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I. Introduction

Lévy processes form a wide and rich class of Markov processes. They are natural analogues of
random walks in continuous time. The most prominent examples of the Lévy processes are the
Poisson process, the Brownian motion, the Cauchy process and the isotropic stable Lévy processes.
Lévy processes provides valuable guidance for general Markov processes. Very often a property is
proved first for the Lévy processes and then it is being extended to Feller or Markov processes.
Despite the relatively simple structure of Lévy processes (their transition probability is translation
invariant), they have many specific features of interest and many prominent scientists study various
aspects of these processes. In addition, more and more common, these processes are used to model
many physical, chemical and economical phenomena (|2, 21, 38, 11, 47, 33, 36]).

The main aim of the papers included in the scientific achievement was to obtain sharp estimates
of the transition densities of the processes killed after leaving an open set, that is estimates of the
heat kernel of the generator with Dirichlet conditions. The transition probabilities form continuous
operator semigroup and its generator acts on various function spaces. Explicit formulae for the
transition densities are very rare therefore estimates and asymptotic properties are very essential.
Even in the isotropic a-stable case the explicit formulae are not available (except for a € {1,2})
and the corresponding optimal estimates were first proved by Pélya [51] on the real-line and later
generalized to the multidimensional setting by Blumenthal and Getoor [9]. In recent years there
has been a remarkable progress in studying properties of transition semigroups (heat kernels) of



Markov, and especially of Lévy processes. Among many researchers who contributed to the subject
we can mention Barlow, Bass, Bogdan, Burdzy, Chen, Song, Grigor’yan, Jakob, Kim, Knopova,
Kulik, Kumagai, Saloff-Coste, Schilling, Sztonyk, Vondracek ([3, 29, 19, 13, 14, 41, 35, 43, 30, 31,
32, 5, 4, 10, 42, 37, 59, 58]).

The discussed scientific achievement concerns the isotropic unimodal Lévy processes. Their
properties have been studied using probabilistic potential theory. In the paper [H1] we examined
the isotropic a-stable processes on quite general sets, so-called s-fat sets, obtaining sharp esti-
mates for transition density of killed process. It should be added that estimates in such generality
cannot be explicit. Explicit estimates were obtained for sets with C%! boundary, both bounded
and unbounded. Methods developed in the article [H1] where later used by others researchers to
obtain estimates for the heat kernels of some subordinated Brownian motions, for instance for the
relativistic stable processes and the sum of two independent isotropic stable processes with differ-
ent indices [17, 16]. These studies became a motivation for us to unify and extend the obtained
estimates to a wider class of processes. The appropriate class for such unification turned out to be
the isotropic unimodal processes, for which we obtained estimates of the density of the potential
measure and regularity results of harmonic functions with respect to examined processes (|[H2|),
estimates of the transition density of the free process ([H3]), and the estimates of the expected exit
time from sets and survival probabilities ([H5]). The culmination of this study were the estimates
of the Dirichlet heat kernels for a large class of bounded and unbounded sets in the paper [H4].

The following discussion of the papers series [H1| - [H5] is divided into sections according to
ideas, and not according to the chronology of results.

e In Section I we set definitions and notions used in the rest of the thesis and we discuss the
basic results concerning the Lévy processes.

e In Section II we present estimates of the heat kernel of the free processes (without killing).

In Section III we describe results concerning harmonic functions and Green function on the
whole space.

Section IV focuses on the behaviour of the expected exit time and survival probabilities.

Section V gives estimates of the Dirichlet heat kernels, which combine and use the results
discussed in the preceding sections.
Lévy processes

Let {X;}:>0 be a Lévy process in R% d € N. This means that is a stochastic process with inde-
pendent and stationary increments, cadlag paths and starting from the origin. Lévy processes are
characterized by the Lévy-Khinchine formula

Eei(eX) _ / S P (dz) — e £ cRE
RE
where 1 is the characteristic exponent (the symbol)

P(E) = (£, A&) —i(€,y) — / (€67 — 1 —4(€, 2)11<1) N(d2), € €RY, (1)

R
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A = [Aji]jk=1,..4 is a symmetric and non-negative definite matrix, v € R? and N is a Lévy
measure i.e. N({0}) = 0 and [, (1A |2|°) N(dz) < oo. The infinitesimal generator £ of the
transition semigroup of the process {X;}:>0, to wit,

Pif(s) =Ef(X, +2), zeR,
has the following form for f € CZ(R%),

L1@) = 3 Apdiuf@) + (1 V@) + [ (Hla+2) = @) = Ll V@) N @)
.k

For a Lévy process {X:}:>0 we define two functions, which turn out to be very useful for its
description. The first one is a non-decreasing majorant of the real part of the symbol

Y*(r) = |S2|1<p Ry(€), r>0.

The second function describes the combined intensity of the large and small jumps of the process
and of the continuous part:

h(r) = w

2 /Rd min{1, |z/r[’}N(dz), r>0.

The function h appeared for instance in the article of Pruitt [52], and earlier for the processes on
the real line in the paper by Dupuis [24]. It turns out that the functions ¢* and r — h(1/r) are
comparable and the comparability constant depends only on the dimension ([H2, Lemma 4])

1

s/ <Y <2/, >0 (3)

Most of the results of the scientific achievement concerns the isotropic unimodal Lévy processes,
which we define now. A (Borel) measure p(dz) on R? is called isotropic if it is rotation invariant.
If the Lévy measure is isotropic, A = 0?3 and v = 0, then the distribution P;(dz) of X; is
rotation invariant as well and the process is called isotropic. A measure is isotropic unimodal if on
R?\ {0} it is absolutely continuous with respect to the Lebesgue measure and has a finite radial
non-increasing density function. Such measures may have an atom at the origin, they are of the
form ado(dx) + f(x)dz, where a > 0, &g is the Dirac measure,

f(a) = / 1, (@) = u((zh00))  (ae),

and 4 is a measure on (0,00) such that x((g,00)) < oo for all € > 0. The Lévy process {X;}io,
is called isotropic unimodal if all its one-dimensional distributions P;(dz) are such. The processes
were characterized by Watanabe in [62] as those isotropic Lévy processes that have the isotropic
unimodal Lévy measure. A density of P;(dz) is denoted by p;(z). The characteristic exponent of
the isotropic unimodal Lévy process is the following form

9(E) = ol + [ (1 cosle, ()i,
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for some radial function v, with the profile v(r) := v((r,0,...)), » > 0 being a non-increasing
function (N(dz) = v(z)dz). The distribution of the isotropic unimodal process has an atom at the
origin if and only if {X;};>¢ is a compound Poisson process. Hence if the symbol 4 is unbounded
(0 > 0 or N(R?) = 0o) then, for every t > 0, P,(dz) are absolutely continuous on R%.

The most important class of the isotropic unimodal Lévy processes are the subordinated Brown-
ian motions. Let {B;}:>¢ be a Brownian motion on R* and {7} };>o be an independent subordinator,
that is a Lévy process with non-decreasing paths. Then a process {Br,};>o we called subordinated
Brownian motion. Since T; > 0, the Laplace transform is useful to characterized these processes.
Namely, we have

Ee 2t = e~ A\ >0,

where ¢ is so-called the Laplace exponent, given by
o) =0+ [ (- e ulds) (4)
0

Here b > 0 and u is a measure such that [° Tsu(ds) < oco. Put differently, ¢ is a Bernstein
function such that (0) = 0. We define two subclasses of Bernstein functions which are very
important in the potential theory of Lévy processes. We say that a Bernstein function ¢ is special
if the function A — ﬁ is also a Bernstein function. A subordinator with a special Bernstein
function ¢ as the Laplace exponent is called a special subordinator. If ' is a complete monotone
function, then ¢ is called a complete Bernstein function and {7} };>¢ is a complete subordinator. We
should emphasized that complete Bernstein functions are special. The most important property
of the special subordinators is the fact that the potential measure U(A) = [“P(T; € A)dt is
absolutely continuous on (0, 00) and its density is non-increasing. The best reference to Bernstein
functions and the subordination is [54].

The Lévy kernel of the Brownian motion, which in our setting has the transition density g:(z) =
(4mt)=4/2e71sP/(40) | after being subordinated by the subordinator {T}};o with the Laplace exponent
(4) is given by '

v(z) = / (47ru)_d/2e_%,u(du).
0
Hence, v is a radial and radially decreasing function. The Lévy-Khinchine exponent of the process

{Br }i>0 is equal to ¢(|€[?). Hence {Br,}s>0 is an isotropic unimodal Lévy process. A prominent
example of the subordinated Brownian motions is the isotropic a-stable process, where

@€ (0,2, @A) =X"? and ()= [¢|*

A very important property of the isotropic unimodal Lévy processes is the fact that the charac-
teristic exponent is almost increasing. Namely, we have (see [H3, Propositon 2] and [H2, Proposition

1])
P(€) > 7% (), € eR?

Combining this with (3) we obtain
(&) = 9 (I€]) ~ h(1/[]), €#0, (5)

where f(z) = g(z), € A means that there is a (comparability) constant C' > 0, such that
C7f(z) < g(z) < Cf(z), =€ A

)




Dirichlet condition (killed process)

In this section we define the Dirichlet heat kernel and the Green function. Let D be a non-empty
open set in R%. By diam(D) = sup{|y — z| : z,y € D} we denote its diameter, and the distance to
its complement is
0p(z) = dist(z, D), r € R%

We let B(z,7) = {y € R?: |y — z| < r}, the open ball with center at z € R? and radius r > 0, and
B, = B(0,). We also let B(z,7)° = (B(:v,r)) —{yeR%: |y—z|>r} and B = B(0,r) . For
a € R, we consider the upper half-space H, = {(z1,...,7q4) € R%: 5 > a}. All other half-spaces
are obtained by rotations. The ball, the complement of the ball and the half-space represent three

distinctly different geometries at infinity which are in our focus. In papers [H1]-[H5] we considered
the following classes of sets.

DEFINITION 1. Let D C R? be open.

o We say that D satisfies the inner ball condition af scale r if r > 0 and for every Q € 6D
there is ball B(z',7) C D such that Q € 0B(z/,T).

o We say D satisfies the outer ball condition at scale v if r > 0 and for every QQ € 0D there
is ball B(z",r) C D such that Q € 0B(2",r).

o We say that D is of class CY! at scale r, if D satisfies the inner and outer ball conditions
at the scale 7.

o Let k € (0,1/2] and R € (0,00]. A set D is (k, R)-fat, if for every 0 <r < R andz € D
there exists Ay, € D such that B(Ayy, k) C DN B(z,r).

We call B(z/,r) and B(z”,r) above the inner and outer balls for D at (), respectively. Estimates
of the potential-theoretic objects for C*! sets D often rely on the inclusion B(«/,r) C D C B(z",r)
and on explicit calculations for its extreme sides. If D is C1! at some positive but unspecified scale
(hence also at all smaller scales), then we simply say D is CL. If D satisfies the inner ball condition
at scale R, then D is (1/2, R)-fat. It is easy to see that half-spaces and the complements of balls
are (1/2, 00)-fat.

We are interested in describing the behaviour of the unimodal Lévy process {X:}i>o as it
approaches the complement of the open set D. We shall employ the usual Markovian notation: for

z € R?% we write E* and P® for the expectation and distribution of {z + X;}s>0, i.e. [53, Chapter 8§,
E*f({X:}) =Ef({Xe + z}).
We define the time of the first ezit of {X;}+>0 from open set D C R%:
7p =inf{t > 0: X; ¢ D}.
Similarly, we define the time of the first hitting of closed set F' C R%:
Tr=inf{t >0: X; € F}.
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ThllS, D = TDc.

Let us consider a symmetric Lévy process {X;}>o such that the one-dimensional distributions
Pi(dz) = P(X; € dz) are absolutely continuous for every t > 0. We shall also write p(t,z,y) :=
p:(y — x), where p; is a density of mention F;(dz). Then the transition density of the process
{X:}e>0 killed at the first exit from D is defined by the Hunt’s formula, for z,y € R% and ¢ > 0,

pD(t,ﬁ, Z/) = p(t,il’, y) - E* [p(t - TDJXTD7y); Tp < t] . (6)
For A C D, we have
Px(Xt S Aa D > t) = /pD(t>x7y)dy
A

We call pp the Dirichlet heat kernel of the process {X;}:>0 (or of the generator £ of its semigroup)
on D, since it is a fundamental solution of the heat equation for the operator £ with Dirichlet
condition on the complement of D. Namely, for s € R, z € R% and ¢ € C®(R x D), we have

//pD(u —8,%,2) [8u¢(u, z) + AS/ng(u, z)} dzdu = —¢(s, ).

The probability of process {X;}:>o not to leave D before time ¢ > 0 may be expressed via pp:

d

P*(rp >t) = / pp(t, z,y)dy, t>0, z€R% (7)
R

This is called the survival probability. The Green function of D for {Xi}i>0 is defined as

Gp(z,y) = / po(t,z,y)dt,  =z,y € R% (8)
0

Let us observe that pga(t,z,y) = pi(y — x). The Green function of the whole space (the kernel of
the potential measure) we denote by G(y — z) := Gga(z, 7).
The expected ezit time from D is given by

IE”TD=/ P*(rp >t)dt:/ / pD(t,x,y)dydt=/ Gp(z,y)dy, z € RY,
0 0 Jre R

If z € D, then the P*-distribution of (7p, X, -, X, ) restricted to the event {7p < 00, X,,_ # X, }
is given by the following density function

(0,00) x D x D3 (s,u,2) — v(z — u)pp(s, z,u). 9)

Integrating against ds, du and/or dz gives marginal distributions. For instance, if z € D, then
P(X,, € A) = </ Gp(z,u)v(A — u)du) dz, (10)
D

for A C (D) or even for A C D¢ if P*(X,,_ € 8D) = 0. Such identities are called Tkeda-
Watanabe formulae. They enjoy intuitive interpretations in terms of “the occupation time measures”
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pp(s,z,u)duds and Gp(z, u)du and “the intensity of jumps” v(z—u)dz. From the probabilistic point
of view the Hunt’s formula (6) is explicit, since it is expressed by P* and explicit functionals of paths,
i.e. by 7p and X,,. From the analytic point of view the definition (6) is implicit, since in the Tkeda-
Watanabe formula the distribution of (7p, X,,) is expressed by the heat kernel pp. Nevertheless,
it is tractable, for instance using the Hunt’s formula one may check that y — pg,(¢,0,y) is a radial
function for all r,t > 0.

It is well known that pp satisfies the Chapman-Kolmogorov equations, which yields the following
simple connection of the heat kernel and the survival probability.

Lemma 2. Let {X,}>0 be a symmetric Lévy process such that e € Li(R?), ¢ > 0. Then, for all
t >0 and z,y € RY, we have pp (t,z,y) < pi/2(0) P* (p > t/2) and

¢ t
pp (t,%,y) < pey2(0) P° (TD > Z) PY (TD > Z) )

The above lemma is very well known in a similar form for all ultracontractive semigroups. The
structure of estimates i.e. the approximate factorization of the heat kernel is noteworthly and
appears in many results of [H1]-[H5].

The following lemma is used to derive estimates of the Dirichlet heat kernel from above and
below when the points = and y are relatively distant from each other. It is very important in
estimating the Dirichlet heat kernel for jumping-type processes.

Lemma 3 (Lemma 1.10 in [H4]). Let {X;}i>0 be a symmetric Lévy process with Lévy kernel v.
Consider disjoint open sets Dy,D3 C D. Let Dy = D\ (D1 U Ds). Ifx € D1, y € D3 and t > 0,
then

pD(t’ z, y) S Pz(X’rDl S DQ) sup p(37 z,y) + (t A EmTDl) sup V(Z - U),

s<t,z€D3 u€Dy,z€D3
po(t,z,y) <P*(X,, €Dy) sup pp(s,z,y)+ sup  v(z—u)x
s<t,2z€Dq u€Dq,2€D3

t/2

X (W(Tpl > t/2) /tﬂpy(TD > S)dS +Py(TD > t/2) W(TDl > S)dS) )

0

pp(t,z,y) > tP°(1p, > t)PY(1p, > t) ueDilr’lfeD3 v(z —u).

In order to use the above lemma we need estimates for: the transition density of the free process
p(z), the Lévy density v, the distribution of the position of the process at the first exit from a set,
the expected exit time, and the survival probability in the set. Estimates of these objects, given in
the papers [H1] - [H5], are discussed in the following sections.

We note that a result similar to the first inequality in Lemma 3, appeared in the paper by
Kulezycki and Siudeja for balls and the stable relativistic processes [45]. In [D3] we improved it
and simplified the proof of this inequality for half-spaces. The next step was to obtain a similar
inequality for the ball and the isotropic stable processes by Chen, Kim and Song [15]. The first
and third inequalities in the form presented above for the isotropic stable processes and ¢t = 1
were proven in the paper [H1]. Using these inequalities and the boundary Harnack inequality we
obtained sharp bounds for the Dirichlet heat kernels for x-fat sets. Sharp estimate (bound) here
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means that the ratio of the upper bound and the lower bound is less than a constant. In the paper
[H4] we proved the present statement of the lemma, which allowed to provide estimates of pp for
CU! sets without using the boundary Harnack inequality.

A modification of this lemma was given and used for symmetric Markov processes with abso-
lutely continuous jumping measure in the paper [Prel].

Basics of fluctuation theory

In our study we used objects that are derived from the fluctuation theory. The most important of
them is the harmonic function (with respect to the generator of the transition semigroup of a Lévy
process) in the half-line, which is increasing and its derivative is also a harmonic function. Assume
that {X;}+>0 is a symmetric Lévy process on the real line which is not compound Poisson, i.e. there
is the non-zero Gaussian part or the Lévy measure is infinite. Let M; = sup,, X, and let L; be the
local time at O for M; — X, the process X; reflected at the supremum ([25],[7]). We consider its
right-continuous inverse, L !, called the ascending ladder time process for {X:}i>0. We also define
the ascending ladder-height process, H, = X -1=M r71- The pair (L;*, Hy) is a two-dimensional
subordinator ([25],[7]). In fact, since {X;};»0 is symmetric and non Poisson, by [25, Corollary 9.7],
the Laplace exponent of (L; ', H,) is

1 B 1 [ log[r + ¥(\)]
—Zlog (Eexp[-TL; ' — /\Ht]) = cyexp {;/0 —1—+02—d9 , T,A >0,

In what follows we let ¢, = 1, thus normalizing the local time L [25]|. In particular, L' is then
the standard 1/2-stable subordinator (see also [23, (4.4.1)]), and the Laplace exponent of H, is

k(A) = —%log (Eexp[—AH{]) = exp {% /oo %2 dO} , A>0. (11)
0

The renewal function V' (the potential measure of intervals) of the ascending ladder-height process
H is defined as

V() = / P(H, < z)ds, z€R. (12)
0] .
Thus, V(z) = 0if £ < 0 and V is non-decreasing. It is also well known that V is subadditive,
Vig+y) <V(2)+V(y), =zyeR, (13)

and lim,_,o, V(z) = co. Furthermore, from (11) we infer that the Laplace transform £V of V is

1

LV = Ty

A>0. (14)

Both V' and its derivative V’ were studied by Silverstein in [55]. If resolvent measures of {X;},>¢
are absolutely continuous, then it follows from [55, Theorem 2| that V(z) is absolutely continuous
and harmonic on (0, c0) for the process {X;};50, what means that V(z) = E*V(X7,,), for every
0 <a<b<oo. Also, V' is a positive harmonic function for {X;}:> on (0, 00), hence V is actually
(strictly) increasing. Notably, the definition of V is rather implicit and the study of V' poses
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problems. The explicit form of V for symmetric processes is known only for the o-stable Lévy
processes, then V(z) = (24)%%, o € (0,2]. Under structure assumptions satisfied for complete
subordinate Brownian motions, V' is monotone, in fact completely monotone ([46, Proposition
4.5]). This circumstance stimulated much of the progress made in [17, 41].

We shall present sharp estimates of V by means of (simpler) functions ¢ and h, but decay
properties of V' are more delicate and they are not yet fully understood. It is known that V’
is decreasing if {X;}+>o is subordinated Brownian motion governed by special subordinator. In
addition, if the process has a non-zero Gaussian part, then V' is continuous and bounded on
(0, 00).

Lemma 4 (Proposition 2.4 in [H5]|). Let {X;}i>0 be a symmetric Lévy process in R with the

unbounded symbol 1. Then .
1

SR T gy

where the comparability constants are absolute (do not depend on anything).

V2(r) r >0,

We emphasized that in described papers we considered an isotropic process {X;}:>o in R% and
the renewal function V was defined for the ascending ladder-height process of a one-dimensional
projection of the process {X;}+>o (for instance for one of coordinates). Since considered processes
are rotation invariant, V' does not depend on the choice of coordinates. In this sense; the claim of
Lemma 4 holds also for R? and in the estimates we used interchangeably V, h and 9*.

Weak scaling

Weak scaling is natural generalization of homogeneity and regular variation and nowadays is stan-
dard in the potential theory of Markov processes [39, 13]. We give a short survey of weakly scaling
and almost monotone functions. The best referencestra on this topic are [8, 1].

DEFINITION 5. Let ¢ : I — [0,00], for a connected set I C [—o0, 00].

e We call ¢ almost increasing if there is (oscillation factor) ¢ € (0,1] such that co(z) < ¢(y)
forz,yel, x<y.

o If there is C € [1,00) such that Cp(z) > ¢(y) for z,y € I, x <y, then we call ¢ almost
decreasing (with oscillation factor C)

Let
¢"(y) =sup{p(z): z€l,z<y}, yel
We easily check that ¢* is non-decreasing, ¢ < ¢* and ¢ is almost increasing with oscillation factor
c if and only if c¢* < ¢. Analogously, let

() =sup{d(y) : y€ 1,y > z}, z el

Then ¢, is non-increasing, ¢ < ¢, and ¢ is almost decreasing with oscillation factor C if and only
if ¢, < C'¢. We also note that ¢ is almost increasing on I with factor ¢ if and only if 1/¢ is almost
decreasing on I with factor 1/c.
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DEFINITION 6. Let ¢ : (0,00) — oo.

o We say that ¢ satisfies the weak lower scaling condition (at infinity) if there are numbers
a>0,0>0, and c € (0,1], such that

d(N0) > cA2p(0) for A>1, 6>0. (15)

In short we say that ¢ satisfies WLSC(a, 0, c) and write ¢ € WLSC(a, 8, ¢). If $ € WLSC(a, 0, ¢),
then we say that ¢ satisfies the global weak lower scaling condition (for some a > 0 and

c€(0,1]).

e The weak upper scaling condition holds if there are numbersa < 2,0 > 0 and C € 11, 00)

such that
H(NG) < CA%P(6) for A>1, 6>0. (16)

In short, ¢ € WUSC(@,6,C). For global weak upper scaling we require = 0 in (16).

It is possible to characterize of the scaling conditions in terms of almost monotone functions.
We have ¢ € WLSC(g, 6, ¢) if and only if $(f) = ()% and « is almost increasing on (8, c0) with
oscillation factor ¢. Similarly, ¢ € WUSC(g, 6, C) if and only if ¢() = x(6)6* and « is almost
decreasing on (6, 00) with oscillation factor C. Moreover if ¢ > 0 is continuous and increases to
infinity and ¢ € WLSC(a,0,¢) [or ¢ € WUSC(@,0,C)]. Then ¢! € WUSC(1/a, $(6), V<)
[WLSC(1/a, ¢(0), U_l/a) , respectively].

Weak scaling conditions may be considered for any exponents, but we will use them for the
symbol 9 of a process {X;};>o, therefore we limit the ranges of exponents ¢ and @ in definitions.
Since it is known from (5) that the characteristic exponent of the isotropic unimodal Lévy processes
is an almost increasing function (hence (15) always holds for @ = 0) and /% is subadditive (thus
(16) always holds for @ = 2). Typical examples of the characteristic exponents satisfying weak
scaling properties are 1(€) = | + [¢]# and (&) = [€]*In'"*/2(1 + |¢]F), for o, B € (0,2). More
examples are presented in Section 3.4 in [H2], and in Section 4.1 in [H3].

Weak scaling conditions are also connected to O-regularly varying functions and Matuszewska
indices. Let ¢ : [0,00) — [0,00) and let 8(¢) < a(4) be the lower and upper Matuszewska indices
[8, p. 68] of @, respectively. By [8, Theorem 2.2.2], if ¢ € WLSC(q, 8, ¢) for some 6 > 0 and
¢ € (0,1], then B(¢) > a, and if ¢ € WUSC(w,8,C) for some § > 0 and C € [1,00), then
a(¢) < @. And a partial converse holds. Since we have that, if o < B(¢), then § > 0 and ¢ € (0, 1]
exist such that ¢ € WLSC(a,0,¢), and if @ > a(¢), then > 0 and C € [1,00) exist such that
¢ € WUSC(a, 8, C). We note that the scalings may, but need not hold for o = 8 (¢) and @ = a(9).
Furthermore, in what follows it is important to specify the ranges of 6 for which the inequalities
in (16) and (15) hold, in particular, the cases § = 0 and @ = 0 are qualitatively different from the
cases § > 0 and § > 0. These remarks explain why we need to state our assumptions in terms of
weak scaling, rather than only use Matuszewska indices.

We will present now the Abelian-type theorem. Namely, assuming weak scaling conditions for
the Lévy kernel we proved that the symbol of the process also satisfies the weak scalings. The fol-
lowing proposition is useful to check whether the assumptions of the main theorems presented below
are satisfied, when the starting point is the Lévy measure instead of the characteristic exponent.
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Proposition 7 (Proposition 28 in [H3] and Proposition 8 in [H2]). Let {X;}:>0 be a pure-jump sym-
metric Lévy process in R? with the Lévy measure N(dz) = v(z)dz and the characteristic exponent
. Suppose that @ € [0,00), constant ¢ € (0,1] and non-decreasing function f : (0,00) — (0,00)

are such that £(1/)z)) F(1/|2))
" B z
L < v(z) < T 0<|z| <1/6.

(i) If f € WLSC(a, 0, c), then ¢ € WLSC(a,0,C*) for some constant C*.

C

(i) If f € WLSC(a,8,c) N WUSC(@,0,C), then f(|¢|) and $(§) are comparable for |§| > 6.

12



I1. Heat kernel of the whole R?

The study of the heat kernel is an important area of interactions between Probability, Analysis
and Geometry. Transition density function provides direct access to path properties of a Markov
process. It is also the fundamental solution of the heat equation with the infinitesimal generator
of the corresponding process. Therefore the heat kernel gives also information about the spectral
properties of the generator. Heat kernels for second order elliptic operators have been well stud-
ied and there are many beautiful results (i.e. [22, 28, 60, 27, 6, 49, 50, 63, 32, 31]). The heat
kernels for symmetric non-local operators or equivalently transition densities of jump-type Markov
processes are quite well understood when the jumping measure (the Lévy measure) is absolutely
continuous and the Matuszewska indices at the origin of its density are strictly between —2 — d
and —d. Estimates for rather general jump-type Markov processes were obtained for instance
in papers [19, 14, 13, 3, 29]. Transition semigroups of Lévy processes allow for a deeper insight
and direct approach from several directions thanks to their convolutional structure and the avail-
able Fourier techniques. For instance bounds for transition densities are obtained in [42, 58, 59, 37]
by using Fourier inversion, complex integration, saddle point approximation or the Davies’ method.

The main result of [H3] provides estimates for the tails of the one-dimensional distribution of
the isotropic unimodal Lévy process {X;}:>o and its density function p:(x), expressed in terms of
the Lévy-Khintchine exponent 1. Since ¢ is radially almost increasing, it is comparable with its
radial non-decreasing majorant ¢*, and we employ %* in statements and proofs. The extensive
usage of 1 (¢*) rather than v is a characteristic feature of our development and may be considered
natural from the point of view of pseudo-differential operators and spectral theory [34]. As usual
for Fourier transform, the asymptotics of 4 at infinity translates into the asymptotics of p, and v
at the origin. The following theorem is one of the main result of [H3].

Theorem 8 (Theorem 21 in [H3]). Let {X;}i>o be an isotropic unimodal Lévy process in RE. If
Y € WLSC(a,0,c), then there is C* = C*(d, a, c) such that
ty*(1
pi(z) < O*min{[¢_(1/t)]d, %x—l)} if t>0 and tW*(0) < 1/7°.
If v € WLSC(a,0,c) N WUSC(@,0,C), then c* = c*(d,a, ¢,@,C), o = ro(d, o, ¢, @, C) exist such
that
tyY*(1

pe(z) > ¢" min { [~ (1/t)]d, %} if ©>0, tW*0/ro) <1 and |z|0 <.

Hence under assumption that ¢ satisfies weak upper and lower scalings with exponents strictly
between 0 and 2 we obtained sharp estimates and they may be summarized as follows,

B t * T -1
p(a) ~ [ (/0] A P ) A o) (17
We note that the corresponding estimates of v, to wit,
- V(=)
V(.’E) ~ lx,d ’ (18)
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are simply obtained as a consequence of (17) and are not an element of the proof of estimates for
the heat kernel. We also emphasized that comparability constants depend only on the dimension
and the scaling characteristics.

The main idea used in the proof of Theorem 8 is unimodality of the density p;. Since by radial
monotonicity of y — p;(y) we have p;(z) < p;(0) and

) < P(lal/2 < 1X] < ) 1 EAY
ple) < | Biay \ Biai/] A ('th =2 ) 1™ (19)
And, for any number A > 1,

pi(a) > PUAS X <NaD) 4 x5 o) - P (x> M) o (20)

| Bajoy \ Bz (M =Dy

Hence, it was enough to proved appropriate estimates for the tail of one-dimensional distributions
and p;(0) to get estimates for p;. To do it we used Tauberian-like methods and the Fourier analysis.

At the beginning we obtained the following estimates for the Laplace transform of the tail
function for |X;/?.

Lemma 9 (Lemma 4 in [H3]). Let fi(p) = P(|X;|> > p). There is a constant Cy = Cy(d) such that
C;li (1 - e—“ﬁ*(ﬁ)) < LfO) < c% (1 - e—“ﬁ*(ﬁ)) . A>0.

A consequence of the above lemma and monotonicity of the tail function is the upper bound
for this function. In fact this estimate holds for every symmetric Lévy processes.

Proposition 10 (Corollary 6 in [H3]). Forr > 0 we have P(|X;| > r) < 22 (2d+1) (1 — e~ (/).

As a consequence of the above proposition and (19) we obtained a general upper bound for
transition density of unimodal Lévy processes.

Proposition 11 (Corollary 7 in [H3]). There is C = C(d) such that
pe(2) < Ctp*(1/lz]) /lal?, = #0.

To obtain estimates for p;(0) we used the inverse Fourier transform, since the weak lower con-
dition ensure that e~* is integrable. Hence, we have

po(0) = (2m)~¢ / et g
R4

and under WLSC for 9 we proved that p,(0) < C[)~(1/t)]%. We should note that the lower bound
in such form always holds, since

POz [ 2 179

These imply that under WLSC for the symbol p;(0) ~ [2~(1/¢)]°.
Using WUSC condition for the symbol 9 and Lemma 9 we obtained the lower bound for the
tail function.

14



Lemma 12 (Lemma 14 in [H3]). C = C(d) exists such that if v € WUSC(a,0,C) and a =
[(2-@)C|7=5C * , then
P(IX|>r)>a(l—e™ W), 0<rf<a

Thus, under WUSC assumption for the Lévy-Khinchine exponent, we obtained a sharp estimate
of the tail of distribution |X;|. Using weak convergence of appropriate normed distribution of X;
to the Lévy measure and [H5, Proposition 5.2 (i)] we provided that the lower bound in Lemma 12
is equivalent to the condition WUSC. A consequence of the above lemma, the weak lower scaling
condition for ¢ and (20) is the lower bound of Theorem 8.

We emphasized the lower bound of the density p; in Theorem 8 holds if and only if ¢ has
lower and upper scalings of order strictly between 0 and 2, equivalently if the lower and upper
Matuszewska indices are strictly between 0 and 2. Namely, we showed that for the unimodal Lévy
processes, the scaling of ¢ (at infinity) is equivalent to the bounds (17) for the transition density
and the Lévy measure (at the origin). In fact, already the lower bound v(z) > cip*(|z|™)/|z|?
implies such scalings of .

Theorem 13 (Theorem 26 in [H3]). Let {X;}:>0 be an isotropic unimodal Lévy process in RE with
transition density p, Lévy-Khintchine exponent v and Lévy measure density v. The following are
equivalent:

(i) WLSC and WUSC hold for 1.
(ii) There are r,c > 0, such that

pe(x) > 0%1%—_1), 0<|z|<r 0<ty*(|z|™) < 1.

(i) There are v,c > 0, such that

7/)*('5C|—1)
>l ' 7

V(x)_c |’d , O<]x|<r.

If we instead assume global WLSC and WUSC in ( z'), and let r = oo in (z’z’) and (zzz ), then the three

conditions are equivalent, too.

Theorem 8 yields the implication (i) = (é¢). The implication (i) = (iii) follows because
lim_,o+ p(t,z)/t = v(z) vaguely on R®\ {0}. To prove that (i) implies (i), we constructed a
complete Bernstein function ¢ with the Lévy kernel u such that ¢(|z|?) &~ ¢(z) and |z|%2v(z) <
c(d)u(|z[*), for some constant c(d). Next combining a fact that u is completely monotone with
Tauberian-like theorems we proved that o(r) ~ r¢/(r), what implies ¢ satisfies weak scaling con-
ditions and therefore ¢ as well. To infer from (#ii) WUSC condition for 1, we used the conjugate
Bernstein function ¢1(r) = r/¢(r). Using Tauberian-type theorem on the density of the potential
measure of a subordinator associated with the function ¢; we showed that ¢ (r) ~ r¢/(r). This
comparability implies the lower scaling condition for ¢y, which is equivalent to the upper scaling
condition for ¢ with exponent less than 1 and in consequence WUSC for Y with exponent strictly
less than 2.

In the paper [H4] using Lemma 3 we proved the general lower bound.
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Proposition 14 (Lemma 1.11 in [H4]). For allt > 0 and z # 0,

pi(@) 2 7% w(z) [B(rp, 0 > 1)]

Combining the above proposition with estimates for the survival probability due to Pruitt [52,
page 954] we obtain the following bound for the heat kernel.

Corollary 15 (Corollary 1.13 in [H4]). There is ¢ = c¢(d) > 0 such that if z # 0 and 0 < t <
c/¥(1/|z]), then pi(z) > 474 Hu(z).

We obtained the following bounds for any isotropic unimodal Lévy process, for 0 < ¢t <

c/9*(1/]z),
47 tu(e) < pulz) < c(d) t9*(1/]o]) o]

The above bounds were extended in the paper [Pre2]. We provided estimates of the survival
probability for process in a ball when it starts from the center for every ¢ > 0. In addition, we

improved the upper bound for the heat kernel p;. Finally we obtained existing constants ¢ = c(d)
and C = C(d) such that

C4u(z)e e Mt < py(z) < CH—K (Jz])|z|%,  t>0, z#0. (21)

We emphasized that 0 < —r b/(r) < 2h(r). The above estimate is sharp for 0 < t < ¢/¢*(1/|z]),
not only for processes, whose the characteristic exponents satisfy WLSC and WUSC conditions,
but also, when 1 is slowly varying function.
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III. Regularity of harmonic functions and estimates for Green function

We introduce several definitions. It is known that the classical harmonic functions have the mean
value property. Similarly, we define harmonic functions with respect to a stochastic process. A
function f : R — [0,00) is said that is harmonic with respect to {X;}¢>o in an open set D if for
any bounded open set B such that B C D

f(z) =F°f(X,,), =z¢€B.

If the mean value property holds also for B = D we say that a function is reqular harmonic.

We say that the scale invariant Harnack inequality holds for a process {X;}s> if for any R > 0
there exists a constant C = C(R) such that for any function g non-negative on R? and harmonic
in a ball B,, r < R,

sup g(z) < C inf g(z).
2€B, /s Z€Br /2
We say that the globalscale invariant Harnack inequality holds if the constant in the above inequality
does not depend on R that means supg., C(R) < oo.

The main purpose of [H2] was proving the scale invariant Harnack inequality and regularity
properties for harmonic functions with respect to the isotropic unimodal Lévy process with the
characteristic exponent satisfying the weak lower scaling condition. Our main contribution is the
fact that we assumed only a mild condition for the characteristic exponent but we do not use
in our proofs any properties of the Lévy measure except its isotropy and unimodality. Usually
in the existing literature on the Harnack inequality for Lévy processes the assumptions are given
in terms of the behaviour of the Lévy measure (see [57, Section 3]) or the initial step relies on
describing its behaviour ([41]). Our result seems to be important for application to subordinated
Brownian motions because there are examples when the characteristic exponent is known, while
estimates for the Lévy measure are not. We should also notice that our approach allows to deal
with isotropic unimodal processes with the Lévy-Khinchine exponent behaving at infinity almost
like the exponent for the Brownian motion, which were not treated in the literature, except a few
particular cases. Namely, we can take 1 (x) = |z|*(|z]), where ¢ is slowly varying and goes to 0
at infinity. An example of such process is for instance a process with density of its Lévy measure
equal to |z|~¢"2log™?*(2+ |z|~!). Moreover, our result allows to extend the scale invariant Harnack
inequality to its global version for many processes. For instance we get the global scale invariant
Harnack inequality for the a-stable relativistic processes.

Theorem 16 (Theorem 1 in [H2]). Let d > 3. Suppose that {X;}i>o is an isotropic unimodal Lévy
process in Re. Ify € WLSC(a, 6, ¢), then the scale invariant Harnack inequality holds. Moreover, if
Y satisfies the global weak lower scaling condition, then the global scale invariant Harnack inequality

holds.
The next theorem deals with regularity of harmonic functions.

Theorem 17 (Theorem 2 in [H2]). Let d > 3. Suppose that {X;}i>o is an isotropic unimodal Lévy
process in R? and 1 € WLSC(a,8,c). For any R > 0 there exist constants ¢ = c(R) and 6 > 0
such that, for any 0 <1 < R, and any bounded function g, which is harmonic in B,,

§
S 1EY
o(a) = ot < cllles (1), wye
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The assumption d > 3 in the two above theorems can be removed in the case of subordinated
Brownian motions (see Theorem 7 in [H2]). For a general isotropic unimodal Lévy process {X;}io
the assumption d > 3 ensures not only that {X;}:>o is transient but also that -for some € € (0,1),
the function r — r4=5¢*(1/r) is almost increasing. This property was necessary in our approach.

We follow in the approach of Bass and Levin ([5]) to prove the above theorems. The key
ingredient of the proofs of the Harnack inequality and local Holder continuity of harmonic functions
is the Krylov-Safonov type estimate, which says that there are ¢, R > 0 and A < 1 such that for
r < R and a closed set A C B,,,

A

]P)x(TA < TBT) > C-[B—|, x € By, (22)

We proved this estimate for the isotropic unimodal Lévy processes with the symbol satisfying
WLSC.

Proposition 18 (Proposition 7 in [H2]). Let d > 3 and ¢ € WLSC(a,0,c). There exist c =
c(d,a,¢) and A = \(d,a,c) € (0,1) such that (22) holds for r < 1.

We notice if 9 satisfies global WLSC, then Krylov-Safonov type estimate holds for every r > 0.

In addition to the Krylov-Safonov type estimate there are required two another estimates to use
the approach of Bass and Levin. The first one holds for every symmetric Lévy processes whose the
characteristic exponent of every one-dimensional projection satisfies WLSC. The following lemma
is a consequence of the Dynkin formula

B f(X,p) — f(s) = GoLf(z), f € Dom(L) (23)

estimates for the expected exit time from the ball when process starting from its center ([52]) and
comparability of Pruitt function A and ¢*, see (3).

Lemma 19 (Part of Corollary 2 in [H2|). Let {X;}i>0 be a symmetric Lévy process. Assume
that for every © € S q function f(t) = ¥(tO©) belongs to WLSC(a,0,c). Then there is C =
C(d, a, ¢,supy—p ¥ (y)/¥*(8)) such that, for 0 <78 <1 and s <r/2,

P*(|X,,.|>7) <C (;)g 2| < .

In particular the constant C' in the above lemma depends only on the dimension and the scaling
characteristics in the isotropic unimodal setting. The second result that we need in our discussion
is the following lemma.

Lemma 20 (Proposition 6 in [H2]). Let d > 3 and ¢ € WLSC(a,6,c). There exist ¢ = ¢(d, e, ¢)
and A = M\(d,a,c) € (0,1] such that for any r6 < 1, and any non-negative function H such that

suppH C B,",
E°H(X,,, ) < CE'H(X.,), %,y € Ba.

Using the Tkeda-Watanabe formula, the equilibrium measure and isoperimetric inequality proved
by Watanabe [62] we reduced proofs of the above lemma and the Krylov-Safonov type estimate to
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sharp estimates of the capacity and the potential measure of balls and the Green function of R¢ of
the underlying process. In [H2, Proposition 2] we obtained for d > 3 that the potential measure
of balls satisfies U(B,) = [°P(X; € B,.)dt ~ 1/1*(1/r), where comparability constant depends
only on the dimension. To prove it we used a Tauberian-like theorem. Next, we used estimates for
U(B;) to obtain the estimates for 0-order capacity of the ball. Namely, we used a formula

P(Ts, < o0) = | Gly—o)pslay),
R
where pp, is the equilibrium measure for the closed ball B,, to prove that
Cap(B;) = pp,(B;) = r?/U(B,) ~ r*y*(1/r).
The comparability constants again depend only on the dimension. Another consequence of estimates

for the potential measure of balls is an upper bound for the potential kernel. By unimodality of G
we have

U(Bjy)) c(d)
N W VeI

The lower bound in the same form was proven under WLSC for 1.

Theorem 21 (Theorem 3 in [H2]). Let d > 3 and let {X;}1>0 be an isotropic unimodal Lévy process
in R%. If ¢ € WLSC(a,0,c), then there are constants ¢ = c(d,a,¢c) <1 and C = C(d,a,c) such
that o

2|9 (J| =)

Moreover under the assumption that {X;};> is a subordinated Brownian motion governed by

a special subordinator we obtained that G(z) ~ yrrjiep if and only if ¢ satisfies WLSC (see

[H2, Theorem 5]). Recently we improved it in the paper [Pre2](Theorem 5.11) for general isotropic

unimodal processes in dimension d > 6. Using [Pre3, Theorem 1.2] instead of [Pre2, Theorem 5.9]
it can also be shown that in fact the claim is true for d > 3.

Harnack inequality describes behaviour of harmonic functions inside sets - the quotient of the

supremum and the infimum is bounded. While the boundary Harnack inequality says that for

harmonic functions which vanish outside the set the decay near the boundary is the same for all

of them. We finish this section with the boundary Harnack inequality with the explicit decay near
the boundary of the smooth set, described by the characteristic exponent.

< G(z), 0lz| <ec.

Proposition 22 (Proposition 7.6 in [H5]). Let v be continuous in R%\ {0}. Assume that i satisfies
the global weak lower and upper scaling conditions, D is C' at scale p> 0, z € 8D, 0 <r < p and
u 2 0 is regular harmonic in D N B(z,7) and vanishes in B(z,v) \ D. Then positive ¢ = c(d, 1),
c1 = c1(d, ) exist such that

u(z) _ V(o() _  [4(1/dn(v)
uy) = Vo) =\ ¥ (1/p(@)’

z,y € DN B(z,1/2).
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This proposition is a consequence of the boundary Harnack inequality for general sets ([40]),
where the decay is described by the expected exit time from the set and estimates of this mean
value for smooth set obtained in [H5]. The research on this topic was continued in the paper [Pre3]
and we can drop assumption on continuity of the Lévy kernel, because instead of the result of [40]
we can use [Pre3, Theorem 1.9].
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IV. Expected exit time and survival probability

In the proofs of the results described in this section we used the scale invariant Harnack inequality
and estimates of Green function of the whole R?, which are discussed in the previous section. The
main objects of this section are sp(z) = E*7p expected exit time from the set D and P*(rp > t)
the survival probability for a fixed time ¢ > 0, considered as functions of the starting point of the
process. The mean value of the first exit time is naturally important from probabilistic point of
view and applications in mathematical finance and insurance. Since due to the boundary Harnack
inequality the mean value of the first exit time describes the decay of harmonic functions near the
boundary, therefore its estimates are also important for Analysis. This is due to the fact that the
expected exit time is a (mild) superharmonic function for infinitesimal generator of the semigroup
of the process and in some sense, Lsp = —1 on D (see discussion below of the Dynkin like operator).
Therefore, not only the decay of harmonic functions, but also the decay of any continuous solutions
of the Dirichlet problem

{Euzf, on D,

u =0, on D¢,

for a bounded function f, is not slower than the decay of the expected exit time from D (it is easy
consequence of the maximum principle of the generator £).

The basic object of interest in our study described in this section is E®75,, the expected exit
time from the ball B, centred at the origin and with radius r > 0, for arbitrary starting point
z € R? of {X;}4>0. For every Lévy processes there are estimates when z = 0 ([52]). When {X;}:>0
is symmetric, there are constants ¢ = c(d) and C' = C(d) such that

c C

— <E%p < —, r>0. 24
W = F TS 4
In the one-dimensional case (that is for intervals) we extended the above Pruitt estimates to every
starting point = and to every symmetric Lévy process which is not a compound Poisson process

C
VR — Z)h(r)

where the comparability constant is absolute. We conjecture that the same estimates hold true for
every isotropic Lévy processes in R¢, but we proved it only for a large class of isotropic unimodal
processes.

Let {X:}:>0 be an isotropic unimodal Lévy process. Recall that the renewal function V and
its derivative V" are strictly positive on (0,00). Below we state the assumption under which we
obtained in [H4] the estimates of the expected exit time of the process from the set. An explanation
of the reason for using this assumption is given below together with the discussions of the Dynkin
like operator.

E*T(_rr) & r >0, |z| < (25)

DEFINITION 23. We say that condition (H) holds if for every r > 0 there is H, > 1 such that
V(z) -V(y) < H.V'(z)(z —y) whenever 0<z<y <z <5z < 5r. (26)
We say that (H*) holds if Hy, = sup,-q H, < c0.
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We consider (H) and (H*) as Harnack type conditions because (H) is implied by the following
property:
sup V'(y) < H, inf V'(y), r > 0. (27)
z<r,y€(z,5z] z<ry€lz,5z]
Both conditions control relative growth of V. If (H) holds, then we may and do chose H, non-
decreasing in r. Each of the following situations imply (H):

1. {X:}:0is a subordinated Brownian motion governed by a special subordinator (see Lemma 7.5
in [H5]).

2. d > 3 and the characteristic exponent of X satisfies WLSC (see (5.1) and Lemma 7.2 in [H5]).

3. d > 1 and the characteristic exponent of X satisfies WLSC and WUSC (see (5.2) and Lemma
7.3 in [H5]).

4. {X;}+>0 has the non trivial Gaussian part (see Lemma 7.4 in [H5]).

A more detailed discussion of (H) and further examples are given in Section 7 in [H5].
One of the main result presented in this section is estimate for the expected exit time from a
ball. Recall that by p(z) we denote the distance of z € R? to D*.

Theorem 24 (Thorem 4.1 in [H5]). Let {X;}1>0 be an isotropic unimodal Lévy process in R?. If
(H) holds, then there is C = C(d) such that for r > 0,

C

V05, (2))V(r) < E2rp, <2V (6p.(z))V(r), z€R% (28)
Recall that instead of V(r) we can use 1/4/h(r) or 1/4/%*(1/r) but we decided to choose V

for simplicity. The upper bound is true for all isotropic Lévy processes by the one-dimensional

estimates and a domain monotonicity (it is enough to consider an appropriate strip). To prove the

lower bound we use the Dynkin like operator

Af(z) = limsup B (KXraey) = f(:z:)

s—0+ IEzTB(:r,s)

A very useful property of this operator is that the harmonic functions in a set D are in the domain
of this operator on D and it is equal to O for such functions. This property allows for calculating
the Dynkin like operator for the composition of V' with the distance to the complement of the ball
or to the ball and the calculations only minimally depend on the differential regularity of V via
the condition (H). We proved that these compositions are super- and subharmonic, respectively.
Next we use the maximum principle for A for these functions. Using the above theorem, the Ikeda-
Watanabe formula and again the maximum principle we obtained the expected exit time from more
general domains.

Theorem 25 (Theorem 4.6 in [H5]). Let {X;}is0 be an isotropic unimodal Lévy process in R9. If
(H) holds and D C R? is open, bounded and C* at scale r > 0, then ¢ = ¢(d) and C = C(d) exist
such that

H, V?(diam D)
(F()* V)
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T V(op(z))V(r) <E*rp < C

V(p(x))V(r), zeR%




where J(r) = infocpey |V2(p) fys 1(9)dy]

By [H5, Proposition 5.2] J is positive on the neighbourhood of 0 if and only if 9 satisfies
WUSC. Moreover for 1 satisfying global WLSC and WUSC there is a constant C > 0 such that
H, < C and J(r) > C~! for every r > 0. If an open set D additionally is convex then we do not
use the Tkeda-Watanabe formula and J does not appear in the upper bound (see [H5, Corollary
4.2]). Moreover, we can treat more general isotropic processes with the absolutely continuous Lévy
measure with the density comparable to a unimodal function ([H5, Corollary 4.3]).

We present results concern the survival probabilities, first for the half-line and general symmetric
Lévy processes.

Proposition 26 (Proposition 2.6 in [H5]). For every symmetric Léuvy process in R which is not

compound Poisson,
1

Vi (1/z)

P?(T0,00) = t) ® 1A t,xz >0, (29)

and the comparability constant is absolute.

As a corollary we have upper bound for survival probability in bounded convex domain D for
every isotropic processes

IPE(TDZt)SC(l/\V—(M

Vi

In particular this is true for balls. Analogously for sets which a complement is convex we obtained
the lower bound for the survival probability

), t>0,zeD.

]P“(szt)2c(1/\m), t>0,z€D.

Vit

In particular we can use it for the complement of the ball. Under global WLSC and WUSC for the
symbol we obtained the.following bounds.

Theorem 27 (Theorem 6.3 in [H5]). Let {X;}i0 be an isotropic unimodal Lévy process in RC.
Suppose that € WLSC(e,0,c) N WUSC(@,0,C). Let R > 0 and D = By,

(i) There is a constant C* = C*(d,a, ¢, @, C) such that,

. « [ V(ép(z))
]P(TD>t)SC(m/\1>, t>0.

(i) If d > @, then
P(rp > ) m 0@y

VEAV(R)

where the comparability constant depends only on d, o, ¢, @, C.
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Noteworthy the constants in the above bounds do not depend on the radius. Apart from the
half-spaces and the complement of a ball we obtained in [H4] also sharp estimates for bounded C**

domains, half-space like domains and the C*! exterior domains (D¢ is bounded).

In the article [H1] we considered the isotropic stable processes and we prove the following

estimates for more general sets.

Theorem 28 (Theorem 2 in [H1]). Let o € (0,2) and let {Xi}i>0 be an isotropic a-stable Lévy

process in R, There is a constant C = C(d, a, k) such that if D is (k,T*/%)-fat then

sp(z) sp(z)
sp(Apsa(z)) sp(Apsa(z))’

where sp(z) = E*7p if D is bounded and sp is the Martin kernel at infinity otherwise.

ct <P*(rp>t)<C 0<t<T, zeR?

In particular we have, for D = B¢y,

5&/2
1A B, d> e,
< ~ log(1+614 () 1
]P)(TD>t)N 1/\W/2 = _a,
a—1 o3
85 ()N " () d=1< a

(tl/avéD(m))a—l/\(tl/a\/ED(z))a/Z )

(30)

(31)

By the scaling property of the stable processes we obtain the estimates for the ball with arbitrary

radius.
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V. Dirichlet heat kernel

The main result presented in this section is the approximate factorization (32), which involves the
transition density of the free process described in Section II and the survival probabilities discussed
in Section IV. Dirichlet heat kernel provides direct access to properties of operators with Dirichlet
conditions. For instance the harmonic measure and the Green function are expressed by the kernel.
We recall that precise estimates for the heat kernel of the Laplacian (and the Brownian motion)
were given for C' domains in 2002 by Zhang [63]. In 2006 Siudeja [56] gave upper bounds for the
heat kernel of the fractional Laplacian (the generator of the isotropic stable Lévy process) in convex
sets. In 2010 Chen, Kim and Song [15] gave sharp (two-sided) explicit estimates for the heat kernel
of the fractional Laplacian in bounded C*! open sets. Gradual extensions were then obtained for
generators of many subordinate Brownian motions satisfying scaling conditions [15, 17, 16, 18],
and for processes with comparable Lévy measure [41]. Rather precise but less explicit bounds of
pp(t,z,y) are also known to hold for Lipschitz sets in a number of situations. Such bounds were
first obtained for the Laplacian in 2003 by Varopoulos [61]. In this section we present the main
results of articles [H1] and [H4|. In [H1] we proved that the following approximate factorization
holds for the fractional Laplacian.

Theorem 29 (Theorem 1 in [H1]). Let o € (0,2) and let {X;}1>0 be an isotropic a-stable Lévy
process in R%. If D is (k,TY*)-fat then there is C = C(a, D) such that for 0 < t < T and ail
T,y € R,
C™'P*(1p > t)PY(1p > t) < %y)_) < CP*(mp > t)PY(1p > t). (32)

The comparison (32) is uniform in time and space for cones, homogeneous Lipschitz domains
and exterior C* sets. For these sets, (32) is made rather explicit by approximating the survival
probability with superharmonic functions of {X;};>0 (Theorem 28). The approximate factorization
of the heat kernel and the estimates of the survival probability in the above non-smooth setting
are closely related to the boundary Harnack inequality. The setting offers a structured approach
to the heat kernel estimates of non-local operators. Since for the fractional Laplacian the Green
function of many domains are obtained or estimated due to Theorem 28 we get numerous examples
of sets where the estimates are sharp and explicit. Unfortunately in the general unimodal setting
there were no estimates for the Green function of the bounded C! sets, except for a class of the
subordinated Brownian motion. Moreover the boundary Harnack inequality (the main tool used
in the proof of Theorem (29)) does not hold in this general. For instance, the so-called truncated
stable Lévy process is manageable by [H4] but cannot be resolved by previous methods because the
boundary Harnack inequality fails in this case.

To bound the heat kernel pp(t,z,y) of the unimodal Lévy process {X;};>o and the C%! set
D we use the estimates of the free transition density p(¢,z,y) from [H3] and the estimates of
superharmonic functions of {X;}:>o at the boundary of D from [H5].

First we present the estimates for bounded sets. Let D be an open bounded set. In the remainder
of the section we assume that p,(0) is finite for every ¢ > 0. Then the semigroup of integral operators
on L*(D) with kernels pp(t, z,y) < p;(0) is compact, in fact Hilbert-Schmidt. General theory yields
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eigenvalues 0 < A\;(D) < Ao(D) < ... and orthonormal basis of eigenfunctions ¢; > 0, ¢2,¢s...:

pr(z) = DV / polt, 7, 2)di(2)dz.

In what follows, we interchangeably write A;(D) = A;.

Our estimates are generally expressed in terms of V, the renewal function of the ladder-height
process of one-dimensional projections of {X;}+>0, but they could equivalently be expressed in terms
of the more familiar Lévy-Khintchine exponent 9 of {X;}+>¢ or the Pruitt function k. Accordingly,
we observed a wide range of power-like asymptotics of heat kernels. The derivative of V' is the
éminence grise of the papers [H4] and [H5]. It is quite delicate to control V', but under a mild
Harnack-type condition (H), V' only influences the comparability constants, not the structure of
the estimates, thus allowing for the present generality of results.

The following theorem gives sharp estimates for general bounded C*! sets. Our estimates are
global, that is hold with a uniform constant for all £ > 0 and z,y € R%

Theorem 30 (Theorem 4.5 in [H4]). Let {X;}is0 be an isotropic unimodal Lévy process. Suppose
that ¢ € WLSC N'WUSC. There is 1o = 1o(d, %) > 0 such that if 0 <r < 1o and open D C R? is
bounded and C*' at scale v, and v(diam D) > 0, then for all T,y € R?, t > 0,

po(t,z,y) ~ P*(mp > t/2)P¥(rp > t/2)p (¢ A V23(r), x,y) (33)
and

If the scalings are global, then we may take ro = 00 and comparability constants depending only on
d, diam D /r and scaling characteristics of 1.

In addition, we obtained sharp estimates for the first eigenvalue ); in [H4, Proposition 4.4].
Due to intrinsic ultracontractivity obtained in [D2] for very large class of symmetric Lévy processes
we have a sharp bounds for the ground state for the generator £ with the Dirichlet condition. For
instance we obtained bounds for an arbitrary ball with the comparability constant that does not
depend on the radius.

Corollary 31 (Corollary 4.7 in [H4]). Let ¢ satisfy global WLSC and WUSC. Let r > 0 and ¢§T)
be the (positive) eigenfunction corresponding to \i(r) = M(B,). Then there is ¢ = c(d, ) such that

- V(ép(2)) _ V(ép(z))

— o Z DA/ d
ra2y(ry = 1 (z) < crd/2V(r) , z € R”

The proof of the above theorem is done in tree steps. First we proved the upper bound for small
time, next the lower bound also for small time, and finally we used the spectral theory to prove
estimates for large time. We start with the following upper bound, which elaborates Lemma 3 for
the complement of the ball.
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Theorem 32 (Theorem 2.1 in [H4]). Let {X;}i>o be an isotropic unimodal Lévy process. Suppose
that p(t,z) < tF(|z|), t > 0, z # 0, with non-increasing F > 0. Let (H) hold, R > 0 and D = Bj.
Then we have, for 0 <t < V?*(|z —y|) and z,y € D,

i (Voola) ) (Vioot)

i (Vo M) (Je5e m1) e =yl @)

Due to Proposition 11 we can always take F'(r) = ¢*(1/r), but recently in [Pre2] we obtained
better estimates that holds for every isotropic unimodal process and are sharp for a larger class
of symbols than WLSC and WUSC. For instance we obtained sharp estimates for gamma vari-
ance process for small time and space. Moreover in [Pre3| we proved the scale invariant Harnack
inequality for this type processes, so in particular (H) holds for them. Therefore we can use the
above theorem to such processes.

The consequence of scalings and Theorem 32 is the following upper bound.

pD(tax) y) S C

Theorem 33 (Theorem 2.6 in [H4]). Let {X;}i>0 be an isotropic unimodal Lévy process. Let R > 0
and let D be an open set satisfying the outer ball condition at scale R. Suppose that global WLSC
and WUSC hold for +p. Then there is a constant C = C(d, ) such that for all t > 0 and z,y € D,

V(0p(z)) ) ( V(op(y)) )
t,2,y) SC| ——— A1) | ———A1)p(tz,v).
po(t, z,y) (\/MV(R) VinV(R) p(t, ,y)
Another consequence of Lemma 3 is the lower bound for the Dirichlet heat kernel. Below we
state the estimates of the heat kernel of the union of two balls with the same radius. We used it in
[H4] to obtain the lower bound for general C*! sets.

Theorem 34 (Theorem 3.3 in [H4]). Let {X;}i>o be an isotropic unimodal Lévy process. Let R > 0
andp € WLSC(a, R, )N WLSC(a, R*,C). Let D = B(z1, R)UB(22, R). There eist ¢ = c(d, )
and C = C(d,v) such that

V(op() .\ (Vo))
i " 1) ( Vi

provided 0 < t < cVZ(R), z,y € D, dp(x) = 0B(z1,r)(z) and dp(y) = 53(22,é)(y).

Apart from the bounded sets we considered also the ezterior sets, which are the complement
of a bounded set, and a half-space-like set which is the one included between two translates of a
half-space. We thus covered bounded and some unbounded C**! sets. Unbounded sets are especially
challenging: the C' condition does not specify their geometry at infinity, whereas the geometry
strongly influences the asymptotics of the heat kernel. We note that the exterior C1! sets and
the half-space-like sets were studied for the fractional Laplacian in [H1] and [20]. The case of the
subordinate Brownian motions with global scalings is resolved in [41] for the halfspace, and [P1, H1]
handle the fractional Laplacian in cones. The presented estimates for the heat kernel of exterior
sets in Theorem 35 were new even for the sum of two independent isotropic stable Lévy processes.
Noteworthy, the comparability constants in the estimates do not change upon dilation of D if the
scalings of the Lévy-Khintchine exponent of {X;};>¢ are global, which is an added bonus of our
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approach. In general we strived to control comparability constants because they may be important
in scaling arguments and applications to more general Markov processes.

The next theorem may be considered as the main result discussed in this section. For the
isotropic a-stable proceeses a similar result was proven in [H1] (Theorem 3).

Theorem 35 (Theorem 5.4 in [H4|). Let {X:}i>0 be an isotropic unimodal Lévy process. Let
Y € WLSC(a,0,c) N WUSC(@,0,C) and d > @. Let D be a C* at scale Ry and D° C Bpg,.
Constants ¢, = c,(d,¥),c* = c*(d, ) exist such that for all z,y € R, ¢t >0,

Ca (%>4+2d (% A 1) (\—}Z% A 1) p(t,z,y) < pp(t, ,y)

and
V(ép(z)) V(én(y))
VEANV(RY) " 1) (m 4 1) P, 2:9)

We also obtained the following estimates for the half-space like domains.

pp(t,z,y) < c* (

Theorem 36 (Theorem 5.8 in [H4]). Let {X;}i>0 be an isotropic unimodal Lévy process. Let 1
satisfy global WLSC and WUSC, D be C*! at scale R and H, C D C Hy. Then for all z,y € R?
andt >0,

po(t,z,y) = P*(rp > )P¥(1p > t)p(t, z,y)  and  P(1p >1) =~ “V((S\%x))

and constants in the comparisons may be so chosen to depend only on d, ¢, a —b and R.

Al,

In particular we have P*(1p > t) = P*(7p > t/2) in the above two cases of unbounded D, hence
the approximate factorizations in all the three cases above may be considered identical in bounded
time. In fact, Theorem 32 and Theorem 34 give estimates which essentially resolve the asymptotics
of the heat kernels in bounded time and space for every C*! open set D, regardless of the geometry
of D at infinity.
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5. Description of other scientific achievements

Besides the five papers, which constitute mono-thematic series of publications, after Ph.D., I pub-
lished five articles, two was accepted and they are waiting for publication, another three were
submitted to journals. Total number of my publications is 18, the number of citations, according
to the Web of Science database (Sum of the Times Cited’ on 2017-02-16), is 132 (118 without
self-citations), and the h-index (Hirsh index) is 7. Total impact factor of the journals for five publi-
cations included in the scientific achievement, according to the Journal Citation Reports, is 7,044;
total émpact factor of the journals for all publications is 13,008, see Table 1.

Table 1: Impact factor of the journals according to Journal Citation Report from the publication
year (or 2015 for publications from 2016 and 2017)

article journal publication year impact factor
[HI]  Annals Prob. 2010 1.470
[H2]  Potential Anal. 2014 0.992
[H3]  J. Funct. Anal. 2014 S 1.322
[H4] Stoch. Pr. Appl. 2014 1.056
[H5]  Prob. Th. Rel. Fields 2015 2.204
[P1] Collog. Math. 2010 -
[P2] Colloq. Math 2012 0.403
[P3] Potential Anal. 2016 0.956
[P4] J. Math. Anal. Appl. 2017 1.014
[P6]  Trans. Amer. Math. Soc. 2015 1.196*
[P7] Prob. Math. Stat. 2016 0.315**
[P5] Potential Anal. 2017 0.956
[D1]  Tllinois J. Math 2007 0.558
[D2] Prob. Math. Stat. 2008 -
[D3]  Potential Anal. 2008 0.566

‘ Sum: 13,008

* - article [P6] is waiting for publication since September 2015.
** _ article [P7] is waiting for publication since February 2016.

[P1] K. Bogdan, T. Grzywny. Heat kernel of fractional Laplacian in cones, Colloquium Mathematicum
118(2), 365-377 (2010).

[P2] T. Grzywny, M. Ryznar. Potential theory of one-dimensional geometric stable processes, Colloquium
Mathematicum 129(1), 7-40 (2012).

[P3] T. Grzywny, M. Ryznar. Hitting times of points and intervals for symmetric Lévy processes, Potential
Analysis, 1-39, DOI:10.1007/s11118-016-9600-z (2016).

[P4] W. Cygan, T. Grzywny. Heat content for convolution semigroups, Journal of Mathematical Analysis
and Applications 446(2). 1393-1414 (2017).
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[P5] T. Grzywny, K. Szczypkowski. Kato classes for Lévy processes, Potential Analysis, 1-32,
DOI:10.1007/s11118-017-9614-1 (2017).

[P6] W. Cygan, T. Grzywny, B. Trojan. Asymptotic behavior of densities of unimodal convolu-
tion semigroups , w druku w Transactions of the American Mathematical Society, 1-22, DOI:
10.1090/tran/6830.

[P7] T. Grzywny, T. Jakubowski, G. Zurek. Green function for gradient perturbation of
unimodal Lévy processes, w druku w Probability and Mathematical Statistics, 1-25,
(http://www.math.uni.wroc.pl/~pms/forthcoming.php).

[Prel] T. Grzywny, K.-Y. Kim, P. Kim. Estimates of Dirichlet heat kernel for symmetric Markov processes,
1-40, arxiv: http://arxiv.org/abs/1512.02717.

[Pre2] T. Grzywny, M. Ryznar and B. Trojan. Asymptotic behaviour and estimates of slowly varying con-
volution semigroups, 1-35, arxiv: http://arxiv.org/abs/1606.04178.

[Pre3] T. Grzywny, M. Kwasnicki. Potential kernels, probabilities of hitting a ball, harmonic
functions and the boundary Harnack inequality for wunimodal Lévy processes, 1-34, arxiv:
https://arxiv.org/abs/1611.10304.

Before PhD 1 published the following tree papers, which will not be discussed here.

[D1] T. Grzywny, M. Ryznar, Estimates of Green Function for some perturbations of fractional Laplacian,
Illinois Journal of Mathematics 51(4), 1409-1438 (2007).

[D2] T. Grzywny, Intrinsic ultracontractivity for Lévy processes, Probability and Mathematical Statistics
28, 91-106 (2008).

[D3] T. Grzywny, M. Ryznar, Two-sided optimal bounds for Green functions of half-spaces for relativistic
o-stable process, Potential Analysis 28(3), 201239 (2008).

I will now discuss the results obtained in the papers [P1]-[P5] and [Prel]-[Pre3].

Hitting probability

The main results of the paper [P3| are estimates and asymptotics for the tail function for hitting
times of points and intervals for the symmetric Lévy processes in the real line, provided the process
hits every point with positive probability. For example we showed that if 1 has the weak lower
scaling property with index a > 1 then

1
WD)z

Under the assumption that the process is unimodal we do not need to assume scaling and we
obtained the following estimates

]P)z(T{O}>t)% reR, t>0.

K
P?(Tioy > t) = 7 (z) A1,

(1/471(1/1))
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where K is the compensated potential kernel

K(z) = / " (04(0) — p(a)) .

In addition to hitting times of points, we provided estimates for the tail function for hitting time of
the interval for any symmetric Lévy process, whose characteristic exponent satisfies the condition
WLSC with the exponent o > 1. To prove this result we obtained the global Harnack inequality
for the considered processes, which was quite surprising, because we assume only scaling for 9 and
not anything more. In particular, the Lévy measure may be purely atomic.

Heat content

In the article [P4] we considered the quantity
Ho(t) = / P*(X, € Q)do
Q

related to an arbitrary Lévy process {X };>0 in R?, which is called the heat content. We obtained
estimates of Hq(t) in terms of the Pruitt function . and the asymptotic behaviour as ¢ goes to
zero. IN particular we provided asymptotics for all Lévy processes with the finite variation in full
generality. For this purpose, we used the semigroup theory and that Lipschitz functions vanishing
at infinity are in the domain of the infinitesimal generator. We proved that

9] — Ho(t) ~ tC(Q),

where C(Q) is an explicit constant depending on the process. In addition, we described the asymp-
totic behaviour of the heat content for isotropic processes whose characteristic exponent 1 is a
regularly varying function at infinity with index o > 1. In this situation

|9 = Ho(t) ~ 1/¢7(1/t)e(d, o) Per(€),

where Per(2) is a variational measure of the boundary of the set Q. For regular sets, for instance
Lipschitz, Per(Q) is equal to a Hausdorff measure of the boundary of .

Heat kernels asymptotics

The classic result obtained by Polya (d = 1) and Blumenthal and Getoor (d > 2) gives the
asymptotic behaviour of the heat kernel of the isotropic a-stable processes, a € 0,2),

plz) A (36)

tlz|—a—0 t|x]|~d—e

where A, is some constant. In the paper [P6] we considered isotropic unimodal Lévy processes,
whose symbols vary regularly at 0 or at infinity. We obtained an analogous limit as in the stable
case, if the exponent of regularity of the symbol is strictly between 0 and 2. It should be emphasized
that the limit is uniform when time ¢ and position z satisfy an appropriate limiting condition. In
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addition, we proved that conversely the existence of such limit necessitates regular variation of
the characteristic exponent. The main result of [P6] gives an analogue of Theorem 13, replacing
inequalities by limits. Besides studying the off-diagonal behaviour of the heat kernel we provided
limit on the on-diagonal, too. We proved the strong ratio limit theorem.

In the paper [Pre2] we improved methods developed in [P6]. We obtained the asymptotic
behaviour of the heat kernel both on and off the diagonal, in the case when the symbol belongs to
the so-called de Haan class, which is a subclass of slowly varying functions. We also proved that
this de Haan condition is equivalent to the fact that the Lévy kernel is regularly varying function
with index —d.

Kato classes

The Kato class plays an important role in the theory of stochastic processes and in the theory of
operators that emerge as generators of stochastic processes. The definition of the Kato class may
differ according to the underlying probabilistic or analytical problem. In the first case the primary
definition of the Kato condition is

tim s ([ gl an) | <o, (37)

Here q is a Borel function on the state space of the process {X;}+>o. By the Khas’minskii Lemma the
condition yields sufficient local in time regularity of the corresponding Schrédinger (Feynman-Kac)
semigroup

Pse) = [ep (- [ a0 5000).

The condition (37) can be understood as a smallness condition with respect to time. The
alternative definition of the Kato condition is given by the following space smallness,

i [sup B ([ e aan (Rl )| =0, (3)
r—0+ T 0

for some A > 0 (equivalently for every A > 0). If we denote the resolvent by G*, then the above
limit is of the following form

r—0t z

lim [sup G’\(lg(z,r)lql)(x)] = 0.

The main result of [P5] answers the question if the definitions of the Kato class through the
semigroup and through the resolvent of the Lévy process in R? coincide.

Theorem 37. Let {X;}1>0 be a Lévy process in R®. The conditions (37) and (38) are NOT
equivalent if and only if 0 is regular for {0}, which means P°(Tjg; = 0) = 1.

We also give an analytic reformulation of these results by means of the characteristic exponent
of the process. Furthermore, when these definitions are not equivalent, we fully describe (37) and
(38). We should emphasise that the above theorem holds for arbitrary Lévy process and the proof
depends on the structure of the process, especially for the asymmetric processes.
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Slowly varying symbols

Most results obtained in papers [H1]-[H5] concern the isotropic unimodal Lévy processes with
characteristic exponents satysfying weak scaling conditons WLSC and WUSC or at least WLSC.
The processes with logaritmically growing symbol are not well studied and understood. In the
paper [P2] we studied the geometric stable processes (9(€) = In(1 + [€]%), a € (0,2]) on the real
line, and proved among other things, the scale invariant Harnack inequality and estimates for the
Green function and the Poisson kernel for intervals and the half-line. It was the first result of this
type for the process with the slowly varying symbol. In the paper [Pre2], we focused on estimates
of the heat kernel and the Green function for the free processes which characteristic exponents
that do not satisfy WLSC. Among other things we obtained sharp estimates for the heat kernel of
processes with the Lévy kernel form %ﬂf”, where £ is a bounded function slowly varying at infinity.
The symbol of this process varies slowly as well and

€ g(s
v ~ [ s

Under this assumption the heat kernel has the following estimate

U(1/|x

pe(z) = t—(]ailld I)e_“/’(l/'m').

We should emphasize that in this case the function p; is not bounded and cannot be expressed by
the inverse Fourier transform, therefore we cannot use the standard estimates obtained by Fourier
analysis discussed the previous sections.

The paper [Pre3] mainly concerns the processes with the symbol 7 not satisfying WLSC. In
the first part of this work, we proved two-sided estimates of hitting probabilities of balls, and we
improved estimates obtained in [H2] and [Pre2| for the Green function of R%. In the second part
we proved the scale invariant boundary Harnack inequality and Martin representation of harmonic
functions, in particular the scale invariant Harnack inequality, under mild assumptions on the
Lévy kernel. As an application, we provided sharp two-sided estimates of the Green function of a
half-space.

Heat kernels of killed Markov processes

The heat kernels with the Dirichlet condition were also the topic of papers [P1], [P3] and [Prel].
In [P1] we studied the heat kernels for cones for the fractional Laplacian, where we obtained sharp
estimates. It was the first such result for the unbounded sets for non-local operator. These work
was also the first stage of the study developed later in the paper [H1]. The article [P3] mainly
concerned the hitting probability for points and intervals for general symmetric Lévy processes on
the real line. As an applications of the obtained estimates we also found estimates for the heat
kernels of processes killed after hitting the interval for isotropic unimodal Lévy processes, whose
symbols satisfy global weak scaling conditions with exponents between 1 and 2. We thus extended
Theorem 35 to 1 = d < o. In this situation, the factorization (32) also holds, by the estimates of
the survival probabilities are more complex than for transient processes, as discussed in Theorem
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35 above. We should emphasize that the recurrent processes, except the isotropic stable processes
[H1], were not explored with regard to the heat kernel estimates for exterior sets, and to the best
of our knowledge our result was the first one with such generality.

Apart form the Lévy processes we considered more general Markov processes in the work [Prel].
We obtained sharp estimates for the heat kernels of killed Markov processes, whose jump measures
are comparable with the Lévy measure of some isotropic unimodal Lévy process. The results appear
to a wide class of Markov processes and they are also new for the Lévy processes, because in this
paper we considered more general sets than C1.

Gradient perturbation

The paper [P7] concerns the study of the operator £ + b(z) - V on bounded subsets of R%, d > 2,
where L is the generator of an isotropic unimodal Lévy process, whose the symbol satisfies scaling
conditions WLSC and WUSC with exponents greater than 1, and b is a vector field from an
appropriate Kato class. The operator L is of higher order than V, therefore £ + b(z) - V is
an operator £ perturbed by an operator of the lower order. The main result of the paper is
comparability of the Green function of £ and the Green function of the perturbation on bounded
C*! sets, under additional mild assumption on the Lévy kernel. In particular, the subordinated
Brownian motions satisfy the additional assumption. The basic tool was the Duhamel formula for
Green functions, which we proved in [P7]

Gp(z,y) = Gplz,y) + /D Gp(z,2)b(2) - V,Gp(z,v)dz.

Here Gp(z,y), Gp(z,y) are Green functions for a set D for the operator £ and its gradient per-
turbation respectively. The immediate consequence of this result was the scale invariant boundary
Harnack inequality for harmonic functions with respect to £+ b(z) - V.
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