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My research interests emerge mainly from two sources: ergodic theory and topological
dynamics, with special emphasis put on the entropy theory. The entropy is both the
measure of complexity of a dynamical system and an isomorphism invariant for dynamical
systems. The subject of the scientific achievement is a consistent theory of entropy for
Markov operators, which generalizes the classical entropy of a dynamical systems — one of
the most important notions of ergodic theory. In particular, building on basic definitions
and properties which I studied in my PhD dissertation, I generalize to operator case
several crucial theorems concerning entropy of a dynamical system, e.g., the Shannon-
McMillan’s theorem in [A3], Kushnirenko’s theorem and Rokhlin’s theorem (on genericity
of zero entropy) in [A4]. A special role is played by the first of these theorems. The main
inspiration for undertaking the research in this case was the claim (attributed to B. Weiss)
that a correct definition of entropy should imply a Shannon-McMillan-Breiman type
theorem. The Shannon-McMillan—Breiman’s theorem, the Orstein’s isomorphism theorem
and the Variational Principle are generally agreed to be the key three theorems in entropy
theory. None of them translates easily to operator case. The problem of transferring the
Variational Principle to operator setup was treated in my doctoral dissertation (one of the
inequalities was proved-—the other one is still an open question). The Ornstein theory is
not meaningful for Markov operators as it is valid only for invertible maps. Moreover, the
notion of a Bernoulli system requires a sequence of independent identically distributed
random variables, which leads to an integral operator having zero entropy. So the only
one left is the Shannon-McMillan-Breiman’s theorem. For classical dynamical systems
it states that assuming ergodicity one can determine the entropy investigating just one
typical point. For appropriately defined information function, based on a partition of
a phase space, we obtain the almost sure and L' convergence of average information,
calculated along the trajectory of a fixed point, to a constant number, namely the entropy
of a system with respect to the partition. According to this fact, in real situations, when
the theoretical dynamical system models some physical experiment, we hope to be able to
estimate complexity of the system observing a large but finite set of data. In [A2] and [A3]
we obtained full analog of the Shannon-McMillan theorem for doubly stochastic operators
(i.e., convergence in L'). Clearly, we first had to define a generalized information function.
This generalization covers the classical definition, i.e., used for classical dynamical systems
(that is, Koopman operators of measure preserving maps) and collections of characteristic
functions of partitions it restores the classical Shannon information function. Hence, it is
proved that the operator entropy satisfies the "Weiss’ correctness criterion” and so it solves
one of the main questions of operator entropy theory. The remaining problems, solved in
my papers, were also posed by top specialists from the field of dynamical systems: the
problem of equality with Mali¢ky—Rietan’s entropy by W. Stomczyniski, the problem of
genericity of zero entropy by A. Vershik and the problem of studying null operators and
transferring the Kushnirenko’s theorem to the operator case by V. Bergelson.

Below I present my results with more details. In the first section I will recall basic
knowledge necessary to understand the content of papers constituting the scientific achie-
vement. In next four sections I will discuss the articles, which were listed above. Then
I will describe in short other works which I have completed and activities which I have
undertaken after receiving the PhD degree.



4.1 Preliminaries

In the classical case by a dynamical system we mean a quadruple (X,%,y,S), where
(X, X, ) is a probability space (usually a Lebesgue space) and S : X — X is a measure
preserving map. As a natural generalization one can consider a Markov operator, known
also as doubly stochastic operators. By a doubly stochastic operator we mean a linear
operator T': L'(u) — L'(p), which satisfies the following conditions:

(i) Tf is positive for every positive f € L'(u),
(ii) T1 =1 (where 1(z) =1 for all z € X),

(iii) [Tfdu= [ fdu for every f € L*(p).

Every measure preserving transformation S on (X, ¥, ) induces a doubly stochastic ope-
rator by the formula T'f = f o .S (the Koopman operator of S). More generally, from a
stationary transition probability P(-,-) we obtain a doubly stochastic operator letting

Tf(@) = [ f@)P(,d). 1)

On a standard Borel space every doubly stochastic operator is given by this formula. It is
known that an operator defined on L?(u), p > 1, and satisfying (i)—(iii) uniquely extends
to a doubly stochastic operator on the whole L'(1). Such an operator is called ergodic if
every function invariant under the action of T" is constant. In the operator context one
uses the following definition of isomorphism:

Definition 4.1 ([EFHN]) Let T be a Markov operator on L'(u).
1. T is a Markov embedding if it is a lattice homomorphism, i.e., |Tf| =T|f|.
2. T is a Markov isomorphism if it is a surjective Markov embedding.

In fact, Markov embeddings correspond to homomorphisms of measure algebras and Mar-
kov isomorphisms—to conjugacies.

The relation between Markov operators and transition probabilities (also called sto-
chastic kernels) allows one to interpret Markov operator dynamics as the dynamics in
which additional randomness is present—future states of a system are not uniquely de-
termined. Instead, the next state of the system is chosen according to some probability
distribution. Consequently, one can think of using operator dynamics to model evolution
of systems which are subject to random perturbations. Simultaneously, it is a base for
generalizing notions known in classical dynamical systems. Among monographs which
present this point of view are [EFHN], [F], [LM]. In the latter, there is even a chapter on
entropy of a Markov operator. Yet this is not the entropy which extends the Kolmogorov—
Sinai’s invariant, based on Shannon’s entropy of a probability vector (or a partition of a
probability space), to operator case, but the Boltzmann’s entropy.

Various attempts to transfer the Kolmogorov—Sinai’s entropy to the world of doubly
stochastic operators were made by many authors. One should mention here the proposition
by Ghys, Langevin and Walczak published in [GLW], and developed later by Kaminski and
de Sam Lazaro in [KS], definitions by Alicki, Andries, Fannes, Tuyls [AAFT] and Makarov
[M], based on von Neumann’s matrix entropy, the lattice-based definition by Palm [Pa)
and, finally, the entropy defined by Malicki and Rietan in [MR]. As stated in [DF], the
majority of these attempts implements the following general scheme of construction:
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(1) one specifies a T-invariant collection I of selected finite families F of measurable
functions;

(2) one specifies an operation U of joining these families, so that ¥ UG € ' whenever
FeFand G € IF; we will also assume that U is associative and commutative and
that the cardinality of F LU G depends only on the cardinalities of the components;

(3) one defines the static entropy H,(F) of a family F € F with respect to y;

(4) one then defines
1
h,(T,9) —hmsup —H,(3™),

n—co

where " = | {20 T*F and T*F = {T*f : f € St};
(5) and eventually one defines the entropy of T as

h,(T) = suph,(T,T).
FeF

For example, the classical Kolmogorov-Sinai entropy for measurable maps uses I defined
as families of characteristic functions corresponding to measurable partitions and joining
is obtained by pointwise multiplication (or equivalently by the application of pointwise
infima). In [GLW]| one uses for ' measurable partitions of unity, i.e. collections F = {f; :
1 < i < 7} with each f; nonnegative and with Y, fi = 1. For [AAFT] the condition is
changed to 3; f2 = 1. In both cases joinings are done via pointwise multiplication.

In [DF], which was the main part of my doctoral dissertation, it was shown that the
above scheme, enriched with some natural requirements concerning the entropy function,
guarantee that the final quantity h,(T") does not depend on the formula used for H,(F).
The set of articles presented here as the main achievement is a natural continuation of the
research started in [DF]. Below I cite the axioms of entropy as presented in [D3]—these
statements are mildly weaker than those proposed in [DF] (meaning that they are satisfied
by potentially bigger class of definitions of entropy). The conditional entropy is given by
the formula

H,(F19) = Hu(FU G) — Hu(9) .
(A) MONOTONICITY AXIOM

For #, G and H belonging to I it holds that
H(F(H) <H FUGH)  and  H,(F|9U%) < H,(F9),
where we assume that H,(F|H) = H,(F) if H is the empty collection.
In particular, the axiom implies that
H,(F U §J90) < HL(F130) + H,([%)

and

u(l_lrjrk
k=1

L 9k> iHu Fel k) -

Moreover, for any n > 1,
h (T, 7T"F) =h,(T,F).



We define the L'-distance of two collections F = {f;: 1<i<r}and §={g: 1<
'}, " <7 by the formula

dist(F, §) =m7rin{max/|fz Gn(i)| dp}

where the minimum ranges over all permutations 7 of the set {1,2,...7}, and where G is
considered an r-element family by setting g; = 0 for v’ < i < 7.

(B) CONTINUITY AXIOM

For any r € N and € > 0 there exists d. > 0 such that if cardinalities of &, G
and H are bounded by r and dist(F,§) < d. then

[H(F190) ~ H(S%0l <& and  [H,(30F) ~ H,(99)| <.

For a finite partition A of the space X we denote by 1,4 the collection {14 : A € A}
of characteristic functions of elements of A.

(C) PARTITIONS AXIOM

For any measurable partition A the collection 1,4 belongs to I and the en-
tropy H,, of such collection is defined as the Shannon entropy of the corre-
sponding partition:

— > u(A)log u(A).

AcA

Moreover, for a collection of partitions A, ..., A, it holds that

() = (V)

(D) DOMINATION AXIOM

For any r 6 N and € > 0 there exists v > 0 such that for any collection
F={fi: 1<i<r}andany partition « of the unit interval [0, 1] into finitely
many submtervals of lengths not exceeding ~ it holds that

Hy(FILy, 1 U @) <&
where @ is some collection depending only on « and satisfying
1 n
e (]7) -
(usually, @ is the empty collection or it consists only of constant functions).

Theorem 4.2 ([DF]) IfT is a doubly stochastic operator on L'(u) then the azioms (A)-
(D) (along with the construction steps (1)-(5)) completely determine the value of h,(T').

In order to prove the theorem, in the paper we developed the theory of asymptotic
lattice stability of Markov operators. The following lemma was its starting point:
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Lemma 4.3 ([DF)) Let f and g be measurable bounded functions. For any § > 0 there
exists N € N such that for every k € N and | > N the following inequalities are satisfied

JITHT'f v Tlg) = (T4 v Tg)| dpu < 8
and

JITHET'f ATlg) — (T4 f ATHg)] dpu < 6.

As a consequence we obtain convenient properties of operators concerning the action of
their far iterates on certain characteristic functions or on lattice polynomials on a fixed
set of variables.

Below I present the results of the papers [A1]-[A4].

4.2 Ttem [Al]

The definition of entropy proposed by Malitky and RieGan in [MR| does not implement
the scheme described above and the first paper of the achievement is devoted to studying
its properties. The study was motivated by the belief that equality between Mali¢ky—
Rie¢an’s entropy and the one given axiomatically would strongly support the claim that
the operator entropy is worth investigating.

The [MR] definition is based on the notion of a partition of unity, i.e., a finite col-
lection of nonnegative measurable functions, which sum to one. For instance, if A is a
finite partition of X into measurable subsets, then the set 14 = {14 : A € A} of their
characteristic functions is a partition of unity. Contrary to our definition, Mali¢ky and
Rie¢an do not use a joining operation, but they introduce an order relation on the set of
all partitions of unity in the following way:

U > ®if ¥ =yeq ¥y, where ¥, are pairwise disjoint and X yey, ¥ = ¢

(to ensure that the relation is antisymmetric one disregards these partitions of unity which
contain functions constantly equal to zero). We distinguish between the elements which
are equal, i.e., a partition of unity is a finite sequence of functions (or a multiset) rather
than a set, e.g., {,1,..., 1} consists of n identical elements.

E, ;’ .

The entropy of a partition of unity ® is defined in [MR| by the formula
HYR(®) = -3 /wdu : 10g/<pdu~
ped

For n partitions of unity &4, ..., ®, they define
HME(®,, .., ®,) = inf(H¥FT) : T = &, » &,,..., ' > ¢, }.
Denoting HY#(®, T®, ..., T '1®) by H¥E(®, n) one obtains a subadditive sequence, so it
is possible to put
1
hWME(T, @) = lim —HM#(®,n).
n—oo n

Finally, for an arbitrary set R of partitions of unity one defines

h¥R(T) = sup hM*(T, @)
®eR

The main result in the first item of the achievement is the following theorem:



Theorem 4.4 ([A1l, Theorem 3.7])
hy™(T) = hu(T),

where R is the set of all partitions of unity on X and h,(T) is the operator entropy
compliant with the axioms given in the preceding section.

To prove the theorem it suffices to compare h}¥®(T') with any explicit definition of
operator entropy. In the current paper it is compared with the one defined in [DF] in the
following way.

We use the same notations as in the general scheme of the construction of entropy.
The [DF]-definition accepts the set of all measurable functions with range in [0,1] as F
and uses the set-theoretic union (or rather the operation of concatenating if we interpret
collections as finite sequences) as the joining operation U. For f: X — [0,1] we define

A ={(z,t) e X x [0,1] : t < f(x)},

and by A; we denote a partition of the product X x [0,1] consisting of Ay and its
complement. For a collection F of measurable functions let Ay = Vg Af. It is easy to
verify that Ag,g = As V Ag. Let A be the Lebesgue measure on the unit interval. We
define

HPF(F) = Huen(As) = — 3 (1 x \)(4) - log( x A)(A), )
WO (T, F) = lim - HPT (5,

hPF(T) = suphP*(T, ),
F

where the infimum ranges over the set of all finite collections of measurable functions from
X into [0,1]. Though the sequence H,(F™) is not subadditive, the limit in the formula
defining h, (T, F) exists, but the proof of the fact is quite laborious.

The definitions that we consider exploit different tools— the Mali¢ky—RieCan’s entropy
uses partitions of unity, while our explicit formula for entropy makes use of partitions
of the product X x [0, 1], generated by collections of functions. The first step in the
proof is to describe some operations which interchange between these objects. These
operations depend on enumeration of elements of a collection of functions or a partition
of unity. For a partition of unity ® the collection ¥ (®) consists of partial sums of &, i.e.,
if ® = {1,...,,} then Z(®) = {©0_,¢; : j = 1,...,7}. Conversely, given a collection
fi < fa <..< f, =1, called an increasing collection, we obtain a partition of unity by
taking differences f;11 — f; of subsequent functions. Moreover, each collection ' may be
transformed into an increasing collection ©(F) by the multiple use of lattice operation,
so that the following equality holds: A

Ag = Ag(s)-

The partition of unity obtained from a collection F by forming an increasing collection
O(F) and then taking differences of subsequent elements will be denoted by PU(TF).
Unfortunately, in general O(T'F) # T(O(F)) and, consequently, PU(TF) # T(PU(TF)).
On the other hand, it holds that

TL(®)=3(T®), S(PUF)=0(F), PUE(D)) =2,
HYR(PU(F)) = HPF(0(F)) = HP(9)



Furthermore, if ¥ = {fo,..., /+},5 = {go,---,gs}, where fo =0 < f; < ... < f, =1 and
g0 =0< ¢ <...<gs =1, then Ag = Ag implies PU(G) = PU(TF).

For any partltlon of unity ® we denote by ®% the collection pZ3 T*(Z (®)). The
above observations indicate that for an arbitrary partition of unity it holds that Ag(ez)
At sy, 50 PU(PE) = T*® for every n € N and k < n. This, in turn, yields the following
inequality:

HYR(@,n) < HYR(PU(DF)) = HPF(2%),

implying that hMR(T) < hPF(T).

Proving the converse inequality is a much more difficult task. The goal is to estimate
from above the quantity h?¥ (T, F) for an arbitrary finite collection F. We know that for
any natural number [ the equality hPF (T, F) = hPF (T, TIS’) holds. Using the theory of
asymptotic lattice stability of doubly stochastic operators we can replace a given collec-
tion F by its far image T'F, so that for a previously fixed € > 0 and § > 0 the following
inequalities are simultaneously satisfied:

DF(k _
H (T F ‘ HerT’C:rf_l(a) U Oé) < €,
where @ is a collection of constants (as aforementioned in the domination axiom), and

dist (]l\/fETk, Ha) (]lv )) < 0.

At the same time, we can adjust the number § = §(¢) so that the condition dist(®;, ¥;) < ¢
for i = 1,...,n (with cardinalities of partitions of unity ®; and ¥; being fixed) ensures
that

[HME(®,, ..., ®,) — HME(W,, . U,)| < (n+ 1)e

(see lemmas 3.3, 3.4 and 3.5 in [Al]). Thus, we obtain the following bound on the level
of static entropies:

HPF(F™) HMR(]lvf 1) T ) + HPP (@) + (2n + 1e.

Finally, we get hPF (T, F) < hME (T LAV )> + 2¢, which, in fact, ends the proof.

The current paper contains also a snnpler proof of equality between h¥®(7T') and the
Kolmogorov—Sinai entropy of a measure preserving map S in case if T' is a Koopman
operator of S (in [MR] there was no proof and even no statement of this fact). Since the
presented result is much more general, I will refrain from commenting on the proof of the
weaker one.

I presented results of the paper on one of the conferences of the Czech-Slovak Workshop
on Discrete Dynamical Systems series, while one of the authors of [MR] (Petr Mali¢ky)
was present in the audience. The second author asked me to send him a copy of my paper.

4.3 Item [A2]

In ergodic theory the classical notion of entropy has the following interpretation. The
space X is understood as as a phase space of some physical system, while the r-element
partition models the experiment performed on that system, having r possible outcomes.
The apparatus used to measure results of the experiment is assumed to be faultless, i.e.,



in each state of the system (point of a phase space) it yields an outcome unambiguously
assigned to this state. Doubly stochastic operators may be used to deal with situations
in which the measurement of an experiment is disturbed or unclear; in each state the
machinery gives outcomes according to some probability distribution. In this way one
obtains a vector-valued function on X assigning to each x € X a probability vector or,
in other words, values of a r-element partition of unity on X. After taking partial sums
we are led to an increasing collection. (However, from the mathematical point of view
it seems more elegant and more convenient to formulate the definition of entropy for
arbitrary collections of functions with range in [0, 1], not only for increasing ones, and so
we do.) The action of an operator models a change in settings of the measuring tool or a
flow of time. The entropy of F is understood as the information content in the experiment.
One would thus expect that the entropy of the family F satisfies the following conditions:

(i) if F consists solely of constant functions then its entropy is equal to zero, because an
experiment modeled by such family yields the same results regardless of the state
of the system, providing no information about the actual state;

(ii) for every family F the conditional entropy H,(¥|F) = 0, because copying the results
of a once performed experiment does not give any new information.

The aim of [A2] was to come up with the formula for static entropy H,(¥), which would
fulfil the above postulates. The axioms do not guarantee that these properties are satisfied.
In fact, none of the already mentioned versions of entropy has both these properties at
the same time: definitions based on partitions of unity, where the joining operation is
implemented by pointwise multiplication, essentially increase the size of the joining FUIF,
which results in increasing H,(F U J), and, consequently, they increase the conditional
entropy; definitions from [DF| and [MR] give positive values of entropy to collections
consisting of constant functions.

We assume that the set ' from the general scheme is the set of all finite sequences of
measurable functions X — [0, 1]. The joining U is done by concatenating these sequences.
We also assume that I contains the empty sequence O and that Ag = {X}. The partitions
A¢ and As of the product X x [0, 1] are defined in the same way as in the previous section.
By A* we denote the t-section of the set A € X x [0,1], i.e. A' = {z € X : (z,t) € A}.
By A% we mean the partition of X consisting of appropriate t-sections A, where A € Ag.
Clearly, it holds that Az g = Az V Ag and (Asug)’ = (As V Ag) = AL V AL

Definition 4.5 The entropy of F is defined by

1
HA(F) = [ Ha(A5) dA®)
where Hy (o) is the Shannon entropy of the partition o of X.

The idea which stands behind this definition is to treat the product X x [0,1] as a set of
copies of the space X and to study evolution of the partitions induced on these copies,
which is governed by the dynamics generated by a given operator T
It is obvious that the definition satisfies the above postulates. In [A2], in a series of
lemmas it is verified that the formula satisfies axioms of entropy. Much of the paper is
devoted to verification of the existence of the limit in:
h,(T,5) = lim H,(3").

n—oo

9



Similarly to the explicit definition from [DF] and contrary to the classical case, existence
of the limit is not automatic, because the sequence H,(3™) is not subadditive; indeed, the
invariance of H, under the action of T is missing, i.e., in general, the entropy H,(F) is
not equal to H,(TF). In the proof of existence of the limit we use the Iwanik’s theorem
on integral representation of stochastic operators:

Theorem 4.6 ([I]) If T is an operator on the set of bounded measurable functions of a
standard Borel space and T is induced by a transition probability (see the formula (1))

then
Tf@) = [ flou(@)drw)

[0,1]

where \ denotes the Lebesgue measure on the unit interval and (w, ) — @,(x) is a jointly
measurable map from [0,1] x X into X.

The map, whose existence is granted by the above theorem, allows one to introduce a
measurable transformation ¢ : [0,1] x X — [0,1] X X by ¢(w,z) = (w,¢.(z)). Unfor-
tunately, this map does not preserve the product measure A X u. Since the iterates T*
are also induced by transition probabilities, in the same way one can obtain maps ¢
corresponding to T*. Let us denote by ®, the operator pointwise generated by the map
i (that is, @ f = fo¢y). For a function f : X — [0,1] let f: X x [0,1] — [0, 1] be given
by f(w,z) = f(z) and let F denote the collection {f : f € F}. The following lemma is
crucial in the proof of existence of the limit.

Lemma 4.7 ([A2, Lemma 3.2]) For an increasing collection of functions G it holds
that

Hyoor (@45) = H,(G).
Every collection of functions can be made into an increasing one by means of the opera-
tion ©, which was mentioned in the previous section. Moreover, for any é > 0 there exists
N € N such that for any k,l € N, where I > N, it holds that |TFf — &, T'f yl, S0 we
obtain the asymptotic invariance of our static entropy:

Lemma 4.8 ([A2, Lemma 3.3]) For every ¢ > 0 there exists N € N such that for any
k, m € N it holds that

|H, (T’“+NT") —H, (TNgm)I < me.
Finally, the asymptotic subadditivity follows:

Lemma 4.9 ([A2, Lemma 3.4]) For every € > 0 there exist N € N and ¢ > 0 such
that for any k € N and m > N it holds that

Hu(ff“m) < H, (’f’“) + H,(F™) + ¢+ me.

The existence of the limit from the fourth step of the general scheme is now proved simi-
larly to the classical case, when full subadditivity of entropy is present ([A2, Theorem 3.5]).

New definition of entropy allowed us to prove the product rule—a classical theorem,
which was hitherto not known to be true in the operator case. If T' is a doubly stochastic
operator on L'(X, 1) and S is a doubly stochastic operator on L*(Y,v) then the product
T x S of the operators is defined first for the functions of the form f(z) - g(y), where
fel'(X,p), ge L} (Y,v), by

(T x S)(fg)(z,y) =Tf(x) Sg(y).
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Then one extends it linearly to the set of all linear combinations of such functions. This
set is dense in L'(u X v), so there is a unique extension to a continuous (and doubly
stochastic) operator on the whole L*(u X v). Alternatively, if the operators T and S are
induced according to the formula (1) by transition probabilities Pr and Ps, respectively,
then the product T' x S is given by the same formula by the corresponding product
measure.

Theorem 4.10 ([A2, Theorem 4.5])
hywo (T x S) = h,(T) + h,(S5)

The proof contains a number of unpleasant “technicalities”, connected with the extensive
use of the domination axiom (axiom (D)) and lemmas from asymptotic lattice stability of
doubly stochastic operators. But the central idea relies on a simple observation that for
partitions « of the space X and (8 of the space Y the following equality holds:

Hu(]laxY U ]lXx,@) = Hu(]laXB) = Hu(]la) + Hu(]lﬂ) )
where partitions a x Y, X x ( of the product X x Y are defined as
axY={AxY:Aca}, XxpB={XxB:Beg}

Without going deep into details, the sketch of the proof is as follows. To show that the
sum of entropies of single operators is the upper bound for the entropy of their product,
one fixes a collection € of measurable functions X x Y — [0, 1] and approximates each of
its elements by a function of the form 3 f;¢;, where f; and g; are functions on X and Y,
respectively. Then one chooses a number L € N and sequences of partitions o, of X and
Bn of Y (n € N) so that the following conditions hold:

1. all functions T f; are well approximated by simple functions, which combine cha-
racteristic functions of elements of the partition oy, and all functions S%g; are well
approximated by simple functions, which combine characteristic functions of ele-
ments of G,

2. for n € N distances dist(T"1a,, La,,,) and dist(S"1g,,1g,,,) are small.

Then we derive that the functions (T x S)I*™(Y; fig;) are well approximated by simple
functions combining characteristic functions of elements of the partition a1y X Bpin. It
follows that

Huew (8°) < Mo (1y_, g0nxV, Ly 100) +EO(N)

- H#<]lvn<N arin) F Hu(ﬂvnwﬂm) +eO(N)
<Hu((1a)") + I, ((16,)") +£0(N),

which implies
b (T x S,8) <h,(T,1a,) +h,(S, 1g,) + € < h,(T) + b (S) +e.

Conversely, starting from collections F of functions on X and § of functions on Y, we
choose partitions of the underlying spaces with similar properties as in the first part, and
bound the entropies of collections ™ and G™ (for large n) by the entropies of characteristic
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functions of these partitions. This allows us to pass to the entropy of a collection of
characteristic functions of the adequate partition of the product.

The result was later reproved by T. Austin [Au] in a totally different way. Austin
proved and used the equality between the entropy of an operator and the Kolmogorov-
Sinai entropy of its backward tail boundary—a dynamical system induced by the operator.

The current paper contains also a result concerning continuity of our new formula,
treated as a function of measure:

Theorem 4.11 ([A2, Theorem 5.1]) If X is a compact metric space and F is a col-
lection of continuous functions then the map assigning to each probability measure u the
entropy H,(F) is continuous if the space of all probability measures on X is endowed with
the weak™ topology.

4.4 Ttem [A3]

The paper continues the investigations from [A2] and [Fr] in this sense that it uses the
same explict formula for static entropy. But the present study is much deeper and more
detailed, because we introduce an additional definition of entropy on level t. To make the
notation clearer let us denote A; = Arig.

Definition 4.12 ([A3, Definition 1.1))

1. The entropy of a collection F on level ¢ € [0, 1] is defined by

H,(F,t) = H,(A%) .

2. The entropy of an operator T' with respect to a collection F on level ¢t € [0,1] s
defined by
1 n—1
h,(T,5,t) = lim —Hu(\/ Af) :
=0

n—oo N,

The existence of the above limit was proved in [Fr].

In classical dynamical systems, given a map S, which preserves measure pu, and a
partition @ = {A,..., A, } of the space X, to each point z € X we can associate its
a-name, that is a sequence (i,)%2, such that S"z € A;,. The knowledge about first n
elements of the sequence is equivalent to knowing which element of the partition /7= S«
contains z. According to Shannon-McMillan-Breiman’s theorem, this knowledge allows
one to localize almost each point of the space up to a set of measure close to e ™). In
case of operator dynamics induced by a transition probability, it is not possible to study
the evolution of partitions. Nevertheless, a collection of images of characteristic functions
{T™14: A € o} is a partition of unity for every n. The value of the function 71 4(x) could
be interpreted as the probability that after time n the trajectory starting at = belongs to
the set A. By solving the inequality 7"14(z) > t one finds out which elements of « are
visited by nth element of the orbit of z with probability greater than or equal to ¢. Taking
in our predictions ¢ close to 1, we decide to accept only the most likely future states. For
t close to 0 we rule out only the states which are the least probable. In the interpretation
given in the description of the former paper, if T is assumed to model measurement of
an experiment with some uncertainty, the level ¢ is the sensitivity parameter. It allows to
control the errors, known in hypothesis testing theory as type I and type 1l errors - for
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t close to 0 we minimize the risk of disregarding a state which is the actual state of the
system, while for ¢ close to 1 we decrease the risk of accepting an improper state.
In ergodic theory the information function with respect to a partition « of X is defined

Io(z) = — ) log u(A) - La(z).

Aca

as

In operator case, the variety of definitions of static entropy H,(F) makes it necesary to
adjust the formula for information function to the choice of entropy formula. For entropy
defined in the previous section we propose the following

Is(z) = / Lus (2)M\(d0).

It is the average information gained for partitions A%, which harmonizes with the inter-
pretation of the product X x [0, 1] as a set of copies of the phase space X. Let us remark
that for collections F' = 1,, where a is a partition of X, it holds that I, (z) = I.(z) for
every = and t # 0, which implies Iy = I,. As it was already mentioned, our definition is
thus a generalization of the classical one. Moreover, for an operator T, which is pointwise
generated by a map S, we have Irp = [ Atw(x) = I,(Sz), so results obtained for the
operator case cover the analogous classical theorems of ergodic theory.

The Fubini theorem easily implies the basic requirement concerning the information
function:

H,(F) = / Iy du.

Furthermore, for a collection F consisting of constant functions, the information function
is constantly equal to zero. On the other hand, the functions Ipy and Ty need not be
equal—for instance, for T'f = [ fdu the first one is equal to zero while the second one is
a positive constant.

Theorem 4.13 ([A3, Main theorem A]) Let (X, B, u) be a probability space and let
F be a finite collection of measurable functions X — [0,1]. Let T be an ergodic doubly
stochastic operator on L'(u).

Then, for almost every t € [0, 1] the sequence T%Ivn—lﬂt converges to entropy h, (T, F,t)

=0 i

in L' norm.
Theorem 4.14 ([A3, Main theorem B]) With the assumptions of the preceding the-
orem the sequence ~lgn converges to hy(T,F) in L' norm.

The main part of reasoning is performed for operators induced by transition proba-
bilities and then the theorem is extended to the general case. So let us first assume that
T is given by formula (1). An important role in proving the above theorems is played by
a trajectory space of the operator T, as defined and studied in [Fr]. It is the space XN
endowed with the product o-algebra and the probability measure v given by the equality

v (Ao x Arx - x Ay x XN) = //.,./P(xn_l,d;vn) .. P(wo, day)p(dao)
Ag Ay An

for all measurable sets Ay, ..., A, C X. By the Ionescu-Tulcea theorem [IT], the measure
is well-defined on the whole product o-algebra. The space XN is the domain of the shift
map o given by

(0Z)n = Tpy1 for x = (Zp)nen-
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Lemma 4.15 ([Fr]) For almost every t € [0, 1] it holds that
h,(T,5,1) = lim b, (o, Al x XN) .
In the present paper we show the following relation:

Theorem 4.16 ([A3, Theorem 3.3|) If T is an ergodic doubly stochastic operator in-
duced on L*(u) by a transition probability P, then the system (XY, v, 0) is also ergodic.

The proof relies on Verifying one of the equivalent conditions of ergodicity of a map,
namely that lim, .. £ Sp7g v(A N o7*(B)) = v(A)v(B) for any measurable A and B,
with the additional use of the Chacon Ornstein’s ergodic theorem [CO].
The first step in the proof of theorem 4.13 is the following fact concerning the size of
elements of the partition V7= Al ;.

Theorem 4.17 ([A3, Theorem 4.1]) For any collection F and € > 0 there exist: [y € N
and a set 7 C [0,1] of Lebesgue measure A(T) < €, such that for every t € [0,1] \ 7 there
18 a number ny € N such that the inequality

,U,(A)<2 (h(T,F,t)—¢)

holds for allm > n, and all A € Vi) Al | except some number of sets with aggregate
measure not greater than €.

The minimal n; given by the above theorem may not be arbitrarily large on a big set of ¢,
which allows to make the choice of n; independent of ¢ and obtain:

Theorem 4.18 ([A3, Theorem 4.2]) For every collection F and every ¢ > 0 there
exist: Iy € N, N € N and a set 7 C [0, 1] with A() < €, such that for every t € [0,1]\ T
andn 2 N the inequality

/J(A)<2 n(hu(T,F,t)—€)

holds for each A € /7=y Aj i except some sets of aggregate measure not greater than €.
The inequality in the above theorem may be rewritten in the form

Ly @3> (TF ) ¢

n i=0 “lg+i

where z belongs to the complement of some set of measure 1 smaller than or equal to €.
For almost all ¢ € [0, 1] it also holds that

) 1 n—1
lim /EI o dp = lim H (\_/()Af) =h, (T, F,t)

n—00 lo+i n—oo

Now, the theorem 4.13 for operators induced by transition probabilities follows, after some
derivation, by analogy to the following simple fact:

if for a constant h it holds that f > h — e and [ fdpu = h then [|f —h| < 2¢
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Theorem 4.14 is a corollary from Theorem 4.13 and the following equality proved in [Fr|:
1
WT,5) = [10,(T,5,8) Mat)
0

by integrating along the variable ¢ (with respect to the Lebesgue measure on the unit
interval).

It remains to clarify the idea of the proof of Theorem 4.17. Because of Lemma 4.15
we plan to transfer the argument to the space of trajectories, replacing the quantity
h,(T,3,t) by h,(o, A} x XV) for a large . By another result of [Fr], for any collection F
and any € > 0 there exist l; € N and a measurable set 7 C [0, 1] of Lebesgue measure not,
greater than e, such that

dlSt(Tn]lAlt, ]]'Alt-f-n) <€

ifonly [ > lp,n € Nand ¢t € [0,1] \ 7. In the following, we assume that the parameter ¢ is
always taken from outside of 7. For a fixed ¢ it allows to set a one-to-one correspondence
between sets A € Af,; and B = n(A) € A?, for which the distance |14 — T%1p||, is small.
Passing to the space of trajectories we obtain that for pairs (A, B) of corresponding sets
the measure Z/((A x XMA(X* x B x XN)) is also small. Clearly, v(A x XN) is for any
measurable set A C X equal to u(A).

Let A =4 A € Vi A} ;- To any such set we assign, by the above correlation, a
cylinder set By >< By X ... x B,_1 x XN, Each set A x XN may also intersect many other
cylinder sets Cy x C1 x ... x C* ! x XN. However, one derives that except for a small
subset of the space X the condition

€ (Ax XN (CoxCLx...xChy x XN

implies C; = B; for allt = 0, ...,n— 1 except a small fraction of indexes. Since on the space
of trajectories we consider a pointwise map, and not an operator, we can make use of the
corollary from the classical Shannon-McMillan—Breiman’s theorem, so called equipartition
rule (see [P]), which in our case states that for any number § > 0 for sufficiently large n
we have lower and upper bounds:

2-n(hu(a,AfOxXN)+5> <1(0) < Q—n(h,,(a,A;OxXN) —5)7 (3)

for C being an arbitrary element of the partition \/7= oA x X N), apart from a set
being a union of elements of the partition having aggregate measure less than §. We prove
that except for sets A of small total measure u, a part of each set A x XN of measure
exceeding £u(A) is covered by cylinder sets satisfying condition (3) and differing from
By X By X ... x B,,_1 x XN on a small number of coordinates. After calculating the amount
of such cylinders we obtain the hypothesis of the theorem.

In the general case, for T not necessarily given by a transition probability, we fix a
collection of functions F and consider a complex subalgebra £ of L*(u), generated by all
functions of the form T"f, where f € F, n € N, and by lattice polynomials over variables
of the form 7™ f. By lattice polynomials we mean all expressions w; Vwy V ... V wy, where
w; = 21 Ao A ... Az, and where V and A are lattice operations, in this case pointwise
minima and maxima of functions. According to Gelfand’s theorem there is an isomorphism
between £ and the algebra of all continuous (complex) functions on a compact Hausdorff
space A. The isomorphism preserves the involution, so it sends real functions to real
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functions and positive functions to positive functions. In particular, the collection F is
transformed into a collection F of functions A — [0,1]. It also allows one to transport
the measure u to a Borel probability measure fi on A and to define a Markov operator T
acting on the space of continuous functions C(A) by T f = 7/7, f € L. It is known that
such an operator is always induced by a transition probability, so Theorem 4.13 holds for
T, and, consequently, the theorem holds also for 7'

Theorem 4.13 implies also the following equipartition rule ([A3, Remark 4.6]):

for any collection F and any € > 0 there exist: [y € N, N € Nand aset 7 C [0, 1]
of Lebesgue measure A(7) < ¢, such that for every ¢t € [0,1]\ 7 and n > N the
inequality

o—n(h(T.Ft)+e) w(A) < o=n(hu(T'F,t)—¢)

holds for every A € Vi Al ,; except some sets of aggregate measure not
greater than e.

The final section of the paper contains the discussion on possible information functions
for entropies defined in [DF} and [GLW], indicating their advantages and disadvantages.
The function I2* proposed for [DF]-entropy allows one to prove a convenient asymptotic
property:

nh_{rolo piing — T™Ii5, = 0.
Unfortunately, for collections of constant functions this function may be strictly positive.
The definition I§“" proposed for [GLW]-entropy does not have the asymptotic property,
but it is equal to zero for constant functions—thus it seems to be closer to the information
function considered in [A3].

4.5 Ttem [A4]

The last paper is devoted to translating three famous classical theorems concerning zero
entropy to the operator case. It is divided into two separate parts, which essentially differ
as to the techniques used. The first one deals with genericity of entropy zero.

In the set of all automorphisms of a given probability space (X, u) the weak topo-
logy is introduced by demanding that the sequence of automorphisms .S,, converges to an
automorphism S if for any measurable set A we have lim, o u(S,; !AAS™1A) = 0. The
Rokhlin’s theorem [R] says that automorphisms with zero entropy constitute a residual
subset of the set of all automorphisms in the weak topology. For group actions, genericity
of zero Rokhlin entropy was proved by Rudolph in case of amenable groups (see subclaim
on page 288 of [FW]) and by L. Bowen for actions of arbitrary countable groups (see
[B]). In the topological setup, Glasner and Weiss proved in [GW] that in the set of all
homeomorphisms of a compact metric space, endowed with the topology of uniform co-
nvergence, the set of homeomorphisms with zero entropy is a G set, and if the underlying
space is a Cantor set, then the set of zero entropy homeomorphisms is also dense.

In [V], A. Vershik considers typical properties of doubly stochastic operators, which
he also calls polymorphisms, and poses a question about genericity of zero entropy. In
this context he mentions, among others, the entropy defined in [DF|. This was the direct
motivation to begin the research of the current paper. Answering the question of Vershik,
we prove the following theorem:

Theorem 4.19 ([A4, Theorem 3.5]) The set of doubly stochastic operators with zero
entropy is residual in the set of all doubly stochastic operators on L* (1) in strong operator
topology and in the norm topology.
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The set of zero entropy operator is dense because in this class we find operators of the
form (1 — %)T + 15, where Sf = [ fdu and T is an arbitrary doubly stochastic operator.
To verify that the set of zero entropy operators is a G, we show that for any e > 0,n € N
and a collection F of measurable functions the set

1
Ulg,n,F) = {T : T' is doubly stochastic and —H,(F") < z—:}
n

is open in both considered topologies. Then we prove that the set of zero entropy operators
is a countable intersection of sets of the form U (e, n, F), where one can restrict € to rational
numbers and F to collections consisting only of functions from a dense subset of L*(u).

In the second part of the paper we generalize the celebrated theorems by Kushnirenko
(see [K]) and by Halmos—von Neumann (see [HvN]). Originally, these theorems concern
dynamical systems with disrete spectrum, that is, systems for which the set of eigenvectors
of the induced Koopman operator spans the whole L?(n). The sequence entropy of a
measure preserving map S with respect to a partition & along a sequence A = (in)nen of
positive integers is defined by

1 " -
hA(S, f) = limsup - Hlt ( \/ S—%&) .
n—oo Tl k=1
The sequence entropy of S along a sequence A is given by
hu(S) = Sup ha(5,€),

where the supremum ranges over all finite measurable partitions of the space X. The
Kushnirenko’s theorem states that a map S has discrete spectrum if and only if the
sequence entropy h4(S) is equal to zero along every sequence A.

It is fairly easy to translate the notion of the sequence entropy to Markov operators,
using, for instance, the definition given in [DF]. For a sequence A = (i) we let

n
ha(T,F) = limsup lHu ( \V T‘“&’F) ,
n—oo T k=1
where H,,(F) = HPF () is as defined in (2), and finally we take the supremum over all finite
collections F. However, the equivalence ensured in the classical case by the Kushnirenko’s
theorem does not hold in operator case.

The main tool used in this part of the paper is the Jacobs-de Leeuw-Glicksberg
decomposition. In case of a Markov operator it is the decomposition of the domain of an
operator into a direct sum of two invariant subspaces: the reversible part E.,.,, spanned
by eigenvectors corresponding to eigenvalues of modulus 1, and the almost weakly stable
part E.s, which is characterized by the following property:

for every function f € E,s either the orbit {T"f : n € N} is not precompact
in the norm topology or inf,en [|77 f|| = 0.

This allows to obtain the following generalization of the Kushnirenko’s theorem:

Theorem 4.20 ([A4, Theorem 5.4]) The following conditions are equivalent for a do-
ubly stochastic operator T : LP(u) — LP(u):

1. T has zero sequence entropy for every sequence,
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2. LP(u) =V ®@W, where T has discrete spectrum on V' and lim, . [T™f||, = 0 for
every f € W,

3. if Brey ® Eaws s a Jacobs de Leeuw-Glicksberg decomposition of LP(u) associated
with T, then im,_ o ||T"f||p =0 for every f € Eays.

For p = 2 we also obtained the adequate formulation in terms of the Nagy-Foiag de-
composition into the unitary and the completely non-unitary part of an operator (the
decomposition is constructed in [NF]).

In the proof it is shown that a doubly stochastic operator has zero sequence entropy
along every sequence if and only if the orbit of each function f € LP(u) is precompact
([A4, Corollary 5.8]). This part of the proof is similar to the one given in the original
Kushnirenko’s paper, but it seems to be more natural in the operator case. For an operator
with zero sequence entropy we obtain that, according to the above characterization, all
orbits of functions from the almost weakly stable part must converge to zero (since there
are no orbits with noncompact closure). Thus it is proved that the second condition in
our theorem follows from the first one. To prove the converse implication, one shows that
orbits of functions from the reversible part are precompact. Since the orbits of functions
in almost weakly stable part are also precompact (in fact they converge to zero), we get
compactness of all closed orbits, that is, zero sequence entropy. The third condition is just
the reformulation of the second one.

According to Theorem 5.12 of [A4], the class of quasi-compact operators is an exam-
ple of the class of operators with zero sequence entropy. These are the linear operators
on L%(u), such that there exist two invariant subspaces F, H and a number r < 1, for
which the following holds

1. L*(u)=F®H,
2. dim(F') < oo and all eigenvalues of the restriction 7’| have modulus greater than r,
3. the spectral radius of the restriction 7’|y is smaller than 7.

In a similar way one can prove that if the unitary part of 7' in the Nagy-Foiag decompo-
sition has discrete spectrum, and the completely nonunitary part has spectral radius less
than 1, then T has zero sequence entropy ([A4, Remark 5.13]). Nevertheless, the spectral
radius equal to 1 (outside the unitary part) does not exclude the possibility of sequence
entropy being equal to zero—Example 5.14 in the paper contains a construction of a com-
pletely nonunitary operator, having zero sequence entropy and spectral radius equal to
one on the orthogonal complement of constants.

The Halmos-von Neumann theorem proved in 1942 in [HvN] states that an ergodic
dynamical system with discrete spectrum is isomorphic to a Kronecker system, that is,
a rotation of a compact abelian group. Since in the operator case, having zero sequence
entropy seems to be a more natural condition, one can expect that the analog of the
Halmos-von Neumann theorem will concern the representation of operators satisfying the
entropy condition. Indeed, the following theorem is true:

Theorem 4.21 ([A4, Theorem 6.3]) Let T be an ergodic doubly stochastic operator
on LMX, Y, 1), Let Doy = {AE€ X : 14 € Frov }

The operator T has zero sequence entropy (for all sequences) if and only if the following
two conditions are simultaneously satisfied:
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1. the action of T on Eye, = LY(X, Xrev, 1) is Markov isomorphic to a rotation R of a
compact abelian group G with Haar measure A,

nh_%lo [T"f = T"E(f|Zken))ll; = 0
for every f € L*(u).

Furthermore, iof X is a Lebesque space and Pr is a transition probability inducing T,
then the Markov isomorphism becomes a point isomorphism of dynamical systems, i.e.,
there is a measure-preserving map 7 : X — G satisfying T(gom) = go Rox for every
g€ LYG,\) and Pr(z,-) is supported on 7~ Rr(x).

After publishing the preliminary version on arxiv.org, I was invited to give a lecture on
this research on a workshop Operator Theoretic Aspects of Ergodic Theory in Wuppertal.
Also, results of the paper were presented on several international conferences and on a

local seminar.
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5 The description of other scientific achievements.

Below I present the results and activities which took place after receiving the PhD degree.
Articles appear in chronological order, with one exception - a popular paper in Polish is
presented at the end of already published papers.

5.1 B. Frej, A. Kwasnicka. Minimal models for Z%-actions. Colloq. Math.
2008, vol. 110, nr 2, 461-476.

The paper has its roots in the famous Jewett-Krieger theorem, proved in [J] for weakly
mixing dynamical systems and generalized in [Kr] to all ergodic systems. It states that
for every ergodic system there exists a measure-theoretically isomorphic strictly ergodic
system, that is, a minimal topological dynamical system with single invariant measure. In
particular, every topological dynamical system with any of its ergodic invariant measures
can be modeled in an isomorphic minimal system. It is known that in general the set of
all probability invariant measures of a topological dynamical system is a compact convex
subset of the set of all probability measures on X, and it has the structure of a Choquet
simplex (see [Ph]). A natural next question concerning possibility of modeling topological
systems in minimal systems with the simplex of invariant measures remaining unchanged
was considered in [D1] and in [KO]. The current paper extends the results obtained there
to the case of Z%actions in the following way. Let X be a compact zero-dimensional
metrizable space and let T'= {T7,..., Ty} be a set of commuting homeomorphisms X —
X. A pair (X, T) is called a d-dimensional topological dynamical system or a Z2-action.
We say that a system (X, T) is aperiodic, if T7"..Ty¢(x) = x only for n; = ... = ng = 0.
A system (X,T) is minimal if X does not contain nonempty proper subsets which are
closed and invariant (by an invariant subset we mean F' C X such that T;F = F' for
i =1,...,d). The set of all T-invariant Borel probability measures on X will be denoted
by Pr(X). We say that a set Xy is a full subset of X if yu(Xo) =1 for every p € Pr(X).

Definition 5.1 We say that two d-dimensional dynamical systems (X, T) and (Y, S) are
Borel* isomorphic if there exists an equivariant (i.e. satisfying ®(Tix) = S;®(z) for i =
1,...,d) Borel-measurable bijection ® : Xo — Yy between full invariant subsets Xo C X
and Yo C Y, such that the conjugate map ®* : Pp(X) — Pg(Y) given by the formula
O*(u) = po @1 is a (affine) homeomorphism with respect to weak* topologies.

The main result in the paper is the following theorem:

Theorem 5.2 If X is a compact zero-dimensional and metrizable space then every ape-
riodic Z%-action is Borel* isomorphic to a minimal one.

The system which is constructed in the proof is in fact a symbolic system over an unco-
untable alphabet. The main idea in the construction is similar to the one used in [D1]
and is based on replacing the original system by a symbolic system in which each point
is represented by a d-dimensional infinite array. Then, each point is modified, so that
every word from a “dense” subset of the set of all words occurring in the representation
occurs syndetically, which guarantees that the resulting system is minimal. A Z% version
of the Krieger’'s marker lemma is used (its proof is given in our paper). It allows to build
a sequence of block codes, uniformly convergent to the final isomorphism. The main dif-
ficulties, completely new when compared to the one-dimensional case, arise from the fact
that orbits of points are no longer sequences. They are multidimensional infinite arrays,
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so the linear order on elements of orbits is lost. The question how to construct a nested
sequence of shift invariant decompositions of orbits into blocks becomes much more dif-
ficult. In the paper we use a new method of constructing such decompositions, based on
maximolexicographic order. It turns out that we additionally need to estimate the amount
of points, for which the decompositions behave badly. We call such an improper behavior
the existence of “eternal boundaries”.

Actually, I have a feeling that the article might have appeared in a more prestigious
journal, at least because of level of complication of the construction. It did not happen sim-
ply because of the authors’ low experience in publishing papers. The natural continuation
of the paper (see section 5.4) appeared recently in Groups, Geometry, and Dynamics.

5.2 T. Downarowicz, B. Frej, P.-P. Romagnoli. Shearer’s inequality and infi-
mum rule for Shannon entropy and topological entropy. Contemp. Math.,
ISSN 0271-4132; vol. 669 (2016), 6375

The paper was planned as a survey build around the property of subadditivity of the
Shannon entropy of a partition, but it also contains some new results. In accordance with
the title, the emphasis is put on Shearer’s inequality, rarely used in classical monographs
in the field of ergodic theory. To formulate the Shearer’s inequality we need the notion of
a k-cover of a finite set F, that is a collection X = {K;, K», ..., K,} of finite sets (with
possible repetitions), such that every element of F' belongs to K; at least for £ indexes
i€{1,2,...,r}. We say that a nonnegative function H defined on finite sets satisfies the
Shearer’s inequality if for any finite set F' and any k-cover X of F' it holds that

H(F) < E > H(K).
k KeX

By the amenable group we mean a group G, such that there exists a sequence (F) of
finite subsets of G satisfying for every g € G the following condition:
_|gFR AR

lim =0,

where gF = {gf : f € F} and |-| denotes the cardinality of a set. Such sequence is called a
Fglner sequence. The action of G on X is given by a group homomorphism defined on G,
taking values in the group of all automorphisms of X if we consider the measure case or
all homeomorphisms from X onto itself in the topological case.

Let G be an amenable group and let (F,) be a Folner sequence. Denote by F(G) the
collection of all finite subsets of G.

Definition 5.3 A nonnegative function H defined on F(G) satisfies the infimum rule, of

¢ 1

: 1 :
limsup — H(F,) = ponf EH(F)

nvs” [F|

We say that H is G-invariant if for every ¢ € G it holds that H(Fg) = H(F). The
importance of the Shearer’s inequality is highlighted in the following theorem:

Theorem 5.4 If H is a nonnegative and G-invariant function on F(G) which satisfies
Shearer’s inequality, then it also obeys the infimum rule.
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The function H(F) = H, (aF ), where « is a finite partition of a probability space (X, ),

af' = Vger ga and H,(a) is the Shannon entropy of «, obeys the Shearer’s inequality.
Hence, the above theorem states, in particular, that for amenable groups the definition
of the entropy of a G-action with respect to a partition does not depend on the choice of
the Fglner sequence. Moreover, a Fglner sequence is not needed in the definition of this
entropy; instead of the limit along such sequence one can consider the infimum over all
finite subsets. Therefore, the formula

* . 1 F
HAG) = il ()

may be used to define the entropy in more general groups. Letting

h(G) = sup b (G, a),

where the supremum ranges over all finite partitions, we obtain the notion which is pre-
sently known in the literature as naive entropy. The notion was deeply investigated in
the works of Burton, L. Bowen and Seward. Besides the striking simplicity, it has an
important virtue that it cannot increase under taking factors (contrary to sofic entropy).
Unfortunately, it was shown in [L] that for non-amenable groups the naive entropy takes
only two values: zero or infinity. One of the questions posed in our paper, concerning re-
lations between the entropy defined by h3*(G) = inf{h} (G, a) : a is a generator} and the
Rokhlin entropy hy**(G) = inf{H}(a) : o is a generator} was answered (even in version
for conditional entropies) by Seward in [S]. He showed that for a free action of G it holds
that hy"™*(G) < h*(G), which yields the equality between these notions in view of a former
result of the same author.

New results in our paper appear mostly in chapter 6, concerning topological entropy.
In the paper the examples were constructed to show that the topological entropy obeys
neither Shearer’s inequality nor the infimum rule (though the entropy is subadditive). In
the latter case the action of the finite group Zz was used. We also managed to formulate
positive results.

Theorem 5.5 If an open cover U consists of pairwise disjoint sets then the corresponding
function Heg, (F) = Hiop (U5r> on F(G) obeys Shearer’s inequality.

Elements of a symbolic system X = A® with action of a group G, where A is a finite
alphabet, will be denoted by (z,)4eq, where 2, € A for every g € G. The action in this
system is given by (gz), = z», and the system is called a subshift. As an open cover
one can take a partition into cylinder sets. In particular, by Py we denote the so-called
time-zero partition: Py = {[a] : a € A}, where [a] = {(z4)4ec : Te = a}.

Corollary 5.6 If (X, Q) is a subshift and U = Py then the infimum rule holds for Hyp,
1.€.,

. 1
htop(G) = htop(G7u) = Fég(fc) mHtoP (U’F) :

Despite the lack of the Shearer’s inequality, using the Variational Principle we prove the
following fact.
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Theorem 5.7 Let X be a compact metric space and G a countable amenable group acting
on X by continuous maps. Define

nf %Htop (u)

hiop (G) = Sl&p hiop (G, U)

htop*(G7 U) — 1

Then
hiop™(G) = hiop(G)

The question if the exact infimum rule holds for topological entropy in case of infinite
amenable groups, i.e., if the equality hop, " (G, U) = hiop(G, U) holds, remains open.

5.3 B. Frej, A. Kwasnicka. A map maintaining the orbits of a given Z%-action.
Colloq. Math. 2016, vol. 143, nr 1, s. 1-15.

The paper deals with the notion of orbital equivalence of topological dynamical systems.
In [GMPS]] it was shown that every minimal action of Z? on a Cantor space, i.e., a
compact zero-dimensional perfect metrizable space, is orbitally equivalent to a (minimal)
action of the group Z. The same authors generalized the result to the case of Z?-actions (for
arbitrary d) in [GMPS2]. Before the second paper was published, we made an attempt
to prove the fact, without the complicated machinery of K-theory used by Giordano,
Matui, Putnam and Skau. The goal was to explicitly construct the appropriate orbit-
preserving map, and the direct inspiration was the paper [F] by Forrest, which used as
the main tool Bratteli-Vershik diagrams. Our efforts led only to a partial succes. Using
similar techniques as in 5.1 (Marker lemma, cutting trajectories into blocks with help of
maximolexicographic order) we proved the following theorem:

Theorem 5.8 Let Ty, ..., Ty be homeomorphisms of a Cantor space X . Let Or(z) denote
the orbit of z, that 1s, the set {T}*..Tjx : 1y,...,iq € Z}. For every free minimal Z¢-action
T ={T1,.., T4} and every zo € X there is a continuous injection F': X \ {zg} — X such

that
Or(z) = U F™{z}

nEZL

for every x from some residual subset of X.
Moreover, for all other points x it holds that

J
Or(z) = U U F™{=s}
j=1neZ
for a finite set {z1,...,2;}.
After [GMPS2| was published, we gave up further investigations in this direction.
5.4 B. Frej, D. Huczek. Minimal models for actions of amenable groups.
Groups Geom. Dyn. 2017, vol. 11, nr 2, s. 567-583.

It is a continuation of the research described in section 5.1. As a direct generalization
of the case of Z%actions we consider actions of countable amenable groups--a rapidly
developing part od dynamical systems (see e.g. [KL]). We identify the acting group with
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the corresponding set of homeomorphisms and we write gz to denote the image of z via
the homeomorphism assigned to g. We say that the action is free if gr = z, where g € G,
z € X, implies that g is a neutral element of G. The action of G is minimal if for every
z € X the closure of the orbit {gz : ¢ € G} is equal to the whole space X or, equivalently,
if X does not contain proper subsets which are closed and invariant (that is, gF' = F for
all g).

The notion of the Borel* isomorphism (compare Def. 5.1) is translated to the group
case in a natural way. Then the main theorem in the current paper has the following form:

Theorem 5.9 If X is a compact zero-dimensional metrizable space and G is an amena-
ble group acting freely on X then the system (X,G) is Borel* isomorphic to a minimal
dynamical system (Y, G).

Roughly speaking, the main difficulty comes from the fact that, compared to a Z?-action,
we can no longer use shapes of subsets of G. Formally, we need to use deep theorems on
tilings of amenable groups which were proved in [DH] and [DHZ|. Using them, we restore
decompositions into blocks, which in Z¢ case were done by means of the maximolexico-
graphic order. Retaining the main plan from [D1] and the paper described in section 5.1,
which relied on the construction of a sequence of block codes modifying trajectories (or
symbolic representations of points of the original space), we perform reasonings of qu-
antitative kind, using the notion of Banach density. According to Lindenstrauss’ ergodic
theorem (see [L]), these calculations are translated to the language of measures.

5.5 B. Frej, D. Huczek. Faces of simplices of invariant measures for actions
of amenable groups. Monatsh. Math. 2018, vol. 185, nr 1, s. 61-80.

Equipped with the same toolbox as in the previous paper, we deal with the problem
of representing faces of a given simplex of invariant measures, in case of an action of a
countable amenable group, as full simplices of invariant measures. For classical dynamical
systems the problem was solved in [D2].

Let K be an arbitrary metrizable Choquet simplex. We introduce the following defi-
nitions.

Definition 5.10

1. An assignment on K is a function ® defined on K such that for each p € K, the va-
lue of ®(p) is a measure-preserving group action (X,, Xy, tip, Gp), where (Xp, Xp, lip)
is a standard probability space and G, acts on X via measure automorphisms.

2. Two assignments ® on K and & on K' are equivalent if there exists an affine
homeomorphism 7 : K — K' such that ®(p) and ®'(n(p)) are isomorphic for every
p€E K.

3. Let (X, G) be a continuous group action on a compact metric space X . Let Bx be the
Borel o-algebra in X and let Pg(X) denote the Choquet simplezx of all G-invariant
measures on X (with the weak* topology).

The assignment ®(u) = (X, Bx, i, G) is the natural assignment of (X, G).

4. By a face of a simplex S we mean a compact convex subset of S which is a simplex
itself and whose extreme points are also the extreme points of S.
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5. If K 1s a face of a simplex Pg(X) then by the identity assignment on K we mean
the restriction of the natural assignment on Pg(X) to K.

The main result of the current paper is the following theorem:

Theorem 5.11 Let X be a Cantor system with free action of an amenable group G and
let K be a face in the simplex Ps(X) of all G-invariant measures of X. There exists a
Cantor system 'Y with free action of G, such that the natural assignment on'Y is equivalent
to the identity assignment on K.

Combining it with the results of our former paper we obtain:

Theorem 5.12 Let X be a Cantor system with free action of an amenable group G and
let K be a face in the simplex Pg(X). There exists a Cantor system Y with minimal free

action of G, such that the natural assignment on'Y is equivalent to the identity assignment
on K.

The main tool used in the proof of the one-dimensional case were block measures (that
is, measures on subshifts supported by periodic orbits), which approximated arbitrary
ergodic measures. To employ a similar strategy in case of group actions, we created analogs
of such measures, which seems to be a standalone important result.

5.6 B. Frej, D. Huczek, A comment on ergodic theorem for amenable gro-
ups, to appear in Canad. Math. Bull., doi: 10.4153/S0008439519000110,
arXiv:1901.01324 [math.DS]

In the paper one finds a proof of a version of ergodic theorem for actions of countable
amenable groups, where a fixed Fglner sequence needs not be tempered. Instead, it is
assumed that a function, whose ergodic averages we study, satisfies the following mixing
condition:

Definition 5.13 We say that f is e-independent from a sub-o-algebra Xy if for every
B € %4 of positive measure it holds that

[, faun ~ [ fdul <,
where ug s the conditional measure on B.

Theorem 5.14 Let G = {g1, gs,...} be an amenable group acting on a probability space
(X, ). Let (Fy)nen be a Folner sequence in G, such that for every o € [0,1) the series
s alfl converges. Let f € L®(u) be such that for every € > 0 there exists a finite set
K C G such that f is e-independent from o({fog: g & K}). Then

,}Lngou:%[ Y flgz) = /fdu p-a.e.

gEF,

The proof uses the Azuma-Hoeffding concentration inequality.
Results of the paper were already presented on an international conference and on a
dynamical systems seminar held in AGH UST (on an invitation).
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5.7 B. Frej, D. Huczek, Extensions of full shifts with group actions. to ap-
pear in Colloq. Math., doi: 10.4064/cm7843-3-2019, arXiv:1901.01145
[math.DS]

The paper was inspired by lectures, which were given by Aimee Johnson during Wroctaw
edition of Wandering Seminar workshop, about factorizing multidimensional subshifts
with large entropy onto the full shift (see e.g., [JM] and [De|). We give the following
sufficient condition for a symbolic topological dynamical system with action of a countable
amenable group to be an extension of the full shift.

Definition 5.15 We say that a symbolic dynamical system (X, G) is strongly irreducible
iof there exists a finite set D such that for any finite subsets Ty and Ty of G, satisfying
Ty N DT, = 0, and any two blocks A and B, with domains respectively T, and Ty, there
exists an x € X such that x(T1) = A and z(T7) = B.

Theorem 5.16 If the symbolic dynamical system (X,G) with topological entropy greater
than logk is strongly irreducible, then there exists a symbolic extension (X' ,G) of X,
having the same topological entropy as X, and such that (X , G) factors onto the full shift
over k symbols.

5.8 B. Frej, Fxploding Markov operators, submitted

The paper continues my research on operator dynamics. It contains a definition of a class
of doubly stochastic operators, based on the notion of disintegration of measure. These
operators come from pointwise maps, but they are not their Koopman operators. Let
(X, %, 1) be a standard probability space and let T': X — X be a measure-preserving
surjection. For a decreasing sequence (ax), which sums to one, we define a measure m on N
letting m({k}) = az. For k € N let & be a partition of X into sets T-*{T*z}, z € X,
and let & (z) be an element of the partition & which contains z. Let {uc : C € &}
be the disintegration of measure p with respect to X/&x. Moreover, let (by) be given by
by = #=#+. Denote by A, the section {z € X : (z,k) € A}. We define a doubly
stochastic operator L}(X x N, 4 x m) by the formula

Tef(y) = [ J()Prly,du),
where Pr is a probability kernel given by

Pr((2,1),A) = 3 bettgyo (T Al)

k=1
PT((Ia k)vA) = Orer-1)(A) for k > 2.

It is proved in the paper that such operator inherits some properties of a generating
map, namely: it is ergodic if and only if T is ergodic and it has positive entropy if T has.
Yet, it may have no pointwise factors.

5.9 B. Frej, I jeszcze jeden, i jeszcze raz. Matematyka, Spoteczenstwo, Na-
uczanie 41 (VII 2008)

This short paper (in Polish) is a consequence of an invitation to one of the conferences
in the series Szkota Matematyki Poglgdowej. It also emerges from my studies on multi-
recurrence of Markov operators. The paper contains an exposition on the van der Wa-
erden’s theorem on monochromatic arithmetic progressions and the Birkhoft’s theorem
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on multirecurrence in topological dynamical systems with d commuting homeomorphi-
sms. In particular, I present the brilliant proof of the latter theorem, published in [BPT].
Unfortunately, an attempt to translate the proof to the language of dynamics induced by
transition probabilities was not successful. The paper does not contain any new results.

5.10 Mathematics—Reactivation

In years 2010-2014 I was invited to take part in the educational project, mentioned at
the beginning of the document (in the information about the employment). The project,
known under the name Mathematics—Reactivation, was addressed to teachers and students
of Polish secondary schools. The project was financed from the resources of the European
Union as a part of Operational Programme I1I and the head of it was Jedrzej Wierzejewski,
one of the forerunners of e-learning in Poland. The main goal was to create an interactive
e-course in mathematics, covering the whole math curriculum in secondary schools. It
was meant to attract students and help them in gaining necessary mathematical skills,
but also to give teachers a convenient didactic tool. As a final outcome of the project, we
created an electronic textbook with all the knowledge taught in secodary school, as well
as a large set of e-exercises to let the students practice their skills. Apart from this, the
e-platform allowed for carrying tests with use of computer terminal. My role was to take
an active part in the creation of e-course, mainly e-exercises, since the prototype of an
exercise. Every e-exercise needed careful testing to verify both the mathematical accuracy
and reliability. My responsibility was to find all possible faults and propose improvements
and modifications. I also used the experienced gained in the project, while serving as an
e-learning coordinator in the Institute of Mathematics.
The e-course was introduced in several secondary schools in Wroctaw.
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