***
PEK_W04 PEK_W09 (knowledge)	K2MST_cm_W01 K2MST_cm_W02 K2MST_cm_W03 K2MST_W04, K2MST_W09	C1	Lec1-Lec6	1,3
PEK_U18 (skills)	K2MST_U23 K2MST_U24 K2MST_U25 K2MST_cm_U01 K2MST_cm_U02 K2MST_cm_U03	C1	La1	2,3,4
PEK_K02 PEK_K06 (competences)	K2MST_K02, K2MST_K06 K2MST_cm_K01 K2MST_cm_K02	C1	Lec1-Lec6, La1	1,2,3,4

** - enter symbols for main-field-of-study/specialization educational effects *** - from table above

FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD Name in Polish ANALIZA NIEUPORZĄDKOWANYCH ZBIORÓW DANYCH Name in English ANALYSIS OF UNSTRUCTURED DATA Main field of study (if applicable): APPLIED MATHEMATICS Specialization (if applicable): COMPUTATIONAL MATHEMATICS Level and form of studies: 1st/ 2nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code MAT001578 Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30			30	
Number of hours of total student workload (CNPS)	150				
Form of crediting	crediting with grade				
For group of courses mark (X) final course	X				
Number of ECTS points	5			3	
including number of ECTS points for practical (P) classes				2	
including number of ECTS points for direct teacher-student contact (BK) classes	1 5			1,5	

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES Student has basic programming skills.

SUBJECT OBJECTIVES

Searching, extracting, storing ond computer-aided analysis of unstructered data (texts, blogs, web sites, social media posts etc.)

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W12 knows how to use Python and its scientific modules for data analysis

relating to skills:

PEK_U12 can perform an analysis of unstructured data by making use of Python and its modules

relating to social competences:

PEK_K06 can, without assistance, search for necessary information in the literature, also in foreign languages

PEK_K02 can accurately formulate questions for deeper understanding of a given topic

PROGRAMME CONTENT

	Form of classes - lecture	Number of hours
Lec 1	Data analysis in Python – PANDAS primer	8
Lec 2	Retrieving and storing data	6
Lec 3	Data visualisation	2
Lec 4	Data wrangling	2
Lec 5	Natural language processing with NLTK	4
Lec 6	Sentiment analysis	2
Lec 7	Document classification	4
Lec 8	Handling big data	2
	Total hours	30
	Form of classes - project	Number of hours
	ctical Preparation and presentations of projects illustrating method he lectures.	s given 30
Tot	al hours	30

TEACHING TOOLS USED

N1. Lecture – traditional method and presentations

N2. Student partial project presentation and final presentation

N3. Consultations

N4. Student's self work – work related to the project development

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement				
F1	PEK_W12 PEK_U12	mid-term exams				
F2	PEK_U12 PEK_K06 PEK_K02	Oral presentations				
C P==0.5*F1+0.5*F2						
PRIMARY AND SECONDARY LITERATURE						

PRIMARY LITERATURE:

S. Bird, E. Klein i E. Loper, "Natural Language Processing with Python"

I. H. Witten & E. Frank, "Data Mining. Practical Machine Learning Tools and Techniques"

W. McKinney, "Python for Data Analysis"

SECONDARY LITERATURE:

P. Giudici, "Applied Data Mining"

T. Segaran, "Programming Collective Intelligence"

I. Idris, "Python Data Analysis"

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT ANALYSIS OF UNSTRUCTURED DATA MAT001578 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION COMPUTATIONAL MATHEMATICS

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***
PEK_W12	K2MST_W12 K2MST_cm_W01 K2MST_cm_W02 K2MST_cm_W03	C1	Lec1-Lec8	1,3
PEK_U12 (skills)	K2MST_U21, K2MST_U20 K2MST_U24 K2MST_U25 K2MST_cm_U01 K2MST_cm_U02 K2MST_cm_U03	C1	Pr1	2,3,4
PEK_K02 PEK_K06 (competences)	K2MST_K02, K2MST_K06 K2MST_cm_K01 K2MST_cm_K02	C1	Lec1-Le8, Pr1	1,2,3,4

** - enter symbols for main-field-of-study/specialization educational effects

*** - from table above

FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD Name in Polish: PAKIETY STATYSTYCZNE Name in English: Statistical Packages

Main field of study (if applicable): APPLIED MATHEMATICS Specialization (if applicable): COMPUTATIONAL MATHEMATICS Level and form of studies: 1st/ 2nd* level, full-time / part-time* Kind of subject: obligatory-/ optional / university-wide* Subject code MAT001579 Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	150				
Form of crediting	Examination / crediting with grade*				
For group of courses mark (X) final course	Х				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes	2		2		
including number of ECTS points for direct teacher-student contact (BK) classes	1,5		1,5		

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Student knows and can apply basic concepts of the probability theory
- 2. Student knows basic concepts of the mathematical statistics

SUBJECT OBJECTIVES

1Study of basic methods of data analysis.

2Acquisition of the ability to analyze data using statistical packages.

3Acquisition of the ability to write reports on statistical analyzes.

4Acquisition of skills in the English language sufficiently to enable the execution of

statistical analyzes and write reports on these analyzes.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 has statistical knowledge of the relationship between the variables in the databases PEK_W02 knows English in the statistical analysis

PEK_W03 knows methods of using statistical packages for data analysis

relating to skills:

PEK_U01 can use a statistical package for data analysis

PEK_U02 can write a report on the statistical analysis in English

relating to social competences:

PEK_K01 can translate questions about the real phenomenon on the precise mathematical language

PEK_K02 can present the results of statistical analysis in a manner understandable to nonmathematicians

	PROGRAMME CONTENT				
	Form of classes - lecture	Number of hours			
Lec 1	Descriptive statistics. Graphical representation of data.	2			
Lec 2	Comparison of two populations - Student test, nonparametric tests.	2			
Lec 3	Estimation of proportion. Chi-square goodness of fit test.	2			
Lec 4	Cross tabulation. Chi-squared test of independence.	2			
Lec 5	Simple linear regression - model, estimation, testing.	2			
Lec 6	Simple linear regression - prediction, checking assumptions, transformations.	2			
Lec 7	Test.	2			
Lec 8	Multiple linear regression - estimation, testing, checking assumptions.	2			
Lec 9	Multiple linear regression - analysis of variance, coefficient of determination.	2			
Lec 10	Multiple linear regression - the sum of the squares, generalized linear tests.	2			
Lec 11	Multiple linear regression - correlated predictors, the model selection criteria.	2			
Lec 12	Univariate analysis of variance - model, estimation of parameters, testing.	2			
Lec 13	Multivariate analysis of variance.	2			
Lec 14	Mixed models and generalized linear model.	2			
Lec 15	Test.	2			
	Total hours	30			

	Form of classes - laboratory		
Lab 1	Getting familiar with selected statistical package.	2	
Lab 2	Descriptive statistics and graphical representation of data.	4	

Lab 3	The problem of two samples - Student tests, nonparametric tests,	4
	testing normality, graphical representation of data	
Lab 4	Tests and confidence intervals for the ratio - the proportion of a	4
	single ratio, chi-square goodness of fit test, chi-squared test of	
	independence, graphical representation of data	
Lab 5	Simple linear regression - estimation, prediction, power, graphical	4
	representation of data and results	
Lab 6	Simple linear regression - diagnostics, transformations of variables	4
Lab 7	Multiple linear regression - estimation, prediction, testing, diagnosis,	4
	selection of relevant variables.	
Lab 8	Analysis of variance - estimation, testing, comparison between	4
	groups, diagnostics	
	Total hours	30

TEACHING TOOLS USED

N1. Lecture-computer presentation and traditional method.

N2. Computer laboratory - an independent analysis of the data, analysis reports.

N3. Consultations.

N4. Student's self work – preparation for the laboratory.

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_U01 PEK_K01 PEK_K02	written reports
F2	PEK_W01 PEK_U01 PEK_K01 PEK_K02	two tests

P=0,5 F1+0,5 F2

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

D. S. Moore, G.P. McCabe, Introduction to the Practise of Statistics M. H. Kutner, C. J. Nachstheim, J. Neter, W. Li, Applied Linear Statistical Models.

SECONDARY LITERATURE:

R. Freund, R. Littell, SAS System for Regression

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS) Dr hab. Małgorzata Bogdan (Małgorzata.Bogdan@pwr.edu.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT STATISTICAL PACKAGES MAT001579

AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED

MATHEMATICS

AND SPECIALIZATION COMPUTATIONAL MATHEMATICS

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***
PEK_W01 (wiedza)	K2MST_W02 K2MST_W04	C1	Lec 1- Lec 15	1, 3
("realla")	K2MST_W08 K2MST_W16 2MST_cm_W01			
PEK_W02	K2MST_W13 K2MST_cm _W02	C4	Lec 1- Lec 15, Lab 1-Lab 8	1-4
PEK_W03	K2MST_W12, K2MST_W18 K2MST_cm _W03	C2	Lec 1- Lec 15, Lab 1-Lab 8	1-4
PEK_U01 (umiejętności)	K2MST_U11 K2MST_U15 K2MST_U20 K2MST_U21 K2MST_cm_U01	C2	Lec 1- Lec 15, Lab 1-Lab 8	1-4
PEK_U02	K2MST_U24 K2MST_U25 K2MST_cm_U02 K2MST_cm_U03	C3, C4	Lab 1-Lab 8	2, 3, 4
PEK_K01 (kompetencje)	K2MST_K02 K2MST_cm_K01	C1, C2	Lec 1- Lec 15, Lab 1-Lab 8	1-4
PEK_K02	K2MST_K05 K2MST_cm_K02	C3, C4	Lab 1-Lab 8	2, 3, 4

** - from table above

Zał. nr 4 do ZW

FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD Name in Polish: SYMULACJE KOMPUTEROWE PROCESÓW STOCHASTYCZNYCH Name in English: Computer simulations of stochastic processes Main field of study (if applicable): APPLIED MATHEMATICS

Specialization (if applicable): COMPUTATIONAL MATHEMATICS Specialization (if applicable): COMPUTATIONAL MATHEMATICS, MODELLING, SIMULATION, OPTIMIZATION Level and form of studies: 1st/ 2nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code MAT001580

Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	150				
Form of crediting	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*
For group of courses mark (X) final course	Х				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes	2		2		
including number of ECTS points for direct teacher- student contact (BK) classes	1,5		1,5		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES Student knows and can apply basic concepts of the theory of stochastic processes.

SUBJECT OBJECTIVES

Mastering knowledge of computer simulations of stochastic processes with long memory property and heavy tails.

*delete as applicable

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 has in-depth knowledge of computer simulations of stochastic processes with long memory property and heavy tails.

PEK_W02 knows the basics of stochastic modeling in financial and actuarial mathematics or the natural sciences, especially physics, chemistry or biology

relating to skills:

PEK_U01 can construct algorithms with good numerical properties, used to solve common and unusual mathematical problems

relating to social competences:

PEK_K01 can, without assistance, search for necessary information in the literature, also in foreign languages

	PROGRAMME CONTENT				
	Form of classes - lecture Number of hours				
Lec 1	Generation of stable distributions and vectors	6			
Lec 2	Simulation of stable processes by integral and series representations	6			
Lec 3	Self-similar and stationary processes	6			
Lec 4	Generating processes with long memory	6			
Lec 5	Stable models with long memory in physics and economics	6			
	Total hours	30			

	Form of classes - laboratory		
Lab 1	Solving problems illustrating methods given in the lecture.	30	
	Total hours	30	

TEACHING TOOLS USED		
N1. Lecture-computer presentation and traditional method.		
N2. Computer Laboratory with Matlab		
N3. Consultations.		
N4. Student's self work – preparation for the laboratory.		

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_W01	test
	PEK_W02	
	PEK_K01	

F2	PEK_U01 PEK_K01	written reports

P=0.5*F1+0.5*F2

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

P. Doukhan, G. Oppenheim, M.S. Taqqu, Theory and Applications of Long-range Dependence, Birkhauser, Boston, 2004.

A. Janicki, A Weron, Simulation and Chaotic Behavior of Stable Stochastic Processes, Marcel Dekker, New York, 1994.

G. Samorodnitsky, M.S. Taqqu, Stable Non-Gaussian Random Processes, Chapman & Hall, New York, 1994.

SECONDARY LITERATURE:

J. Beran, Statistics for Long-memory Processes, Chapman & Hall, New York, 1994. P. Cizek, W. Haerdle, R. Weron (red.), Statistical tools for finance and insurance, Springer, Berlin, 2011

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr Krzysztof Burnecki (<u>Krzysztof.Burnecki@pwr.edu.pl</u>) **Dr hab. Marcin Magdziarz** (Marcin.Magdziarz@pwr.edu.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT COMPUTER SIMULATIONS OF STOCHASTIC PROCESSES MAT001580 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION COMPUTATIONAL MATHEMATICS, MODELLING, SIMULATION, OPTIMIZATION

G-1-1-14	MODELLING, SIMULATIO	/		T 1. 4 1
Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***
PEK W01	K2MST_W04	C1	Lec 1-Lec 5	1, 3
(wiedza)	K2MST_W05	01		1, 5
	K2MST_cm_W01			
	K2MST_mso_W01			
	K2MST_mso_W02			
	K2MST_mso_W03			
PEK_W02	K2MST_W09	C1	Lec 1-Lec 5	1, 3
	K2MST_cm_W02			·
	K2MST_cm_W03			
PEK_U01	K2MST_U13	C1	Lab 1	2, 3, 4
(umiejętności)	K2MST_U17			
	K2MST_U23			
	K2MST_U24			
	K2MST_U25			
	K2MST_U30			
	K2MST_cm_U01			
	K2MST_cm_U02			
	K2MST_cm_U03			
	K2MST_mso_U01			
	K2MST_mso_U02			
	K2MST_mso_U03	~ .		
PEK_K01	K2MST_K03	C1	Lec 1-Lec 5,	1, 2, 3, 4
(kompetencje)	K2MST_K06		Lab 1	
	K2MST_cm_K01			
	K2MST_cm_K02			
	K2MST_mso_K01			
	K2MST_mso_K02			

** - from table above

FACULTY OF FUNDAMENTAL PROBLEMS OF TECHNOLOGY SUBJECT CARD

Name in Polish Teoria estymacji

Name in English: Estimation theory

Main field of study (if applicable): APPLIED MATHEMATICS Specialization (if applicable): COMPUTATIONAL MATHEMATICS

Level and form of studies: 1st/ 2nd* level, full-time / part-time*

Kind of subject: obligatory / optional / university-wide*

Subject code MAT001581

Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	150				
Form of crediting	Examination / crediting with grade*				
For group of courses mark (X) final course	X				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes			2		
including number of ECTS points for direct teacher-student contact (BK) classes	1,5		1,5		

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1Student knows how to use statistical packages

2Student has a basic knowledge of mathematical statistics.

- 3Student has a basic knowledge of mathematical analysis and functional analysis
- 4Student has basic programming skills.

SUBJECT OBJECTIVES

1Learning of statistical criteria for assessing the quality of statistical estimation

2Learning basic parametric estimation methods and their properties.

3Learning basic non-parametric estimation methods and their properties.

4Ability to program advanced statistical methods.

5Ability to carry out simulation studies.

6Ability to evaluate properties of statistical methods based on simulation studies.

7Mastering of English vocabulary in the field of estimation methods .

8Report writing skills in English.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 knows the basic parametric estimation methods.

PEK_W02 knows the basic non-parametric estimation methods.

PEK_W03 knows the basic criteria for assessing the quality of the estimation.

PEK_W04 knows the theoretical basis of statistical simulation.

PEK_W05 knows English in the extent necessary for the creation of simulation reports.

PEK_W06 knows Programming Languages enable to carry out the simulation study.

relating to skills:

PEK_U01 able to apply advanced statistical methods to analyze real data.

PEK_U02 can use programming languages to program the high-order complex statistical methods and simulation tests and to carry out simulation studies.

PEK_U03 able to assess the properties of statistical methods based on simulation studies.

PEK_U04 can develop a report in English summarizing the results of simulation studies.

relating to social competences:

PEK_K01 can benefit from the scientific literature in English, including reaching the source materials and review them.

PEK_K02 understands the need for systematic work to improve knowledge

PROGRAMME CONTENT

	Form of classes - lecture	Number of hours
Lec 1	Basic concepts of estimation theory: bias, variance, mean square error matrix of Fisher information, efficiency, asymptotic normality	2
Lec 2	Theoretical basis of simulation methods and replication	2
Lec 3	Bias and variance estimation - bootstrap, Jacknife, the delta method	2
Lec 4	Construction of confidence intervals - classic and boostrap intervals	2
Lec 5	Nonparametric density estimation - histogram and its properties	2
Lec 6	Nonparametric density estimation - kernel estimator and its properties	2
Lec 7	Selection of bandwidth in the kernel estimator	2
Lec 8	Modifications of kernel estimator - variable bandwidth, higher- order kernels	2
Lec 9	Estimation of density through orthogonal expansions	2
Lec 10	Estimation of density - local likelihood function and maximum likelihood method with smoothing	2
Lec 11	Nonparametric regression function estimation - estimation of kernel	2

Lec 12	ec 12 Selection of the bandwidth and modification of the kernel estimator of regression function.			
Lec 13	Hazard function estimation - parametric and non-parametric c 13 methods. 2			
Lec 14	Empirical Bayesian methods - Stein estimator	2		
Lec 15	Test	2		
	Total hours	30		
	Form of classes – laboratory		Number of hours	
Lab 1	Parametric estimation - method of maximum likelihood. Bias, varia square error - estimation using computer simulations.	nce, mean	4	
Lab 2	Estimation of bias, variance and construction of confidence interval method of substitution and replication methods (bootstrap, jackknife Estimating the quality of estimators based on simulation studies.	-	4	
Lab 3	Lab 3Estimating the several parameters - asymptotic covariance matrix, the covariance matrix estimation using the method of substitution and replication methods. Estimating the quality of estimators based on simulation studies.			
Lab 4	Nonparametric estimation of density - the histogram, method of the nearest neighbor, kernel estimator, orthogonal expansions. Smoothing parameter selection. Quality rating based on simulation studies.			
Lab 5	Jab 5Nonparametric estimation of the regression function. Estimators: kernel, local polynomial, the nearest neighbor, the smooth spline functions. Construction of confidence intervals and bands using the bootstrap method. Smoothing parameter selection. Quality rating based on simulation studies.			
Lab 6	b 6 Estimation of survival function and hazard function with parametric and nonparametric methods. Construction of confidence intervals through approximation with the normal distribution and the bootstrap method. Quality rating based on simulation studies.			
Lab 7	Lab 7Empirical Bayesian methods. Quality assessment using simulation studies.			
	Total hours		30	
	TEACHING TOOLS USED			
N2. La N3. Co	cture problem - computer presentation and traditional method boratory - self development of programs for simulation, reports fron nsultations ident's self work – preparation for the laboratory	n analyses		

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	All subject effects of the	Reports and activity during the
	course	laboratory.
F2	PEK_W01	Test
	PEK_W02	
	PEK_W03	
	PEK_W04	
	PEK_W05	

P=0,75*F1+0,25*F2

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] L. Devroye, A Course in Density Estimation

[2] B. Efron, R. Tibshirani, Introduction to the Bootstrap

[3] B. Silverman, Density Estimation for Statistics and Data Analysis.

[4] W. Härdle, Smoothing Techniques with implementation in S

[5] A.W.Bowman and A. Azzalini, Applied Smoothing Techniques for Data Analysis, The kernel approach with S-Plus Illustrations

[6] P.J. Green and B.W.Silverman, Nonparametric regression and Generalized Linear Models

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr hab. Małgorzata Bogdan (Malgorzata.Bogdan@pwr.edu.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT ESTIMATION THEORY MAT001581 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION COMPUTATIONAL MATHEMATICS

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***
PEK_W01 (knowledge)	K2MST_W04 K2MST_cm_W01	C2	Lec 1-Lec 4, Lec 13, Lec 14 Lab 1-Lab 3, Lab 6, Lab 7	1-4
PEK_W02	K2MST_W15 K2MST_cm_W02	C3	Lec 5-Lec 4, Lab 4-Lab 7	1-4
PEK_W03	K2MST_W16 K2MST_cm _W03	C1	Lec 1-Lec 14, Lab 1-Lab 7	1-4
PEK_W04	K2MST_W18	C5,C6	Lec 2-Lec 14, Lab 1-Lab 7	1-4
PEK_W05	K2MST_W13	C7, C8	Lec 1-Lec 14, Lab 1-Lab 7	1-4
PEK_W06	K2MST_W12	C4, C5, C6	Lec 2-Lec 14, Lab 1-Lab 7	1-4
PEK_U01 (skills)	K2MST_U11, K2MST_U24 K2MST_cm_U01	C1-C4	Lec 1-Lec 14, Lab 1-Lab 7	1-4
PEK_U02	K2MST_U12 K2MST_U02, K2MST_cm_U02	C4-C6	Lab 1-Lab 7	2, 3, 4
PEK_U03	K2MST_U20, K2MST_U25 K2MST_cm_U03	C5-C6	Lec 2, Lab 1-Lab 7	1-4
PEK_U04	K2MST_U21	C7-C8	Lab 1-Lab 7	2, 3, 4
PEK_K01 (competences)	K2MST_K06 K2MST_cm_K01	C4-C8	Lab 1-Lab 7	2, 3, 4
PEK_K02	K2MST_K01 K2MST_cm_K02	C1-C8	Lec 1-Lec 14, Lab 1-Lab 7	1-4

** - enter symbols for main-field-of-study/specialization educational effects *** - from table above

FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD Name in Polish: Matematyczne przetwarzanie obrazów

Name in English: Mathematical Image Processing

Main field of study (if applicable): APPLIED MATHEMATICS

Specialization (if applicable): MODELLING, SIMULATION, OPTIMIZATION

Level and form of studies: 1st/ 2nd* level, full-time / part-time*

Kind of subject: obligatory-/ optional / university-wide*

Subject code MAT001582

Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	150				
Form of crediting	Examination / crediting with grade*				
For group of courses mark (X) final course	Х				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes	2		2		
including number of ECTS points for direct teacher-student contact (BK) classes	1,5		1,5		

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

Knows basic concepts of theory of partial differential equations Knows MATLAB package for mathematical computing

SUBJECT OBJECTIVES

C1 Study of mathematical models in image processing.

C2 Study of numerical methods for solving problems in image processing.

C3 Application of acquired knowledge to construction and analysis of mathematical models in image processing

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 knows basic models for image restoration

PEK_W02 knows basic variational models for image segmentation

PEK_W03 knows numerical methods for solving problems in image processing

relating to skills:

PEK_U01 be able to demonstrate the difference between known models of image restoration
 PEK_U02 be able to demonstrate the difference between known models of image segmentation
 PEK_U03 be able to apply numerical methods to solve mathematical problems in image processing

relating to social competences:

PEK_K01 can, without assistance, search for necessary information in the literature.

PEK_K02 understands the need for systematic work on course material

PROGRAMME CONTENT				
Form of classes - lecture				
	Overview of fundamental problems in image processing. Representation of images. Models of image degradation.	2		
Lec 2	Linear diffusion filter. Gaussian smoothing in the frequency domain.	2		
Lec 3	Nonlinear diffusion filters. Isotropic and anisotropic diffusion models.	4		
Lec 4	Discretization of the nonlinear diffusion filter.	2		
Lec 5	Introduction to variational models for image restoration.	2		
Lec 6	Image denoising by total variation regularization.	2		
Lec 7	First order numerical schemes for total variation minimization.	4		
Lec 8	Image deblurring model.	2		
Lec 9	Total variation model for image inpainting.	2		
Lec 10	The Mumford-Shah model for image segmentation and its approximations.	4		
Lec 11	Active contours model for image segmentation.	4		
	Total hours	30		

Form of classes - laboratory		
Lab 1	Basic operation on images. Degradation of images. Gaussian smoothing.	4
Lab 2	Solving selected problems illustrating theory given in the lectures using mathematical MATLAB package for numerical computing	26
	Total hours	30

TEACHING TOOLS USED

N1. Lecture – traditional method supported by multimedial presentation

N2. Computer laboratory – working on a computer using MATLAB package for numerical computations

N3. Consultations

N4. Student's self work – work on the project

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming	Educational effect number	Way of evaluating educational			
(during semester), P –		effect achievement			
concluding (at semester end)					
F1	PEK_W01, PEK_W02, PEK_W03,	activity in the laboratory			
	PEK_U01, PEK_U02, PEK_U03,				
	PEK_K01, PEK_K02,				
F2	PEK_W01, PEK_W02, PEK_W03,	oral presentation, report			
	PEK_U01, PEK_U02, PEK_U03,				
	PEK_K01, PEK_K02,				
P==0.2*F1+0.8*F2					

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

G. Aubert and P. Kornprobst "Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations", Springer-Verlag, 2007.

T. Chan and J. Shen "Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods", SIAM, 2006.

SECONDARY LITERATURE:

Scherzer (Editor) "Handbook of Mathematical Methods in Imaging", Springer-Verlag, 2010.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr Monika Muszkieta (monika.muszkieta@pwr.edu.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT MATHEMATICAL IMAGE PROCESSING MAP001582 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION MODELLING, SIMULATION, OPTIMIZATION

Subject	Correlation between subject educational	Subject	Programme	Teaching tool
educational effect	effect and educational effects defined for main field of study and specialization (if applicable)**	objectives***	content***	number***
PEK_W01 (knowledge)	K2MST_W04, K2MST_mso_W01	C1, C2, C3	Lec 1, Lec 2, Lec 3, Lec 5, Lec 6, Lec 8, Lec 9 Lab 1, Lab 2	1, 2, 3, 4
PEK_W02	K2MST_W06, K2MST_mso_W02	C1, C2, C3	Lec 10, Lec 11 Lab 1, Lab 2	1, 2, 3, 4
PEK_W03	K2MST_W07 K2MST_W13 K2MST_mso_W03	C1, C2, C3	Lec 4, Lec 7 Lab 1, Lab 2	1, 2, 3, 4
PEK_U01 (skills)	K2MST_U04 K2MST_U05, K2MST_U06, K2MST_mso_U01	C1, C2, C3	Lec 1, Lec 2, Lec 3, Lec 5, Lec 6, Lec 8, Lec 9 Lab 1, Lab 2	1, 2, 3, 4
PEK_U02	K2MST_U09 K2MST_U16 K2MST_mso_U01	C1, C2, C3	Lec 10, Lec 11 Lab 1, Lab 2	1, 2, 3, 4
PEK_U03	K2MST_U17 K2MST_U24 K2MST_U25 K2MST_mso_U03	C1, C2, C3	Lec 4, Lec 7 Lab 1, Lab 2	1, 2, 3, 4
PEK_K01 (competences)	K2MST_K05 K2MST_K06 K2MST_mso_K01	C1, C2, C3	Lec 1- Lec 11, Lab 1, Lab 2	1, 2, 3, 4
PEK_K02	K2MST_K03 K2MST_K04 K2MST_mso_K02	C1, C2, C3	Lec 1- Lec 11, Lab 1, Lab 2	1, 2, 3, 4

** - enter symbols for main-field-of-study/specialization educational effects

*** - from table above

FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD

Name in Polish: TEORIA KOLEJEK I SIECI KOMUNIKACYJNE Name in English: Queues and Communication Networks Main field of study (if applicable): APPLIED MATHEMATICS Specialization (if applicable): MODELLING, SIMULATION, OPTIMIZATION Level and form of studies: 1st/2nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code MAT001583 Group of courses YES /-NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	30			
Number of hours of total student workload (CNPS)	150				
Form of crediting	Examination / crediting with grade *	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*
For group of courses mark (X) final course	X				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes	Z	2			
including number of ECTS points for direct teacher-student contact (BK) classes	1,5	1,5			

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Student has an elementary knowledge of probability theory.

SUBJECT OBJECTIVES

C1 Learning and mastery of key concepts and methods in the field of queueing theory and communication networks

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 knows the most important theorems and hypotheses of queuing theory

PEK_W02 knows the basics of stochastic modeling of stochastic networks with applications to biology, physics, economics etc.

relating to skills:

PEK_U01 can construct queuing models used in various applications

relating to social competences:

PEK_K01 can by himself/herself search for information in the literature, even in foreign languages

	PROGRAMME CONTENT		
	Form of classes - lecture	Numb	oer of hours
Lec 1	1Basic concepts from Markov processes theory2		
Lec 2	An outline of the theory of point processes	2	
Lec 3	Steady state analysis of Markovian queues	4	
Lec 4	Erlang Loss System	2	
Lec 5	Open Jackson network and Gordon-Newel network	6	
Lec 6	Multi-class Queue	4	
Lec 7	Multiserver queus and various queue disciplines	4	
Lec 8	Queues with feedback and loss systems	4	
Lec 9	Transient analysis of Markovian queues	2	
	Total hours	30	
	Form of classes - class		Number of hours
CI 1	Illustration of all models Analytical and computer methods. Examp queuing models.	les of	30
	Total hours		30
	TEACHING TOOLS USED		
	cture problem - traditional method.		
	oblem and counting exercises.		
	onsultations.		
14. St	udent's self work - preparation for exercises.		

N4. Student's self work - preparation for exercises. EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_W01 PEK_W02 PEK_K01	exam
F2	PEK_U01 PEK_K01	oral responses, tests, small tests
P=0.5*F1+0.5*F2		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] Asmussen, S. (2003) Applied Probability and Queues, Springer. **SECONDARY LITERATURE:**

- 1 Cohen, J.W. (1969) The Single Server Queue North, Holland.
- 2 Takacs, L. (1962) Introduction to the Theory of Queues Oxford University Press.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Prof. dr hab. Zbigniew Palmowski (Zbigniew.Palmowski@pwr.edu.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT QUEUES AND COMMUNICATION NETWORKS MAT001583 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION MODELLING, SIMULATION, OPTIMIZATION

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***
PEK_W01 (knowledge)	K2MST_W03 K2MST_mso_W01	C1	Lec 1-Lec 10	1, 3
PEK_W02	K2MST_W09 K2MST_mso_W02 K2MST_mso_W03	C1	Lec 1-Lec 10	1, 3
PEK_U01 (skills)	K2MST_U15 K2MST_U24 K2MST_U25 K2MST_mso_U01 K2MST_mso_U02 K2MST_mso_U03	C1	Cl 1	2, 3, 4
PEK_K01 (competences)	K2MST_K06 K2MST_mso_K01 K2MST_mso_K02	C1	Lec 1-Lec 10, Cl 1	1, 2, 3, 4

** - enter symbols for main-field-of-study/specialization educational effects *** - from table above

Zał. nr 4 do ZW

FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD

Name in Polish: Zaawansowane zagadnienia z teorii gier dynamicznych Name in English: Advanced Topics in Dynamic Games Main field of study (if applicable): Applied Mathematics Specialization (if applicable): Modelling, Simulation, Optimization Level and form of studies: 1st/ 2nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code MAT001584 Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	30			
Number of hours of total student workload (CNPS)	150				
Form of examination	exam				
For group of courses mark (X) final course	Х				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes	1	3			
including number of ECTS points for direct teacher-student contact (BK) classes	3				

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1 Student has a basic knowledge of the calculus, algebra and the probability theory.
- 2 Student has a basic knowledge of game theory.

SUBJECT OBJECTIVES

- C1. Basic knowledge of Markov decision processes.
- C2. Basic knowledge of algorithms allowing to find value functions and optimal policies.
- C3. Basic knowledge of simple markovian decision models.
- C4. Basic knowledge of stochastic game models.
- C5. Basic knowledge of theory and applications of mean field games.

C6. Ability to apply the acquired knowledge to create and analyze dynamic optimization models in various fields of science and technology.

*niepotrzebne skreślić

SUBJECT EDUCATIONAL EFFECTS

The scope of the student's knowledge:

PEK_W01 Students knows basic concepts of dynamic programming.

PEK_W02. Student knows basics of theory of stochastic games.

PEK_W03. Student knows basics of theory of mean field games.

The scope of the student's skills:

- PEK_U01 Student is able to find an optimal policy and value function in a simple markovian decision process.
- PEK_U02. Student is able to check whether a vector of strategies forms a Nash equilibrium in a given simple stochastic game.
- PEK_U03. Student is able to construct an appropriate dynamic model of a given optimization problem.

The scope of the student's social skills:

- 1 Student is able to utilise literature pointed out by the lecturer.
- 2 Student is able to use computer programs in order to solve some issues.
- 3 Student understands the necessity of further self-learning.

	Course content			
	Form of activities - lectures	Hours load		
Lec1	Introduction to markovian decision processes, the concept of a policy, different optimality criteria, examples of simple models.	2		
Lec2	Dynamic programming method. Solving models with finite time horizon. Backward induction.	2		
Lec3	Models with infinite time horizon. The Banach fixed point theorem and its application to a solution of the Bellman equation.	2		
Lec4	Algorithms applied to infinite time horizon models: value iteration, policy improvement, LP.	4		
Lec5	Markov decision processes with risk sensitive payoff criteria. Other payoff criteria.	2		
Lec6	Specific models.	2		
Lec7	Two-person zero-sum discounted stochastic games. The theorem of Shapley.	4		
Lec8	Nonzero-sum discounted stochastic games.	2		
Lec9	Stochastic games with other payoff criteria.	2		
Lec10	Applications of stochastic games in economics and engineering.	2		
Lec11	Mean field games. The existence of solutions. Relation with games with a finite number of players. Examples of applications in economics and engineering.	4		
Lec12	Summary and exam.	2		
	Total load (in hours)	30		

	Form of activities – classes, practice	
Tu1	Markov chains.	2
Tu2	Solving different markovian decision models.	14
Tu3	Solving different stochastic game models.	14
	Total load (in hours)	30

TOOLS FOR TEACHING

1 Lecture - traditional method.

2 Exercise and accounting problems - the traditional method.

3 Consultation.

4 Student's own work - preparing to exercise and test.

OCENA OSIĄGNIĘCIA PRZEDMIOTOWYCH EFEKTÓW KSZTAŁCENIA

Evaluation (F –	Educational effect number	Way of evaluating educational effect
forming (during		achievement
semester), P –		
concluding (at semester		
end)		
F1	PEK_W01,PEK_W02,	oral presentations, quizzes
	PEK_W03,	
	PEK_U01,PEK_U02,	
	PEK_U03,PEK_K01,	
	PEK_K02	
F2	PEK_W01,PEK_W02,	exam
	PEK_U01,PEK_U02,	
	PEK_U03,PEK_K01,	
	PEK_K02	
P=0,5*F1+0,5*F2	•	

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE

- M. Puterman, Markov decision processes, Wiley 1994.
- N. Stockey, R. Lucas, E. Prescott, Recursive methods in economic dynamics, Harvard University Press, 1989.
- A. Haurie, J.B. Krawczyk, G. Zaccour. Games and Dynamic Games. World Scientific, 2012.

SECONDARY LITERATURE

- H, Tijms, A first course in stochastic models, Wiley 2003.
- B. Jovanovic and R. W. Rosenthal. Anonymous sequential games. Journal of Mathematical Economics, 17:77–87, 1988.
- O. Gueant, J-M. Lasry, P-L. Lions, Mean field games and applications. W R. Carmona et al., editor, Paris Princeton Lectures in Mathematical Finance IV, Lecture Notes in Mathematics v.2003. Springer Verlag, 2010.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr hab. inż. Anna Jaskiewicz (*Anna.Jaskiewicz@pwr.edu.pl*) Dr Piotr Więcek (*Piotr.Wiecek@pwr.edu.pl*)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT **ADVANCED TOPICS IN DYNAMIC GAMES MAT001584** AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION MODELLING, SIMULATION, OPTIMIZATION

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***
PEK_W01 (knowledge)	K2MST_W01, K2MST_mso_W01	C1, C2, C3, C6	Lec1, Lec2, Lec3, Lec4, Lec5, Lec6	1, 3
PEK_W02	K2MST_W02, K2MST_mso_W02	C4, C6	Lec7, Lec8, Lec9, Lec10	1, 3
PEK_W03	K2MST_W12, K2MST_W13, K2MST_W17 K2MST_mso_W03	C5, C6	Lec11	1, 3
PEK_U01 (skills)	K2MST _U04, K2MST _U05, K2MST _U07, K2MST_mso_U01	C1, C2, C3	Tu1, Tu2	2, 3, 4
PEK_U02	K2MST _U08, K2MST _U10, K2MST _U13, K2MST_mso_U02	C4	Tu3	2, 3,4
PEK_U03	K2MST_U18, K2MST_U23, K2MST_U24 K2MST_U25 K2MST_U26, K2MST_U27 K2MST_mso_U03	C6	Tu2, Tu3	2, 3,4
PEK_K01 (competences)	K2MST_K01, K2MST_mso_K01	C1, C2, C3, C4, C5, C6	Lec1-Lec11, Tu1-Tu3	1, 2, 3, 4
PEK_K02	K2MST _K04, K2MST _K05, K2MST_mso_K02	C1, C2, C3, C4, C5, C6	Lec1-Lec11, Tu1-Tu3	1, 2, 3, 4
PEK_K03	K2MST_K07	C1, C2, C3, C4, C5, C6	Lec1-Lec11, Tu1-Tu3	1, 2, 3, 4

** - z tabeli powyżej

FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD

Name in Polish: Badania Operacyjne Name in English: Operations Research Main field of study (if applicable): APPLIED MATHEMATICS Specialization (if applicable): MODELLING, SIMULATION, OPTIMIZATION Level and form of studies: 1st/ 2nd* level, full-time / part-time* Kind of subject: obligatory-/ optional /university-wide* Subject code MAT001585 Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	150				
Form of crediting	Crediting with grade				
For group of courses mark (X) final course	X				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes	1		3		
including number of ECTS points for direct teacher-student contact (BK) classes	3				

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Student knows and can apply basic notions of linear algebra and logic.

2. Student knows basics of computer programming.

SUBJECT OBJECTIVES

C1 Learning of basic mathematical models supporting decision-making.

C2 Learning of basic algorithms used in operations research

C3 Acquisition of abilities in constructing mathematical models for real problems.

C4 Acquisition of abilities in implementing models in a mathematical modeling language

C5 Acquisition of abilities in presenting and interpreting solutions of the constructed models.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge the student:

PEK_W01 has in-depth knowledge of linear programming

PEK_W02 knows basic models and algorithms used in operations research.

relating to skills the student:

PEK_U01 can build mathematical models for real problems

PEK_U02 can implement mathematical models using a mathematical modeling language

relating to social competences the student:

PEK_K01 can present problem solutions to non-mathematicians in an understandable way.

	PROGRAMME CONTENT				
	Form of classes - lecture	Number of hours			
Lec1	Introduction to operations research. Formulation of the linear programming problem	2			
Lec2	Building mathematical models (1)	2			
Lec3	Building mathematical models (2)	2			
Lec4	Building mathematical models (3)	2			
Lec5	The simplex algorithm for linear programming.	2			
Lec6	Duality and sensitivity analysis in linear programming	2			
Lec7	Algorithms for integer linear programming.	2			
Lec8	Minimum cost flow problem – applications and mathematical properties	2			
Lec9	Network simplex algorithm	2			
Lec10	The shortest (longest) path problem – applications and algorithms	2			
Lec11	The maximum flow problem – applications and algorithms	2			
Lec12	The assignment, minimum spanning tree and traveling salesperson problems – applications and algorithms	2			
Lec13	Elements of computational complexity, NP-hard combinatorial optimization problems and limitations of modern computational techniques.	2			
Lec14	Multiobjective programming	2			
Lec15	Written test				
	Total hours	30			
	Form of classes - Class	Number of hours			
La1	Introduction to MathProg (AMPL) language	2			
La2	Building and implementing linear programming models for chosen problems	4			
La3	Building and implementing integer linear programming models for chosen problems	8			

	Total hours	30
La8	Written test	2
La7	Building and implementing models for chosen multiobjective problems	4
La6	Building and implementation models for chosen combinatorial optimization problems	4
La5	Building and implementing models for various variants of the traveling salesperson problem	2
La4	Building and implementing models for the minimum cost flow problem and its variants	4

TEACHING TOOLS USED

N1. Lecture – computer presentation and traditional method

N2. Laboratory – building models for chosen problems and implementation of the models using the AMPL language

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	number	Way of evaluating educational effect achievement
	PEK_W01 PEK_W02	Written test (lecture)
	PEK_U01 PEK_U02 PEK_K01	Written test (laboratory)

P=0.5*F1+0.5*F2

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- 1 H. A. Taha. Operations research. An introduction. Pearson Eduction 2007.
- 2 F.S. Hillier, G. J. Lieberman. Introduction to operations research. Mc. Graw Hill 2001.
- 3 B. Kolman, R.E. Beck. Elementary linear programming with applications. Elsevier Science 1995.

SECONDARY LITERATURE:

- 4 A. Shrijver. Theory of linear and integer programming. J. Wiley & Sons 1999.
- 5 M.S. Bazaraa, J. J. Jarvis, H. D. Sherali. Linear programming and network flows. J. Wiley & Sons 2010.
- 6 R. Ahuja, T. Magnanti, J. Orlin. Network flows. Theory algorithms and applications. Prentice Hall 1993.
- 7 R. Fourer, D.M. Gay, B.W. Kernighan. AMPL. A modeling language for mathematical programming, free e-book: *http://ampl.com/resources/the-ampl-book/chapter-downloads/*

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr hab. inż. Adam Kasperski (adam.kasperski@pwr.edu.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT OPERATIONS RESEARCH MAT001585 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION MODELLING, SIMULATION, OPTIMIZATION

1010	wodelling, simulation, of finization					
Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***		
PEK_W01 (knowledge)	K2MST_W04 K2MST_W08, K2MST_mso_W01	C1, C2	Lec5-Lec14	1		
PEK_W02	K2MST_W11, K2MST_W21 K2MST_mso_W02 K2MST_mso_W03	C1, C2	Lec1-Lec4 Lec8-Lec12	1		
PEK_U01 (skills)	K2MST_U10 K2MST_U15, K2MST_mso_U01	C3, C4	Lec1-Lec4 La1-La8	1,2		
PEK_U02	K2MST_U24 K2MST_U25 K2MST_mso_U02 K2MST_mso_U03	C3, C4	La1-La8	2		
PEK_K01 (competences)	K2MST_K05 K2MST_mso_K01 K2MST_mso_K02	C5	La1-La8	2		

** - enter symbols for main-field-of-study/specialization educational effects

*** - from table above

FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD

Name in Polish: **Optymalne sterowanie Name in English: Optimal control Main field of study (if applicable): APPLIED MATHEMATICS Specialization (if applicable): MODELLING, SIMULATION, OPTIMIZATION** Level and form of studies: 1st/ 2nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code MAT001586 Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	150				
Form of crediting	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*
For group of courses mark (X) final course	Х				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes	1		3		
including number of ECTS points for direct teacher- student contact (BK) classes	3				

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

The student has basic knowledge of calculus, algebra and the probability theory.

SUBJECT OBJECTIVES

- C1 Understanding the concepts and methods of control.
- C2 Understanding the wording optimal control tasks.
- C3 Knowledge of the backgrounds for the analysis of dynamic systems.
- C4 Understanding models and analysis of stochastic control systems.
- C5 Application of acquired knowledge to create and analyze mathematical models to solve theoretical and practical problems in various fields of science and technology.

SUBJECT EDUCATIONAL EFFECTS

The scope of the student's knowledge:

- 1. Student knows the formulation of operational research problems.
- 2. He recognizes situations that require the application of operations research methods to solve practical problems.
- 3. He knows the limitations of analytical methods and the possibility of numerical analysis of dynamic models.
- 4. He knows the stochastic methods in operations research.

The scope of the student's skills:

- C1 Student is able to formulate modeling task for analysis in a convenient form.
- C2 He can use the appropriate algorithm to solve tasks in the operational research.
- C3 Student is able to recognize issues that competent optimization methods are based on the use of stochastic camera.

The scope of the student's social skills:

PEK_K01 The student is able to find and use the recommended literature course and independently acquire knowledge

PEK_K02 The student is able to use the basic tools for the analysis of mathematical models

PEK_K03 The student understands the need for systematic and independent work on mastery of course material.

	Course content	
	Form of activities - lectures	Hours load
Wy1	Deterministic control system with discrete time. Algorithm of dynamic programming.	2
Wy2	Processes with discrete time. Markov chains. Conditional expectation. Martingales and Markov times.	2
Wy3	Markov decision processes. Bellman equation.	2
Wy4	Introduction to models with infinite horizon. Markov decision models with discounted payments, minimizing the average cost per unit and other criteria.	4
Wy5	Applications Markov decision processes in the reliability theory, the renewal theory, the queue theory.	2
Wy6	Optimal control of the continuous time. The Hamilton-Jacobi-Bellman equation.	2
Wy7	Linear systems with quadratic cost function and a complete state observation. The inventory control systems.	2
Wy8	Systems with uncertain state observation. Iterative determination of the value functions.	2
Wy9	The approximated solution of the Bellman equation.	2
Wy10	Optimal stopping of finite sequences.	2
Wy11	Optimal stopping of finite Markov sequences. Examples.	2
Wy12	Infinite horizon optimal stopping problem.	2
Wy13	The disorder detection problem.	2
Wy14	Suboptimal solutions of operation models. Adaptive systems.	2
	Total load (in hours)	30

	Form of activities: classes, practice				
Ćw1	Examples of deterministic control systems with discrete time.	2			
Ćw2	Properties of Markov chains and their analysis. Checking stationarity and ergodicity of stochastic sequences. Classification of states. Conditional expectation. Martingales and Markov moments.	2			
Ćw3	Markov decision process for selected practical problems. Analysis of the Bellman equation for the constructed MDPs.	2			

	Total hours	30
Ćw13	Suboptimal solutions. Adaptive systems.	2
Ćw12	Analysis of selected disorder problems.	2
Ćw11	Optimal stopping of finite Markov sequences. Examples.	4
Ćw10	Optimal stopping of finite sequences.	2
Ćw9	The approximated solution of the Bellman equation.	2
Ćw8	Systems with uncertain state observation. Iterative determination of the value functions.	2
Ćw7	Linear systems with quadratic cost function and a complete state observation. The inventory control systems.	2
Ćw6	Optimal control of the continuous time. The Hamilton-Jacobi-Bellman equation.	
Ćw5	Applications Markov decision processes in the reliability theory, the renewal theory, the queue theory-examples.	2
Ćw4	Investigation of infinite horizon models. Markov decision models with discounted payoffs, the average cost per unit, and other criteria.	4

TOOLS FOR TEACHING

1 Lecture - traditional method.

2 Exercise and accounting problems - the traditional method.

3 Consultation.

4 Student's own work - preparing to exercise and test.

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_W01, PEK_W02, PEK_W03 PEK_W04, PEK_W05 PEK_K01, PEK_K02	oral presentations, quizzes, tests
F2	PEK_W01, PEK_W02, PEK_W03 PEK_W04, PEK_W05 PEK_U01, PEK_U02, PEK_U03, PEK_U04 PEK_K01, PEK_K02, PEK_K03	exam

P=0,4*F1+0,6*F2

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- 1 Dimitri P. Bertsekas, Dynamic Programming and Optimal Control, vol. 1, Athena Scientific, Belmont, MA: 2005.
- 2 Dimitri P. Bertsekas, Dynamic Programming and Optimal Control, vol. 2, Athena Scientific, Belmont, MA: 2007.
- 3 Harold Kushner: Wprowadzenie do teorii sterowania stochastycznego. WNT, 1983.
- 4 A.N. Shiryaev. Optimal Stopping Rules. Springer-Verlag, New York, Heidelberg, Berlin, 1978.

SECONDARY LITERATURE:

- 1 J. P. Aubin, Optima and Equilibria. An Introduction to Nonlinear Analysis, Springer, Berlin 1993.
- 2 Wayne I. Winston: introduction to mathematical programming: applications and algorithms, 1991.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr hab. inż. Anna Jaśkiewicz Prof. Dr Hab. Eng. Krzysztof Szajowski (krzysztof.szajowski@pwr.edu.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT Optimal Control MAT001586 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION MODELLING, SIMULATION. OPTIMIZATION

AND SPECIALIZ ATION Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***
PEK_W01 PEK_W02 PEK_W03 PEK_W04	K2MST_W01, K2MST_W02, K2MST_W03, K2MST_W06, K2MST_W07, K2MST_W08, K2MST_W10 K2MST_mso_W01 K2MST_mso_W02 K2MST_mso_W03	C1—C6	Wy1—Wy9	1,3,4
PEK_U01 PEK_U02 PEK_U03	K2MST_U01, K2MST_U02, K2MST_U03, K2MST_U15, K2MST_U16, K2MST_U16, K2MST_U17, K2MST_U18, K2MST_U18, K2MST_U24 K2MST_U24 K2MST_U25 K2MST_mso_U01 K2MST_mso_U02 K2MST_mso_U03	C1—C5	Ćw1-Ćw9	2,3,4
PEK_K01 PEK_K02 PEK_K03	K2MST_K0, K2MST_K02, K2MST_K03, K2MST_K04, K2MST_K05, K2MST_K06 K2MST_K06 K2MST_K07 K2MST_mso_K01 K2MST_mso_K02	C1, C2, C3, C4, C5, C6	Wy1-Wy14, Ćw1-Ćw9	1, 2, 3, 4

** - from table above

FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD

Name in Polish WSTĘP DO ANALIZY DUŻYCH WOLUMENÓW DANYCH Name in English INTRODUCTION TO BIG DATA ANALYTICS Main field of study (if applicable): APPLIED MATHEMATICS COMPUTATIONAL MATHEMATICS

Level and form of studies: 1st/ 2nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code MAT001587 Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	90				
Form of crediting	crediting with grade				
For group of courses mark (X) final course	X				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes			4		
including number of ECTS points for direct teacher-student contact (BK) classes	3				

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES Student has basic programming skills.

SUBJECT OBJECTIVES

Searching, extracting, storing and computer-aided analysis of big data. Understanding its impact and relevance in today's society.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W12 knows how to use programming languages and their scientific modules for big data analysis

relating to skills:

PEK_U12 can perform an analysis of big data by making use of a computer

relating to social competences:

PEK_K06 can, without assistance, search for necessary information in the literature, also in foreign languages

PEK_K02 can accurately formulate questions for deeper understanding of a given topic

	PROGRAMME CONTENT	
	Form of classes - lecture Num	ber of hours
Lec 1	Introduction to Big Data	2
Lec 2	Big data platforms	2
Lec 3	Hadoop ecosystem	4
Lec 4	Querying big data with Hive	4
Lec 5	Big data and machine learning	4
Lec 6	In-memory big data platform - Spark	4
Lec 7	Linked Big Data	4
Lec 8	Big data visualization	2
Lec 9	Project presentations	4
	Total hours	30
	Form of classes - project	Number of hours
	ctical Preparation and presentations of projects illustrating methods given he lectures.	30
Total hours		30

N1. Lecture – traditional method and presentations N2. Student partial project presentation and final presentation N3. Consultations

N4. Student's self work – work related to the project development

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement			
F1	PEK_W12 PEK_U12	mid-term exams			
F2	PEK_U12 PEK_K06 PEK_K02	Oral presentations			
C $P = 0.5*F1 + 0.5*F2$					
PRIMARY AND SECONDARY LITERATURE					

PRIMARY LITERATURE:

- 1 Flach, Peter, Machine Learning, Cambridge University Press, 2012
- 2 Holmes, Alex, Hadoop in practice, Manning Publications, 2013
- 3 Provost, Foster, Facett, Tom, Data Science for Business. What you need to know about data mining and data-analytic thinking, O'Reilly, 2013
- 4 Loshin, David, Big Data Analytics. From Strategic Planning to Enterprise Integration with Tools, Techniques, NoSQL, and Graph, Morgan Kaufmann, 2013

SECONDARY LITERATURE:

- 5 http://hadoop.apache.org/, http://spark.apache.org/, http://storm.apache.org/, http://kafka.apache.org/
- 6 deRoos, Dirk, Hadoop for Dummies, For Dummies, 2014

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT INTRODUCTION TO BIG DATA ANALYTICS MAT001587 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION COMPUTATIONAL MATHEMATICS

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***
PEK_W12	K2MIC_W12	C1	Lec1-Lec9	1,3
PEK_U12 (skills)	K2MIC_U21 K2MIC_U20 K2MIC_U24 K2MIC_U25	C1	Pr1	2,3,4
PEK_K02 PEK_K06 (competences)	K2MIC_K02 K2MIC_K06	C1	Lec1-Le9, Pr1	1,2,3,4

** - enter symbols for main-field-of-study/specialization educational effects

 $\ast\ast\ast$ - from table above

FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD

Name in Polish: Teoria optymalizacji Name in English: Optimization Theory Main field of study (if applicable): Applied Mathematics Specialization (if applicable): Level and form of studies: 1st/ 2nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code MAT001588 Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	30			
Number of hours of total student workload (CNPS)	180				
Form of crediting	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*
For group of courses mark (X) final course	Х				
Number of ECTS points	6				
including number of ECTS points for practical (P) classes	2	2			
including number of ECTS points for direct teacher- student contact (BK) classes	1,5	1,5			

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 The student has basic knowledge of calculus and algebra.

SUBJECT OBJECTIVES

- 1 Student is understanding the concepts and methods of mathematical programming.
- 2 He knows and understands the formulation of the linear and quadratic programming.
- 3 He has knowledge of the theoretical background of mathematical programming.
- 4 He knows the computer methods of mathematical programming.

5 He is able to apply the acquired knowledge to create and analyze mathematical models to solve theoretical and practical study in various fields of science and technology.

SUBJECT EDUCATIONAL EFFECTS

The scope of the student's knowledge:

- 1 Student knows the formulation of mathematical programming problems.
- 2 He has a basic knowledge about the usage and importance of mathematical programming methods.
- 3 He knows the limitations of analytical methods and the possibility of numerical analysis of optimization problems.

The scope of the student's skills:

- 1 Student is able to formulate mathematical programming problem in a convenient form for analysis.
- 2 He can use the appropriate algorithm to solve tasks in the mathematical programming.
- 3 He can apply optimization methods, and analytical methods or numerical analysis, in order to solve practical problems.

The scope of the student's social skills:

PEK_K01 The student is able to find and use the recommended literature course and independently acquire knowledge

PEK_K02 The student is able to use the basic tools for the analysis of mathematical models

PEK_K03 The student understands the need for systematic and independent work on mastery of course material.

	Course content				
	Form of activities - lectures	Hours load			
Wy1	Introduction to mathematical programming. Optimization without constraints. Global and local extremes. Optimality conditions.	2			
Wy2	Gradient methods. Steepest descent method. Newton's method and its variants. Analysis of convergence.	6			
Wy3	Linear programming. Geometric interpretation. Simplex algorithm.	4			
Wy4	Dual problem. Duality theory for linear programming. Sensitivity analysis.	2			
Wy5	Integer programming. Linear programming relaxation. Branch and bound method.	2			
Wy6	The theory of Lagrange multipliers. The necessary and sufficient conditions for extreme for constraints in the equality form. Lagrange multipliers in sensitivity analysis.	4			
Wy7	Constraints in the form of inequality. Optimality conditions of Karush-Kuhn-Tucker.	2			
Wy8	Quadratic programming. Wolfe's algorithm.	2			
Wy9	Elements of convex analysis. Projection theorem. Supporting hyperplane theorem. Separating hyperplane theorem.	2			
Wy10	Optimization on a convex set. Frank-Wolfe's method. Gradient projection method.	2			
Wy11	Convex programming. Duality for convex programming. Subgradient. Subgradient methods.	2			
	Total load (in hours)	30			

	Form of activities: classes, practice		
C6	Necessary and sufficient optimality conditions.	2	
C7	Properties of convex functions and convex sets.	2	
C8	Illustration of gradient methods.	4	
C9	Simplex method. Practical applications of linear programming. Sensitivity	8	

	analysis.	
C10	Applications of Lagrange multiplier theory in practical optimization	6
	problems.	
C11	Quadratic programming problems.	4
C12	Applications of convex analysis in solving optimization problems.	2
C13	Test.	2
	Total hours	30

TOOLS FOR TEACHING

1 Lecture - traditional method.

2 Exercise and accounting problems - the traditional method.

3 Consultation.

4 Student's own work - preparing to exercise and test.

OCENA OSIĄGNIĘCIA EFEKTÓW KSZTAŁCENIA

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_W01, PEK_W02, PEK_W03,	oral presentations,
	PEK_K01, PEK_K02	quizzes, tests
F2	PEK_W01, PEK_W02, PEK_W03,	exam
	PEK_U01, PEK_U02, PEK_U03,	
	PEK_K01, PEK_K02, PEK_K03	
P=0,4*F1+0,6*F2		

P=0,4*F1+0,6*F2

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- 1 S.P. Bradley, A.C. Hax, T.L. Magnanti, Applied Mathematical Programming, Addison-Wesley Publishing Company, 1977
- 2 D.P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, MA: 1999.
- 3 I. Nykowski, Programowanie liniowe, PWE Warszawa 1980.
- 4 W. Grabowski, Programowanie matematyczne, PWE Warszawa 1980.
- 5 R.S. Garfinkel, G.L. Nemhauser, Programowanie całkowitoliczbowe, PWN, 1978.
- 6 B. Martos, Programowanie nieliniowe, Warszawa: PWN, 1983.

SECONDARY LITERATURE:

- 7 D.P. Bertsekas, A. Nedic, A.E. Ozdaglar, Convex Analysis and Optimization, Athena Scientific, Belmont, MA: 2003.
- 8 A. Ruszczyński, Nonlinear optimization, Princeton University Press, Princeton, NJ, 2006.
- 9 R. Dautray, J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Springer, Berlin 1988-1993.

10 S. Boyd, L. Vanderberghe, Convex Optimization, Cambridge University Press, 2004 SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS) Dr hab. inż. Anna Jaśkiewicz (<u>anna.jaskiewicz@pwr.edu.pl</u>) Dr inż. Piotr Więcek (<u>Piotr.wiecek@pwr.edu.pl</u>)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT OPTIMIZATION THEORY MAT001588 AND EDUCATIONAL EFFECTS FOR MAIN EVEL D. OF STUDY APPLIED MATUEMATICS

	FIELD OF STUDY APPLIED MATHEMATICS						
Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***			
PEK_W01 (knowledge)	K2MST_W01 K2MST_W06 K2MST_W10 K2MST_mso_W01	C1—C2	Wy1—Wy11	1,3,4			
PEK_W02	K2MST _W02 K2MST _W07 K2MST_W15 K2MST_mso_W02	C5	Wy1—Wy6	1,3,4			
PEK_W03	K2MST _W03 K2MST _W08 K2MST _mso_W03	C3—C4	Wy1—Wy11	1,3,4			
PEK_U01 (skills)	K2MST_U01 K2MST_U11 K2MST_mso_U01	C1—C2, C5	Ćw1-Ćw9	2,3,4			
PEK_U02	K2MST_U19 K2MST_U24 K2MST_mso_U02	C4—C5	Ćw1-Ćw9	2,3,4			
PEK_U03	K2MST_U25 K2MST_U29 K2MST_mso_U03	C1—C2, C4—C5	Ćw1-Ćw9	2,3,4			
PEK_K01 (competences, social skills)	K2MST_K01 K2MST_K04 K2MST_mso_K01	C1, C2, C3, C4, C5	Wy1-Wy11, Ćw1-Ćw9	1, 2, 3, 4			
PEK_K02	K2MST_K02 K2MST_K05 K2MST_mso_K02	C1—C5	Wy1-Wy11, Ćw1-Ćw9	1, 2, 3, 4			
PEK_K03	K2MST_K03 K2MST_K06 K2MST_K07	C1—C5	Wy1-Wy11, Ćw1-Ćw9	1, 2, 3, 4			

 $\ast\ast$ - from table above

FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD Name in Polish MODELOWANIE AGENTOWE UKŁADÓW ZŁOŻONYCH Name in English AGENT-BASED MODELLING OF COMPLEX SYSTEMS

Main field of study (if applicable): APPLIED MATHEMATICS

Level and form of studies: 1st/ 2nd* level, full-time / part-time*

Kind of subject: obligatory / optional / university-wide*

Subject code MAT001589 Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	150				
Form of crediting	Examination				
For group of courses mark (X) final course	Х				
Number of ECTS points	5				
including number of ECTS points for practical (P) classes			2		
including number of ECTS points for direct teacher-student contact (BK) classes			1,5		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1 Student has the standard knowledge of computational methods in mathematics.

2 Student has basic programming skills.

SUBJECT OBJECTIVES

Analysis of complex systems by making use of agent-based modelling methods.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

K2MIC_W08 knows advanced computational methods and understand their limitations

K2MIC_W09 knows basic stochastic modelling methods in financial and actuarial mathematics or in science

relating to skills:

K2MIC_U23 can construct and perform computer simulations and simple experiments, can interpret obtained results and draw conclusions

relating to social competences:

K2MIC_K06 can, without assistance, search for necessary information in the literature, also in foreign languages

K2MIC_K02 can accurately formulate questions for deeper understanding of a given topic

	PROGRAMME CONTENT		
	Form of classes - lecture	Num	per of hours
Lec 1	Introduction to agent-based modelling	2	
Lec 2	Introduction to agent-based modelling	2	
Lec 3	Creating simple agent-based models	2	
Lec 4	Creating simple agent-based models	2	
Lec 5	Exploring and extending agent-based models	2	
Lec 6	Exploring and extending agent-based models	7	2
Lec 7	Exploring and extending agent-based models		2
Lec 8	Exploring and extending agent-based models		2
Lec 9	Components of agent-based models	/ 	2
.ec 10	Components of agent-based models	4	2
.ec 11	Analyzing agent-based simulations	4	2
.ec 12	Analyzing agent-based simulations	4	2
.ec 13	Verification and validation of agent-based models	<i>(</i>	2
.ec 14	Computational roots of agent-based modelling	, ,	2
Lec 15	Models of natural and social complex systems - examples	r 4	2
	Total hours	3	0
	Form of classes - laboratory		Number of hours
.a 1 Prac	ctical introduction to Python modules for agent-based modelling		2
	ctical introduction to Netlogo		2
a 3 Sim	ple agent-based models (life, ant, heroes and cowards models)		4
	lysis of existing models (fire, segregation and El Farol models)		8
	pidemics model – implementation and analysis		4
	epidemics model – implementation and analysis		2
	er and q-voter models – implementation and analysis		8
Tota	l hours		30
	TEACHING TOOLS USED		
N2. Probl N3. Const	re – traditional method and presentations em and computing laboratory – using computer based methods ultations nt's self work – preparation for the laboratory		

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	K2MIC_W08	exam

K2MIC_W09	
K2MIC_U23 K2MIC_K02 K2MIC_K06	Oral presentations
 K2WIIC_K00	

C P==0.5*F1+0.5*F2

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

1 Uri Wilensky, William Rand, "An Introduction to Agent-Based Modeling"

2 Steven F. Railsback, Volker Grimm, "Agent-Based and Individual-Based Modeling: A Practical Introduction"

SECONDARY LITERATURE:

1 Robert Siegfried, "Modeling and Simulation of Complex Systems: A Framework for Efficient Agent-Based Modeling and Simulation"

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT AGENT-BASED MODELLING OF COMPLEX SYSTEMS MAT001589 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND COMPUTATIONAL MATHEMATICS

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***
PEK_W08 PEK_W09 (knowledge)	K2MST_W08 K2MST_W09 K2MST_W11 K2MST_cm_W01 K2MST_cm_W02 K2MST_cm_W03	C1	Lec1-Lec15	1,3
PEK_U18 (skills)	K2MST_U17 K2MST_U18 K2MST_U24 K2MST_U25 K2MST_cm_U01 K2MST_cm_U02 K2MST_cm_U03	C1	La1-La7	2,3,4
PEK_K02 PEK_K06 (competences)	K2MST_K02 K2MST_K06 K2MST_cm_K01 K2MST_cm_K02	C1	Lec1-Lec15, La1-La7	1,2,3,4

** - enter symbols for main-field-of-study/specialization educational effects *** - from table above

FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD

Name in Polish: Praca dyplomowa

Name in English: Diploma thesis

Main field of study (if applicable): APPLIED MATHEMATICS

Specialization (if applicable): FINANCIAL AND ACTUARIAL MATHEMATICS; MATHEMATICS FOR INDUSTRY AND COMMERCE; COMPUTATIONAL MATHEMATICS; MODELLING, SIMULATION, OPTIMIZATION

Level and form of studies: 1st/ 2nd* level, full-time / part-time*

Kind of subject: obligatory / optional / university-wide*

Subject code MAT001590

Group of courses ¥ES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)					30
Number of hours of total student workload (CNPS)					690
Form of crediting	Examination / crediting with grade*				
For group of courses mark (X) final course					
Number of ECTS points					23
including number of ECTS points for practical (P) classes					23
including number of ECTS points for direct teacher-student contact (BK) classes					1

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Student has the advanced knowledge and skills in the field of mathematical analysis,

functional analysis and the theory of differential equations

2. He has deeper knowledge and skills in the field of probability theory, mathematical statistics and the theory of stochastic processes.

SUBJECT OBJECTIVES

C1 Getting to know new developments and methods used in various applications of mathematics.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 knows the basic models and methods used in various applications of mathematics PEK_W02 knows the basics of stochastic modeling

relating to skills:

PEK_U01 able to construct basic mathematical models used in various fields

relating to social competences:

PEK_K01 can benefit from the scientific literature (including in foreign languages), including reaching the source materials and make them review

TEACHING TOOLS USED

N1. Student's own work - searching for information, writing thesis analysis of real data N2. Consultations

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Educational effect number	Way of evaluating educational effect achievement
	evaluation of the student's self work, the assessment of the thesis

P=F1

PRIMARY AND SECONDARY LITERATURE

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Prof. dr hab. Aleksander Weron (Aleksander.Weron@pwr.edu.pl)

Prof. dr hab. Wojciech Okrasiński (Wojciech.Okrasinski@pwr.edu.pl)

Dr hab. Jan Goncerzewicz (Jan.Goncerzewicz@pwr.edu.pl)

Prof. dr hab. Krzysztof Szajowski (Krzysztof.Szajowski@pwr.edu.pl)

Dr hab. Agnieszka Jurlewicz, prof. nadzw. PWr. (<u>Agnieszka.Jurlewicz@pwr.</u>edu.<u>pl</u>)

Dr hab. Marcin Magdziarz, prof. nadzw. PWr. (Marcin.Magdziarz@pwr.edu.pl)

Dr hab. Agnieszka Wyłomańska, prof. nadzw. PWr. (<u>Agnieszka.Wylomanska@pwr.</u>edu.<u>pl</u>) Dr Monika Muszkieta (<u>Monika.Muszkieta@pwr.</u>edu.<u>pl</u>)

Dr hab. Krzysztof Burnecki, prof. nadzw. PWr. (<u>Krzysztof.Burnecki@pwr.</u>edu.<u>pl</u>) Dr Joanna Janczura (<u>Joanna.Janczura@pwr.</u>edu.<u>pl</u>)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT DIPLOMA THESIS MAT001590 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION FINANCIAL AND ACTUARIAL MATHEMATICS; MATHEMATICS FOR INDUSTRY AND COMMERCE; COMPUTATIONAL MATHEMATICS; MODELLING, SIMULATION, OPTIMIZATION

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)**	Subject objectives***	Programme content***	Teaching tool number***
PEK_W01 (knowledge)	K2MST_W03 K2MST_W04 K2MST_W05 K2MST_W09	C1	Not applicable	1, 2
PEK_W02	K2MST_W12 K2MST_W14 K2MST_W20 K2MST_W21	C1	Not applicable	1, 2
PEK_U01 (skills)	K2MST_U02 K2MST_U03 K2MST_U04 K2MST_U05 K2MST_U07 K2MST_U10 K2MST_U12 K2MST_U12 K2MST_U13 K2MST_U14 K2MST_U15 K2MST_U21 K2MST_U21 K2MST_U24 K2MST_U25 K2MST_U26 K2MST_U28 K2MST_U30	C1	Not applicable	1, 2
PEK_K01 (competences)	K2MST_K06	C1	Not applicable	1, 2

** - enter symbols for main-field-of-study/specialization educational effects

*** - from table above

Zał. nr 4 do ZW

FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD Name in Polish: SEMINARIUM DYPLOMOWE Name in English: Diploma Seminar Main field of study (if applicable): APPLIED MATHEMATICS Specialization (if applicable): FINANCIAL AND ACTUARIAL MATHEMATICS; MATHEMATICS FOR INDUSTRY AND COMMERCE; **COMPUTATIONAL MATHEMATICS;** MODELLING, SIMULATION, OPTIMIZATION Level and form of studies: 1st/ 2nd* level, full-time / part-time* obligatory / optional / university-wide* Kind of subject: Subject code MAT001591 Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)					30
Number of hours of total student workload (CNPS)					60
Form of crediting					Examination / crediting with grade*
For group of courses mark (X) final course					
Number of ECTS points					2
including number of ECTS points for practical (P) classes					2
including number of ECTS points for direct teacher-student contact (BK) classes					1

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1 Student has an advanced knowledge and skills in the field of calculus, functional analysis and the theory of differentia equations.
- 2 She has got a thorough knowledge and skills in the field of probability, mathematical statistics and the theory of stochastic processes.

SUBJECT OBJECTIVES

C1 Learning about achievements and new methods used in various applications of mathematics.

*delete as inapplicable

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge:

PEK_W01 knows fundamental models and methods used in various applications of mathematics

PEK_W02 knows the fundamentals of stochastic modeling

Relating to skills:

PEK_U01 can build basic mathematical models, used in various disciplines

Relating to social competences:

PEK_K01 can use the scientific literature (also in foreign languages), including finding source information and browse through articles

	Form of classes - seminar	
Se1	Master thesis results presentations.	30
	Total hours	30

TEACHING TOOLS USED

[3] Problem Seminar, presentation, problem lecture, informative lecture[4] Student's self-work – preparation for the seminar

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement
F1	PEK_W01 PEK_W02 PEK_U01 PEK_K01	Evaluation of the presentation, informative or problem lecture prepared by the student

P=F1

PRIMARY AND SECONDARY LITERATURE

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Prof. dr hab. Aleksander Weron (Aleksander.Weron@pwr.edu.pl) **Prof. dr hab. Wojciech Okrasiński** (Wojciech.Okrasinski@pwr.edu.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT DIPLOMA SEMINAR 3 MAT001591 AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY APPLIED MATHEMATICS AND SPECIALIZATION: FINANCIAL AND ACTUARIAL MATHEMATICS; MATHEMATICS FOR INDUSTRY AND COMMERCE; COMPUTATIONAL MATHEMATICS; MODELLING, SIMULATION, OPTIMIZATION

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)	Subject objectives**	Programme content**	Teaching tool number**
PEK_W01 (knowledge)	K2MST_W03	C1	Se1	1, 2
PEK_W02	K2MST_W09	C1	Se1	1, 2
PEK_U01 (skills)	K2MST_U15 K2MST_U24 K2MST_U25	C1	Se1	1, 2
PEK_K01 (competences)	K2MST_K06	C1	Se1	1, 2

** - from the table above