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their possible use:

4.1 Introduction

Games with a continuum of players have been introduced to game theory by Wardrop [64] and
Schmeidler [55] to approximate situations where the number of players is so large, that the impact of
a single player becomes insignificant. Similar dynamic game models have appeared in literature in
a paper by Jovanovic and Rosenthal [34] and its generalizations [9, 10] (discrete-time games) on one
hand, and articles of Lasry and Lions [38] and Huang, Caines and Malhamé [33] (differential games)
on the other. In both cases the authors considered games with a specific structure, where each of
infinitely many identical players controls a private process of his own states, with each decision that
he makes being a function of his own state and the distribution of the states of the other players
only. It allowed to reduce the problem of finding an equilibrium in an n-person game, which for
a large number of players becomes untractable, to a much simpler single-agent control problem.
Differential games with a continuum of players, known as mean-field games, have been studied
extensively over the last decade (see books [8, 14] or a review [26] for more details). Two basic types
of problems considered in the literature were the existence of solutions to games of this type and
the quality of approximation of solutions of n-person games by the solutions obtained for respective
mean-field games. Similar questions were asked in the case of discrete-time games (usually called
anonymous sequential games or discrete-time mean-field games). In [34, 9, 10, 16, 60, 1, 19, 54] the
existence of equilibrium in discounted games of this type has been proved. In [28, 29, 32, 53, 54] the
conditions for which the equilibria in games with infinitely many players are approximate equilibria
in games with a large finite number of players were discussed. Also in this case, only the discounted
rewards were considered. It is worth mentioning here that the lack of theory for discrete-time
mean-field games with other payoff criteria resulted in the absence of applications of games of this
type outside economics (where only discounted rewards are used), even though many other fields of
science regularly make use of game-theoretic tools (notably, in engineering dynamic games without
discounting have been used in many applications, see [7, 39]).

Three out of five papers constituting my scientific achievement (articles [H1], [H2] and [H5]) deal
with discrete-time mean-field games. The main aim of my work on games of this type, was to
generalize the existing results to two types of undiscounted rewards: long-time average reward and
total reward, computed from the moment the player joins the game (his “birth”) to his disappearance
from the game (his “death”). The results concerning the existence of equilibria in such games together
with some further ones about the quality of approximation of n-person stochastic games by their
mean-field counterparts, published in [H2] and [H5], will be presented in section 4.2. An example
of application of games of this type in wireless telecommunications (article [H1]) will be given in
section 4.4.1.

The remaining results which constitute my scientific achievement (papers [H3] and [H4]) concern
mean-field game models linking some features of continuous-time and dicrete-time mean-field games.
Models of this type were first studied in the seminal paper by Gomes, Mohr and Souza [25] and later
developed in [6, 15, 21]. In this type of games, the moments when the decisions are made are discrete,
but follow separate controlled continuous time Markov chains, each controlled by a different player.
As a result, these moments are discrete for each of the players, but the global state is following
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an ordinary differential equation. My results about the games of this type are both theoretic and
applied. The theorems about the existence of equilibrium in games of this type and the conditions
under which the solutions of the mean-field games are approximate solutions of similar games with
a large finite number of players, published in [H4], are presented in section 4.3. The application
of such games in modeling of an M/M/∞ queue with service cost divided among the users (article
[H3]) is discussed in section 4.4.2.

4.2 Discrete-time mean-field games (papers [H2,H5])

4.2.1 The model

A discrete-time mean-field game is described by the following objects:

• The game is played by an infinite number (continuum) of players. Each player has a private
state sαt (where α ∈ [0, 1] denotes the index of the player, while t ∈ {1, 2, . . .} is the stage of
the game), changing over time. The set of individual states S is the same for each player, and
it does not change over time. We assume that it is a nonempty compact metric space.

• A probability distribution µt over Borel sets1 of S is called a global state of the game at stage t.
It describes the proportion of the population which is in each of the individual states at time t.
We assume that at every stage of the game, each player knows both his private state and the
global state, and that his knowledge about individual states of his opponents is limited to the
global state.

• The set of actions available to any player in state (s, µ) is given byA(s, µ), whereA : S×∆(S)→
A is a non-empty valued correspondence and its set of values A is a compact metric space.
At any stage of the game τt ∈ ∆(S×A) denotes the global distribution of the state-action pairs
among the players

• Individual’s α immediate reward is given by a bounded measurable function r : S ×A×∆(S ×
A) → R. r(sαt , aαt , τt) gives the reward of a player at any stage of the game when his private
state is sαt , his action is aαt and the distribution of state-action pairs among the entire player
population is τt.

• The sequence of the private states of player α, (sα0 , s
α
1 , . . .) is a Markov chain whose transitions

are defined with a transition kernel Q as follows:

P{sαt+1 ∈ B|sαt } = Q(B|sαt , aαt , τt) for B ∈ B(S).

We assume that Q : S×A×∆(S×A)→ ∆(S) is the same for each player and that Q(B|·, ·, τ)
is product-Borel measurable for any B ∈ B(S) and any τ ∈ ∆(S × A).
For any t ∈ {0, 1, . . .}, the global state at time t + 1 is given by the aggregation of individual
transitions of the players,

µt+1 = Φ(·|τ t) =

∫
S×A

Q(·|s, a, τt)τt(ds× da).

The evolution of the global state is thus deterministic.

The game is played as follows: At each stage t = 0, 1 . . ., each player chooses his action from the set
of actions available to him at that moment independently from the others, basing his decision on the
knowledge of his current private state and current global state of the game. Based on the actions

1Here and in the sequel the Borel σ-algebra on a given setX is denoted by B(X), while the set of probability distributions
on (X,B(X)) is denoted by ∆(X).
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chosen by the players, they are given their immediate rewards and Markov chains of their private
states move to the next states. After that, the new private states are aggregated into the new global
state, which is handed over to the players. We assume that at each stage of the game the players make
their decisions using stationary strategies2 defined as follows: A function f : S×∆(S)→ ∆(A), such
that f(B|·, µ) is Borel measurable for any B ∈ B(A) and any µ ∈ ∆(S), satisfying f(A(s, µ)|s, µ) = 1
for every s ∈ S and µ ∈ ∆(S) is called a stationary strategy. A stationary strategy is applied as
follows: each time the private state of the player is s while the global state of the game is µ, the
player chooses his action according to the distribution f(·|s, µ). The set of all stationary strategies
is denoted by F . In some situations we allow the use of strategies being discrete distributions over
the set of stationary strategies. In that case, similarly as in the case of mixed strategies applied in
extensive form games, the randomization is done only once, at the beginning of the game. The set
of strategies of this type will be denoted by F∗.
The aim of each player is, as in Markov decision processes or stochastic games, the maximization of
some aggregated reward based on immediate rewards received over the entire course of the game.
Two such aggregations are defined below.

Suppose player α uses a stationary strategy f against a stationary strategy g applied by the others.
By the Ionescu-Tulcea theorem (see Chap. 7 in [11]), for any initial private state distribution of
player α, µα0 and any initial distribution of private states of other players µ0, there exists a unique
probability measure Pµα0 ,µ0,Q,f,g defined on the set of all infinite histories of the process of private
states of player α, H = (S × A)∞ endowed with Borel σ-algebra, such that for any B ∈ B(S),
D ∈ B(A) and any partial history hαt = (sα0 , a

α
0 , . . . , s

α
t−1, a

α
t−1, s

α
t ) ∈ (S × A)t × S =: Ht, t ∈ N,

Pµα0 ,µ0,Q,f,g(h ∈ H : sα0 ∈ B) = µα0 (B),

Pµα0 ,µ0,Q,f,g(h ∈ H : aαt ∈ D|hαt ) = f(D|sαt ),

Pµα0 ,µ0,Q,f,g(h ∈ H : sαt+1 ∈ B|(hαt , aαt )) = Q(B|sαt , aαt , τt),

with subsequent state-action distributions τt defined for any E ∈ B(S×A) recursively by the formula:

τ0(E) =

∫
E

g(da|s)µ0(ds), τt+1(E) =

∫
E

g(da|s)Φ(ds|τt), t = 1, 2, . . . . (1)

Definition 1 Long-time average reward of player α using strategy f ∈ F against strategy g ∈ F
applied by all the other players, when initial distributions of private states of player α and of his
rivals are µα0 and µ0, is defined as follows:

Jα(µα0 , µ0, f, g) = lim inf
T→∞

1

T + 1
Eµα0 ,µ0,Q,f,g

T∑
t=0

r(st, at, τt),

with τt, t = 0, 1, . . . defined by (1).

To define the total reward, we add an artificial state s∗ (denoting the “death” of a player) s∗ to the
set S. We then assume that in state s∗ only one action a∗ is available (not available in any other
state), independently from the global state of the game.

2In case of stochastic games it is well known that limiting the strategies used by the players to stationary strategies in
games with either discounted or average rewards is not problematic, as the best response against stationary strategies used
by the opponents is to use a stationary strategy as well. This is also true for mean-field games. In case of the total reward
used in some of our results similar result is true, as it can be interpreted as a discounted reward with state-dependent
discount factor. It is known that limiting the set of strategies to the stationary ones can also be justified in that case.
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Definition 2 Total reward for player α using strategy f ∈ F against strategy g ∈ F applied by all
the other players, when the distribution of private states of player α when he joins the game is µα0 ,
while the distribution of private states of all the players at the start of the game is µ0, is defined as
follows:

J
α
(µα0 , µ0, f, g) = Eµα0 ,µ0,Q,f,g

T α−1∑
t=0

r(st, at, τt),

where T is the moment of the first arrival of the process of private states of player α to s0 while the
distributions τt, t = 0, 1, . . . are defined with (1).

The reward defined above is interpreted as the sum of immediate rewards of a player from the
moment of his “birth” (that is, the moment when his private state moved from s∗ to any s ∈ S) to
that of his death (return of his private state to s∗).

The solution we are looking for differs significantly from that of Nash equilibrium used as a default
solution in the non-cooperative game theory.

Definition 3 A stationary strategy f and a global state µ ∈ ∆(S) form a stationary mean-field
equilibrium in the discrete-time mean-field game with a long-time average reward, if for every other
stationary strategy g ∈ F

J(µ, µ, f, f) ≥ J(µ, µ, g, f)

and τn defined for n = 0, 1, . . . by (1) with µ0 = µ and g = f satisfies (τn)S = µ for any n ∈ {0, 1, . . .}.

It means that the individual optimality condition used in the definition of the Nash equilibrium is
somewhat weakened. In case of stationary equilibrium it only needs to be satisfied if the global state
of the game is constant in time and equal to µ.

In case of the total reward mean-field games the definition is slightly modified:

Definition 4 A stationary strategy f and a global state µ ∈ ∆(S) form a stationary mean-field
equilibrium in a discrete-time mean-field game with total reward, if

(a) for any other stationary strategy g ∈ F ,

J(ρ, µ, f, f) ≥ J(ρ, µ, g, f)

with ρ = Q(·|s∗, a∗, τ(f, µ)) and τ(f, µ)(E) =
∫
E
f(da|s)µ(ds) for E ∈ B(S × A), and

(b) τn defined for n = 0, 1, . . . by (1) with µ0 = µ and g = f satisfies (τn)S = µ for any n ∈ {0, 1, . . .}.

The definition is interpreted as follows: Any player joining the game at any stage maximizes his
reward from birth to death, with the assumption that the distribution of his private state at his
birth is the distribution of the private states of a player moving from s∗ according to the transition
probability Q. It is worth mentioning here that the mean-field games with total reward defined
as we did above can be treated as counterparts of overlapping genarations models known from the
stochastic game literature, see e.g. [44, 3, 43].

4.2.2 The existence of a stationary mean-field equilibrium in games with average re-
ward

The existence of a stationary mean-field equilibrium in discrete-time mean-field games with long-
time average reward, similarly as in the case of n-person stochastic games with this payoff criterion,
depends crucially on assuming some conditions implying asymptotic regularity of average rewards of
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the players. A classical example of Gillette’s Big Match [23] shows that without them even 2-person
zero-sum stochastic game may have no stationary strategy equilibrium. While the notion of sta-
tionary mean-field equilibrium is weaker than that of stationary strategy Nash equilibrium, it turns
out that an average-reward game in which the sets of transient and recurrent states in the Markov
chain of private states of a player using some given stationary strategy are different for different
distributions of state-action pairs in the game may have no stationary mean-field equilibrium, as
shown in the example below.

Example 1 (Example 3.1 in [H2]) Let us consider an average reward discrete-time mean-field game
with

S = {1, 2, 3}, A(s, µ) =

{
{0, 1}, if s = 1
{0}, if s 6= 1

.

As the decision is only made by players in state s = 1, for simplicity we will denote this only decision
by a. The immediate rewards are given by

r(s) = 3− s,

while the transition matrix of the Markov chain of private states of each player is

Q(a, τ) =

 1− a+3p∗

4
a
4

3p∗

4
1
2

1
2

0
p∗

2
0 1− p∗

2

 , where p∗ = max{0, 1− 4τ11}.

We will show, that such a game has no stationary mean-field equilibrium.

Suppose that (f, µ∗) is such an equilibrium and let τ be the state-action distribution corresponding
to µ∗ and f . We will consider two cases based on the value of τ11:

(a) τ11 ≥ 1
4
: Then p∗ = 0, and so, if a player uses action 1 with probability β, the stationary state

of the chain of his states when his initial state’s distribution is µ∗ is
[

2(µ∗1+µ∗2)

2+β
,
β(µ∗1+µ∗2)

2+β
, µ∗3

]
and

his long-time average reward is

(4 + β)(µ∗1 + µ∗2)

2 + β
=

(
1 +

2

2 + β

)
(µ∗1 + µ∗2),

which is a strictly decreasing function of β. Thus his best response to f is the policy which
assigns probability 1 to action a = 0 in state 1. But if all the players use such policy, τ11 = 0,
which contradicts our assumption that it is no less than 1

4
.

(b) τ11 <
1
4
: Then the stationary state of any player’s chain when he uses action 1 with probability

β ∈ [0, 1] is independent of the initial distribution of his state µ∗ and equal to
[

2
5+β

, β
5+β

, 3
5+β

]
,

which gives him the average reward of

4 + β

5 + β
= 1− 1

5 + β
.

Clearly, it is a strictly increasing function of β. Thus the best response to f is to play action a = 1
with probability 1, which, if applied by all the players, results in stationary state µ∗ =

[
1
3
, 1

6
, 1

2

]
and consequently τ11 = 1

3
, contradicting the assumption that it is less than 1

4
.

Thus this game cannot have a stationary equilibrium.

Below we give two sets of assumptions which guarantee the existence of a stationary mean-field
equilibrium in the average-reward discrete-time mean-field game. The first one has been considered
in [H2].
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(A1) The sets S and A are finite.

(A2) r(s, a, ·) is continuous for any fixed values of s ∈ S and a ∈ A.
(A3) Q(·|s, a, τ) is a continuous function of τ ∈ ∆(S × A) for any fixed s ∈ S and a ∈ A.
(A4) The set of individual states of any player S can be partitioned into two sets S0 and S1 such

that for any τ ∈ ∆(S × A):

(a) any private state s ∈ S0 is transient in the Markov chain with the transition probability
defined by

pss′ = Q(s′|s, f(s, τS), τ)

for any f ∈ F ,
(b) there exists a strategy f ∈ F , such that any two states s, s′ ∈ S1 communicate in the

Markov chain with the transition probability defined by

pss′ = Q(s′|s, f(s, τS), τ).

(A5) The correspondence A(s, ·) is upper semi-continuous for any fixed s ∈ S.

In the second set of assumptions we deal with games where S and A are any compact metric
spaces. Since the assumptions and the results make use of two types of convergence of probability
measures, we introduce the following notation: µn ⇒ µ for weak convergence3 and µn → µ for strong
convergence4.

(B1) r is a continuous function.

(B2) For any sequence {sn, an, τn} ⊂ S × A×∆(S × A) such that sn → s∗, an → a∗ and τn ⇒ τ ∗,
Q(·|sn, an, τn) ⇒ Q(·|s∗, a∗, τ ∗). Moreover, for any fixed s and any sequence {an, τn} ⊂ A ×
∆(S × A) such that an → a∗ and τn ⇒ τ ∗, Q(·|s, an, τn)→ Q(·|s, a∗, τ ∗).

(B3) There exists a constant γ > 0 and a probability measure P ∈ ∆(S) such that

Q(D|s, a, τ) ≥ γP (D)

for every s ∈ S, a ∈ A, τ ∈ ∆(S × A) and any Borel set D ⊂ S.

(B4) The correspondence A is continuous5.

The following results are true:

Theorem 1 (Theorem 3.1 in [H2]) Any discrete-time mean-field game with long-time average reward
satisfying (A1–A5) has a stationary mean-field equilibrium.

3We say that a sequence of probability measures on (X,D), µn weakly converges to µ, iff
∫
X
v(x)µn(dx)→

∫
X
v(x)µ(dx)

for any bounded continuous function v : X → R. It is known that for a compact metric set X, ∆(X) endowed with weak
convergence topology is compact and metrizable (see e.g. Prop. 7.22 in [11]). There are several metrics consistent with
weak convergence topology. As in our considerations we sometimes relate directly to the metric defining it, we have chosen
one specific metric that will be used in our considerations (see Theorem 11.3.3 in [18]):

ρX(µ1, µ2) = sup

{∣∣∣∣∫
X

v(x)(µ1 − µ2)(dx)

∣∣∣∣ , ‖v‖BL ≤ 1

}
,

where µ1, µ2 ∈ ∆(X) and ‖ · ‖BL is the metric on the set of bounded Lipschitz continuous functions from X to R defined
by the formula

‖f‖BL = ‖f‖∞ + ‖f‖L with ‖f‖L = sup
x 6=y

|f(x)− f(y)|
dX(x, y)

.

4We say that a sequence of probability measures on (X,D), µn strongly converges to µ, iff µn(D) → µ(D) for any
D ∈ D.

5With the source space ∆(S) endowed with the weak convergence topology.
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In the proof we consider a Markov decision processM(τ) of a single player maximizing his long-time
average reward under assumption, that the state-action distribution in the game does not change
over time and equals τ . By assumption (A4), the optimal reward in the MDPM(τ) is independent
from the initial state of the process (that is, the initial private state of the player). Let us denote
this optimal reward by G(τ). It is elementary to show that G is a continuous function of τ . Next,
we can use G to define a correspondence Ψ on ∆(S × A). Let:

B(τ) :=

{
ρ ∈ ∆(S × A) :

∑
s∈S

∑
a∈A

ρsar(s, a, τ) = G(τ)

}
,

C(τ) =

{
ρ ∈ ∆(S × A) :

∑
a∈A

ρsa =
∑
s′∈S

∑
b∈A

Q(s|s′, b, τ)ρs′b

}
,

Ψ(τ) := B(τ) ∩ C(τ).

∆(S × A) is obviously a compact convex subset of a Hausdorff linear topological space. The corre-
spondence Ψ has nonempty compact values (the occupation measure corresponding to any optimal
strategy in the MDPM(τ) is clearly an element of Ψ(τ), convexity is immediate). The graph of Ψ
is closed by the continuity of G. Glicksberg’s fixed point theorem (see [24]) implies that there exists
a τ ∗ ∈ Ψ(τ ∗). After the disintegration of the measure τ ∗ we obtain a stationary strategy f ∗ and a
global state µ∗ ∈ ∆(S) which form a stationary mean-field equilibrium in the game.

In the second theorem we consider the case with general compact metric state and action spaces.

Theorem 2 (Theorem 1 in [H5]) Any discrete-time mean-field game with long-time average reward
satisfying (B1–B4) has a stationary mean-field equilibrium.

As in the case of Theorem 1, the proof is based on an application of Glicksberg’s fixed point theorem
for a properly defined correspondence of the argument τ ∈ ∆(S × A). Let:

Θ(τ) :=

{
ρ ∈ ∆(S × A) : ρS(·) =

∫
S×A

Q(·|s, a, τ)ρ(ds× da) and
∫
Gr(A(·,τS))

ρ(ds× da) = 1

}
,

Ψ(τ) :=

{
ρ ∈ Θ(τ) :

∫
S×A

r(s, a, τ)ρ(ds× da) ≥
∫
S×A

r(s, a, τ)σ(ds× da) for any σ ∈ Θ(τ)

}
.

Similarly as in the proof of the previous theorem, we need to show that the values of Ψ are nonempty
and convex, and that the graph of Ψ is closed in the weak convergence topology. Proving non-
emptiness and convexity of the values is elementary, so is the closedness of the graph of Θ. The
main challenge in the proof of Theorem 2 is to prove that the graph of Ψ is closed. We are doing it
in several steps:

(a) We notice that for any ε > 0 there exists a finite set of measurable functions αµi : S → A,
i = 1, . . . , Kµ

ε , such that for any s ∈ S, µ ∈ ∆(S) the set of values of these functions at point s,
{αµi (s), i = 1, . . . , Kµ

ε }, is an ε-net of A(s, µ).

(b) We then prove that for any sequence ηn of elements of ∆(S × A) converging weakly to η ∈
∆(S ×A) and any function6 f : S → ∆(A) such that for any s ∈ S, f(s) ∈ A(s, ηS), a sequence
of strategies fn : S → ∆(S) can be constructed in such a way that:

• For each n and s ∈ S, fn(s) ∈ A(s, (ηn)S).
6We will call it a strategy in the remainder of the proof. Formally a strategy in a discrete-time mean-field game should

describe the behaviour of its user at any global state, not only at ηS .
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• For each n, the strategy fn assigns positive probability only to the graphs of the functions
α

(ηn)S
i , i = 1, . . . , Kµ

ε , with ε = 1
n
.

• For any s ∈ S, fn(·|s)⇒ f(·|s).
• The invariant distribution on S of the Markov chain of private states of a player using fn

when the state-action distribution in the game is ηn, pfn,ηn strongly converges to pf,η, the
invariant distribution corresponding to f and the distribution η.

(c) We next use this property to prove that the graph of Ψ is closed as follows: suppose it is not;
then there exist τn, ηn ∈ ∆(S × A) such that ηn ⇒ η, τn ⇒ τ and ηn ∈ Ψ(τn), but η 6∈ Ψ(τ).
Since the graph of Θ is closed, η ∈ Θ(τ), whence there exist σ ∈ Θ(τ) and ε > 0 such that∫

S×A
r(s, a, τ)σ(ds× da) >

∫
S×A

r(s, a, τ)η(ds× da) + ε. (2)

σ can be disintegrated into a strategy fσ and the invariant measure pfσ ,τ corresponding to this
strategy and the state-action distribution τ . Using (b) we may approximate them by a sequence
of strategies fnσ such that fnσ (·|s) ∈ A(s, (τn)S) for s ∈ S and a sequence of corresponding
invariant measures pfnσ ,τn . This however implies that the measure σn ∈ ∆(S×A) defined for any
D ∈ B(S × A) by the formula σn(D) :=

∫
D
fnσ (da|s)pfnσ ,τn(ds) is an element of Θ(τn), whence∫

S×A
r(s, a, τn)σn(ds× da) ≤

∫
S×A

r(s, a, τn)ηn(ds× da).

Passing to the limit, we obtain the inequality contradicting (2).

After applying the Glicksberg theorem to Ψ we obtain a fixed point τ ∗ which can be disintegrated
into a strategy f ∗ and a global state µ∗ which form a stationary mean-field equilibrium in the game.

4.2.3 The existence of a stationary mean-field equilibrium in games with total reward

In case of the total reward games, we only considered finite sets of private states and actions. In
that situation, most of the assumptions used for the average reward games were applied again. The
additional assumption (A6) was necessary to guarantee that the total reward of any player is always
finite:

(A6) There exists a p0 > 0, such that for any global state-action distribution τ and any stationary
strategy f , the probability of getting from any state s ∈ S \ {s∗} to s∗ in |S| − 1 steps in the
Markov chain defined by the transition probability

pss′ = Q(s′|s, f(s, τS), τ)

is not smaller than p0.

Theorem 3 (Theorem 4.1 in [H2]) Any discrete-time mean-field game with total reward satisfying
(A1–A3), (A5–A6) has a stationary mean-field equilibrium.

Similarly as in the proof of Theorem 1, we consider a Markov decision process M(τ) of a single
player. In this case he maximizes his total reward under the assumption that the global state-action
distribution is fixed over time and equal to τ . In addition we assume that once the state s∗ is
reached for the first time, the process is absorbed. The assumption (A6) guarantees that the reward
function considered in this model, Jτ (f, µ0), is continuous in τ , initial state distribution µ0 and the
stationary strategy of the player f . Let G(τ) denote the optimal reward in the MDPM(τ) under
the assumption that the initial state distribution for the player is Q(·|s∗, a∗, τ). Similarly as in the

9



proof of Theorem 1, we are using it to define a correspondence Ψ : ∆(S × A) → ∆(S × A) whose
fixed point should correspond to an equilibrium in the game:

B(τ) : =

η ∈ ∆(S × A) : ∃f η ∈ F∀s ∈ S,

(∑
a∈A

ηsa > 0⇒ f(s, τS) =
ηsa∑
a∈A ηsa

)

and Jτ (f η, Q(·|s∗, a∗, τ)) = G(τ)

 ,

C(τ) :=

{
η ∈ ∆(S × A) :

∑
a∈A

ηsa =
∑
s′∈S

∑
b∈A

Q(s|s′, b, τ)ηs′b

}
,

Ψ(τ) := B(τ) ∩ C(τ).

Nonemptiness of values of Ψ can be justified using similar arguments as in the proof of Theorem 1.
The fact that the graph of Ψ is closed is proved using the continuity of Jτ . Finally, the elementary
renewal theorem (see Theorem 3.3.4 in [52]) is applied to transfer the condition defining B(τ) into
an equivalent linear form, which immediately gives us the convexity of the values of Ψ. By the
Glicksberg theorem, the correspondence Ψ has a fixed point τ ∗. Disintegrating τ ∗, we obtain a
stationary strategy f ∗ and a global state µ∗ which form a stationary mean-field equilibrium in the
total reward game.

4.2.4 The relation with the n-person games

As we have already mentioned in the introduction, one of the main questions posed in the mean-field
game literature concerns the relation between the equilibria in mean-field games with approximate
equilibria in their n-person counterparts for large n. Below, we present a set of results (including one
example) which try to answer this question as completely as possible. To formulate them formally
we need to specify, what n-person stochastic games can be seen as counterparts of mean-field games
presented above.

Definition 5 The n-person stochastic game is called the n-person counterpart of the discrete-time
mean-field game, if it is defined by the following objects:

• The state space is Sn and the action space for each player is A. The set of actions available to
player i in state s = (s1, . . . , sn) is given by Ain(s) := A

(
si,

1
n

∑n
j=1 δsj

)
.

• Individual immediate reward of player i, rin : Sn × An → R, i = 1, . . . , n is defined for any
s = (s1, . . . , sn) and a = (a1, . . . , an) by

rin(s, a) := r

(
si, ai,

1

n

n∑
j=1

δ(sj ,aj)

)
.

• The transition probability Qn : Sn ×An → ∆(Sn) can be defined for any s ∈ Sn and a ∈ An by
the formula (for the clarity of exposition we write it only for Borel rectangles, which obviously
defines the product measure on Sn):

Qn(B1 × . . .×Bn|s, a)

:= Q

(
B1|s1, a1,

1

n

n∑
j=1

δ(sj ,aj)

)
. . . Q

(
Bn|sn, an,

1

n

n∑
j=1

δ(sj ,aj)

)
.
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• The set of stationary strategies of player i is denoted by F in. We shall also use the notation
Fn = F1

n× . . .×Fnn . As in the case of mean-field games, in specific situations we will allow the
use of strategies being discrete probability distributions over the sets F in. In this case, we shall
use the notation F i∗n (the set of player i’s strategies of this type) and F∗n (the set of vectors of
such strategies).

• As in the case of mean-field games, the functional maximized by each player is either his long-
time average reward or his total reward. They are defined for any initial state s0 = (s1

0, . . . , s
n
0 ) ∈

Sn and any profile of stationary strategies f = (f1, . . . , fn) ∈ Fn by the formulas:

J in(s0, f) := lim inf
T→∞

1

T + 1
Es0,Qn,f

T∑
t=0

rin(st, at),

J
i

n(s0, f) = Es0,Qn,f
T i−1∑
t=0

rin(st, at),

where T i denotes the time of first return of player i to state s∗.

Our aim is to prove, that the strategies in the stationary mean-field equilibrium in a discrete-time
mean-field game can be used to construct strategies which are in an approximate equilibrium in its
n-person counterparts (for n large enough). Below we formalize, what kind of equilibria we shall be
looking for in these stochastic games.

Definition 6 We say that a vector of strategies f ∈ Fn is in a ε-Nash equilibrium in stationary
strategies in an n-person stochastic game with long-time average reward, if it satisfies the inequalities7

J in(s, f) ≥ J in(s, [f−i, g])− ε

for any s ∈ Sn, g ∈ F in, and i ∈ {1, . . . , n}.
If the above inequalities are only true for vectors of strategies from a specific class Gn ⊂ Fn (or F∗n),
we say that f is in an ε-Nash equilibrium in the class Gn.

Definition 7 We say that a vector of strategies f ∈ Fn and the probability distribution µ∗ ∈ ∆(S)
are in a weak stationary ε-equilibrium in an n-person stochastic game with total reward, if it satisfies
the inequalities

EJ in(s, f) ≥ EJ in(s, [f−i, g])− ε

for any g ∈ F in and i ∈ {1, . . . , n}, if initial private states sj, j 6= i are random variables drawn from
the probability distribution µ∗ and si is a random variable drawn from the probability distribution
Q(·|s∗, a∗, τ ∗n), while τ ∗n is an empirical state-action distribution when states sj j 6= i are drawn
from the distribution µ∗, si = s∗, and actions of the players are chosen according to the stationary
strategies given by f .

Weak stationary ε-equilibrium in n-person stochastic games with long-time average reward is defined
similarly, but in this case all the initial private states sj are random variables with distribution µ∗.

In the first two theorems we concern the case where S and A are finite. They will make use of the
following additional assumptions:

(A7) Q(·|s, a, τ) = Q̃(·|s, a) for each s ∈ S, a ∈ A and τ ∈ ∆(S × A). Moreover, A(·, µ) = Ã(·) for
each µ ∈ ∆(S).

7[f−i, g] denotes the vector f with its i-th coordinate replaced by g.
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(A8) For any strategy f ∈ F and any fixed τ ∈ ∆(S×A), the Markov chain defined by the transition
probability

pss′ = Q(s′|s, f(s, τS), τ)

is aperiodic.

Theorem 4 (Theorem 5.1 in [H2]) Suppose (f, µ) is a stationary mean-field equilibrium in either
an average reward discrete-time mean-field game satisfying (A1–A5) and (A7) or a total reward
discrete-time mean-field game satisfying (A1–A3) and (A5–A7). Then for every ε > 0 there exists
an nε ∈ N such that for every n ≥ nε, (f, µ), where f = (f, . . . , f), is a weak stationary ε-equilibrium
in n-person counterpart of this game.8

The proof of this theorem is based on the following observation: Since in the case of games satisfying
assumption (A7), the evolution of the private state of any given player is independent from the state-
action distribution in the entire population, the long-time average reward of player i using strategy
g ∈ F against f ∈ F (the strategy in the stationary mean-field equilibrium) applied by all the other
players in n-person counterparts of the mean-field game can be represented as the sum:∑

s∈S

∑
a∈A

∑
τ∈∆n(S×A)

σsa(g)mn
τ (f−i, g)r(s, a, τ), (3)

where σ(g) denotes the occupation measure on S×A corresponding to the individual decision process
of a player using strategy g, ∆n(S × A) – a set of atomic distributions on S × A with atoms being
multiples of 1

n
, while mn

τ (f−i, g) is the measure of frequency of different values of the global state-
action distribution τt during the game. The measure σf is independent from the number of the
players, while mn

τ (f−i, g) weakly converges to the global state-action distribution in the mean-field
game, corresponding to the situation when all the players apply strategy f and the global state
of the game is µ. This however means that (3) converges to the reward in the mean-field game
corresponding to the situation when player i uses strategy g against f of the others, while the global
state is µ. This is obviously enough to obtain the thesis for the average reward game. To prove
the total reward case, we use the elementary renewal theorem to rewrite the reward in the n-person
counterpart of the given total reward discrete-time mean-field game for a player using stationary
strategy g against f of all the others, when initial distribution of states is µ, in a form similar to
(3). Then we can use the arguments from the first part of the proof to obtain the thesis.

Theorem 5 (Theorem 5.2 in [H2]) For every ε > 0 there exists an nε ∈ N such that for every n ≥ nε
the n-person counterpart of the average-reward discrete-time mean-field game satisfying (A1–A5) and
(A7–A8) has a symmetric ε-Nash equilibrium (πn, . . . , πn) ∈ F∗n defined as follows: if (f, µ) is an
equilibrium in the mean-field game, then πn is of the form:

πn(s) =
∑
l

µ∗l δ[f
n
l (s)], where fnl (s) =

{
f(s), if s 6∈ Sl,
f(s), if s ∈ Sl,

f is the communicating policy introduced in part (b) of the assumption (A1)9, Sl are ergodic classes
of the private state process of a player when he applies strategy f 10, and µ∗ is the probability measure
on the set of these ergodic classes corresponding to measure µ over S.

8Formally, f is a function from S×∆(S) to A, while stationary strategies in n-person counterpart of a mean-field game
are functions from Sn to A. It is easy to note though, that f applied to the empirical distribution of private states of the
players in the n-person game (as its second argument) is in fact a function of the vector of private states of all the players.
Obviously, if we wanted to be precise, we should formally define strategies of each of the players corresponding to f and
then write that the vector of such strategies in in an ε-equilibrium in the n-person counterpart of the mean-field game.
We shall simplify the notation in a similar manner in other theorems as well.

9Here it does not depend on τ by (A7).
10They also do not depend on τ by (A7).

12



The strategy πn defined in the above theorem is designed in such a way that the stationary dis-
tribution on the set of private states of a player using this strategy in the n-person counterpart
of the mean-field game is independent from the initial private state and equal to µ. This implies
that the inequalities defining the weak stationary ε-equilibrium (f, µ) obtained in Theorem 4 are
for strategies f replaced by πn true for any initial distribution of private states of a given player.
As a consequence, for any n ≥ nε, the vector (πn, . . . , πn) is an ε-Nash equilibrium in the n-person
counterpart of the mean field game.

The next results correspond to the case when S and A are compact metric. They will make use of
the following additional assumptions:

(B5) Q(·|s, a, τ) = Q̃(·|s, a) for any s ∈ S, a ∈ A and τ ∈ ∆(S × A). Moreover, A(·, µ) = Ã(·) for
any µ ∈ ∆(S).

(B6) For any sequence {sn, an, τn} ⊂ S × A × ∆(S × A), such that sn → s, an → a and τn ⇒ τ ,
Q(·|sn, an, τn)⇒ Q(·|s, a, τ).

The next theorem can be treated as a counterpart of Theorem 4 for the case of compact S and A.

Theorem 6 (Theorem 2 in [H5]) Suppose that (f ∗, µ∗) is a stationary mean-field equilibrium in an
average-reward discrete-time mean-field game satisfying (B1) and (B3–B6). Then for any ε > 0 there
exists an nε ∈ N, such that for n ≥ nε the vector of strategies f = (f, . . . , f), where f(·|s, µ) ≡ f ∗(·|s)
is an ε-Nash equilibrium in the n-person counterpart of the mean-field game.

In the case of mean-field games where the transitions of Markov chains of private states depend on
the state-action distribution of the players, an equilibrium in the discrete-time mean-field game may
fail to be an approximate equilibrium in its n-person counterparts for any value of n. This is shown
by the following example11:

Example 2 (Example 2 in [H5]) Consider an average-reward discrete-time mean-field game with
S = {0, 1} = A defined by:

Q(·|s, a, µ) =


(2µ0 − 1)δ0 + 2µ1δ1 if a = 0 and µ0 ≥ 2

3
1
3
δ0 + 2

3
δ1 if a = 0 and µ0 <

2
3

2µ0+1
3

δ0 + 2µ1
3
δ1 if a = 1

r(s, a, µ) =

{
6s if a = 0
1− s if a = 1

It can be shown that f ∗ ≡ δ0 and µ∗ = 1
3
δ0 + 2

3
δ1 form a stationary mean-field equilibrium in this

game.

Now suppose all the players in the n-person counterpart of this game use strategy f ∗. It is easy
to see, that in such a situation all the private states become zeros after a finite number of stages,
regardless of their initial values. Note however, that the state s = (0, . . . , 0) is an absorbing state.
Hence, the average reward corresponding to the profile consisting of strategies f ∗ in the n-person
counterpart of the mean-field game is 0. Now suppose that one of the players changes his strategy to
g ≡ δ1. Then the game is still absorbed at s = (0, . . . , 0), but the ergodic reward of the player using
strategy g is 1, so the profile of f ∗ is not an ε-Nash equilibrium in any of the n-person counterparts
of the mean-field game for any ε < 1.

11It is worth mentioning here, that it is one of only two examples of this kind available in the mean-field game literature.
The other example can be found in [13]. It is significantly different from ours.
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Theorem 7 (Theorem 3 in [H5]) For any L > 0, define

FL = {f ∈ F : f is weakly continuous and for any s ∈ S,
f(·|s, ·) is weakly Lipschitz continuous with constant L} .

Let then (f ∗, µ∗) be a stationary mean-field equilibrium in an average-reward discrete-time mean-field
game satisfying (B1–B4). Assume further that:

(a) The stationary strategy f defined with the formula f(·|s, µ) = f ∗(·|s) for any s ∈ S and µ ∈ ∆(S)
is an element of F . Moreover, it is weakly Lipschitz-continuous with constant βf as a function
of s.

(b) The transition kernel Q satisfies12 for any s ∈ S, a1, a2 ∈ A and τ1, τ2 ∈ ∆(S × A)

‖Q(·|s, a1, τ1)−Q(·|s, a2, τ2)}‖v ≤ βQ(max{dA(a1, a2), ρS×A(τ1, τ2)}).

(c) The constants βf , βQ satisfy βQ(1 + βf ) <
γ
2
.

Then for any ε > 0 and L > 0 there exists an nε,L ∈ N such that for any n ≥ nε,L the profile of
strategies where each player uses strategy f is an ε-Nash equilibrium in the class FLn in the n-person
counterpart of the mean-field game.

The proofs of Theorems 6 and 7 are based on a result by Boissard (see Corollary 2.5 in [12]),
giving a possibility of estimating the difference between the values of a given continuous function
of a probability distribution in two cases: when its argument is some given distribution, and when
we replace it by an empirical distribution from a k-element vector of random variables with this
distribution. Using this result, we are able to prove that the rewards in the n-person counterparts
of the average-reward discrete-time mean-field game converge to the rewards in the mean-field game
under the following assumption: The marginals on S of the invariant distributions for the transition
probabilities in the n-person counterparts of the mean-field game corresponding to the case when
all players but one use the same stationary strategy weakly converge to the invariant distribution of
the Markov chain of private states of a player in the mean-field game when all the players use this
strategy13. This kind of convergence is enough to prove the theses of both theorems.

In the case of Theorem 6, the above-mentioned S-marginals of invariant distributions in the n-person
model and the invariant distributions in the mean-field model are identical by (B5) (as the transitions
in the Markov chains of private states of any given player are independent from the private states
and the actions of the others, regardless of their number). In the case of Theorem 7, the crucial part
of the proof of the convergence of the S-marginals of the invariant distributions in n-person games to
the invariant distributions in the mean-field game, is showing the uniqueness of the invariant measure
of the process of private states of a player using strategy g ∈ FL against f ∈ FL of all the others in
the mean-field game (in general it may depend on the initial global state-action distribution – it is
that way in the game from example 2). We do it by showing that the function Mf : ∆(S)→ ∆(S)
defined with the formula

Mf (µ) := pf,Π(f,µ), where Π(f, µ)(D) :=

∫
D

f(da|s)µ(ds) for D ∈ B(S × A)

12dA in the equality below is the metric on A. ‖ · ‖v denotes the norm defined on the set of all finite signed measures on
(S,B(S)) by the formula

‖µ‖v = sup
B∈B(S)

µ(B) + | inf
B∈B(S)

µ(B)|.

13Obviously, we need some additional assumptions concerning the continuity of the strategies used by the players.
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satisfies the assumptions of the Banach fixed point theorem. The fixed point that we obtain, µff ,
is the unique invariant measure of the process of private states of any given player when everyone
uses strategy f in the mean-field game. The uniqueness of the invariant measure (denoted further as
µgf ) in the general case (i.e. when a player uses strategy g against f applied by other players) can
be easily shown by combining the case with f = g with geometric ergodicity of the Markov chain of
private states of the player which follows from (B3).

The next step of the proof is noticing that any subsequence of the sequence of the S-marginals of the
invariant measures in the n-person counterparts of the mean-field game when a player uses strategy
g against f of the others has a convergent subsequence. For a game satisfying the assumptions of
Theorem 7 it can be shown that this subsequence will converge to µgf . This however implies that
the entire sequence converges to µgf , which is what we wanted to prove.

4.3 Semi-Markov mean-field games (paper [H4])

4.3.1 The model

The next model we are going to present is in many ways similar to the total reward model analyzed
in previous sections. For that reason the description given below concentrates on the differences
between the two formalisms. A semi-Markov mean-field game with total reward is described as
follows:

• The sets of private states S and actions A are finite. Both, as in the case of discrete-time mean-
field games with total reward, are complemented with elements s∗ and a∗ meaning “death” of a
player and the only action available in state s∗.

• The global state of the game at time t is denoted by Xt to make a distinction between the
discrete- and continuous-time models. As in the previous models, global state is a probability
measure over S. It describes the mass of the population which is at time t in each of the
individual states.

• We assume that the time is continuous (t ≥ 0), but the individual state of player α can only
change at specific times Tα0 , Tα1 , . . ., where Tα0 = 0. The time between successive transitions
ταk = Tαk+1 − Tαk is random exponentially distributed with intensity λ(sTαk−1

, XTαk
). Random

variables ταk are for different k and α independent. We assume that λ is a positive, Lipschitz
continuous function of the global state of the game.

• The sets of actions available to a player at any time are, as in other models considered here,
given by an upper semi-continuous correspondence A : S ×∆(S)→ A.

• The transition in the process of private states of player α at time Tαk−1 is according to the
transition function Q : S × A×∆(S) → ∆(S) which is a Lipschitz continuous function of the
global state.

• As before, we assume that all the players use stationary strategies. The set of all stationary
strategies is denoted by F . The set of deterministic stationary strategies is denoted by Fd.
• As private states of different players change in different moments, the evolution of the global

state is described by an ordinary differential equation:
.

Xs
t =

∑
s′∈S

∑
a∈A

Xs′

t λ(s′, Xt)Q(s|s′, Xt, a)f̂a(s
′, Xt)−Xs

t λ(s,Xt), s ∈ S (4)

with X0 ≡ x0, the initial global state and f̂a(s,X) :=
∫ 1

0
1{fα(s,X) = a} dα, where fα ∈ Fd
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denotes the stationary strategy of player α14. The ODE (4) is usually referred to as the Kurtz
dynamics in the literature (see e.g. Theorem 5.3 in [56]).

• The total reward of player α using strategy f ∈ F against g ∈ F applied by all the others is
computed according to the formula

J
α
(f, g, µ0) = Ex0,µ0,Q,f,g

iαe−1∑
i=0

(
r̃(sαTαi , XTαi

(g), aαTαi ) +

∫ Tαi+1

Tαi

r(sαTαi , Xt(g), aαTαi ) dt

)
Pf,µ0 ,

where Tiαe is the moment of the first return of the private state of player α to s∗, µ0 is the
distribution of private states of new-born players, r : S × A × ∆(S) → R is the immediate
reward function, while r̃ : S × A × ∆(S) → R is the reward received by a player upon the
change of his state. We assume both r and r̃ are the same for each player and continuous in
the global state of the game.

• Stationary mean-field equilibrium in the game is defined similarly as in the case of discrete-time
mean-field games with total reward.

4.3.2 The results

The existence of a stationary mean-field equilibrium in games of this type has been proved under
some lattice-theoretic assumptions15:

(C1) There exists a p0 > 0 such that for any global state X and any strategy f ∈ F the probability
of getting from any private state s ∈ S \ {s∗} to s∗ in |S| − 1 steps in the Markov chain with
transition probabilities

pss′ = Q(s′|s, f(s,X), X)

is not smaller than p0.

(C2) S and A are sublattices of R such that s∗ = min{S} and a∗ = min{A}. Moreover, (a) for any
s ∈ S and X ∈ ∆(S), A(s,X) is a sublattice of A, (b) A(s,X) is a non-decreasing function
of (s,X).

(C3) r(s, a,X) and r̃(s, a,X) are non-negative, non-decreasing in s and supermodular in (s, a).
Moreover, they have increasing differences in (s, a) and X.

(C4) Q(·|s, a,X) is stochastically supermodular in (s, a) and stochastically non-decreasing in s, a
and X. Moreover, it has stochastically increasing differences in (s, a) and X.

(C5) λ(s,X) does not depend on s and is a non-increasing function of X.

Assumptions of this type have been used in the game-theoretic literature for a long time, also in the
case of dynamic games (see [4, 5, 17, 31, 42, 60, 63, 1]). They describe the situation when private

14The results proved in [H4] are all about the existence of a stationary mean-field equilibrium in which all the players
use deterministic strategies. f̂ is defined here only in this case – the definition would become slightly more complicated,
if we did not make such an assumption.

15The lattice-theoretic notions used there are briefly discussed below:
We say that a set X with partial order �X is a lattice, if for any x1, x2 ∈ X the set X contains x1 ∨ x2 := sup{x1, x2}

and x1 ∧ x2 := inf{x1, x2}. X is a complete lattice, if any subset X has upper and lower bounds which are elements of X.
We say that a function f : X → R is supermodular, if f(x1 ∨ x2) + f(x1 ∧ x2) ≥ f(x1) + f(x2) for x1, x2 ∈ X. If in

addition (Y,�Y ) is a lattice, we say that a function g : X × Y → R has increasing differences, if for x1, x2 ∈ X, x1 �X x2
and y1, y2 ∈ Y , y1 �Y y2, g(x2, y2)− g(x1, y2) ≥ g(x2, y1)− g(x1, y1) holds.
It is known that (R,≤) is a lattice. Another well-known example of a lattice is the set ∆(R) with the (first-order)

stochastic dominance ordering. Each time we refer to some lattice-theoretic properties defined with the help of this
ordering, we add „stochastically” to the name of the property (e.g. we write about stochastic supermodularity, stochastically
increasing differences etc.)
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states and actions of the players are linked in the following way: If the private state of a player is
big, it is more profitable to use big actions. Similarly, if the private states of the others are big, using
bigger actions becomes more profitable. It turns out, that many practical applications of dynamic
games (in both economics and engineering) can be modeled by games of this type.

Theorem 8 (Theorem 1 in [H4]) A semi-Markov mean-field game with total reward satisfying (C1–
C5) has a stationary mean-field equilibrium (f ∗, X∗) with f ∗ ∈ Fd, such that f ∗ is non-decreasing
both in the private state of the player and in the global state of the game.

The proof of the above theorem consists of several steps:

(a) We start by showing (using some standard techniques used in theory of supermodular games,
see [62], and some standard tools used in dynamic programming, see e.g. [49]), that the optimal
reward of a player maximizing his total reward in the mean-field game under the assumption
that the global state does not change over time and equals X, V ∗X , preserves the properties of
functions r and r̃ given by (C3).

(b) Let B(X, s) denote the set of actions maximizing the RHS of the Bellman equation for the
above-mentioned maximization problem. Moreover, let B(X, s) := maxB(X, s), B(X, s) :=
minB(X, s). Using the Topkis theorem (see Theorem 2.8.3 in [62]) it can be shown that B and
B are increasing in X and (for any fixed X) of s.

(c) Next, let

F0 := {f ∈ Fd : f(s,X) is nondecreasing in X and for any fixed X in s}.

Further, let X(f,X) and X(f,X) be the biggest and the smallest (in the stochastic ordering)
stationary distributions in the Markov chain of private states of a player using strategy f ∈ F0

when the global state of the game is constant and equal to X. We then show that X and X are
non-decreasing functions of f and X.

(d) Finally, we define Ψ : ∆(S)→ ∆(S) and Ψ : ∆(S)→ ∆(S) with the formulas

Ψ(X) := X(B,X) and Ψ(X) := X(B,X).

The properties that we have proved in (b) and (c) imply that they are both nondecreasing
endomorphisms defined on a complete lattice ∆(S). By the Tarski fixed point theorem (see [61])
both functions have fixed points: respectively X∗ and X∗. Taking either f ∗ = B, µ∗ = X

∗ or
f ∗ = B, µ∗ = X∗, we obtain the thesis of the theorem.

The next theorem presents a simple distributed learning procedure. It allows the players to learn
one of the strategies in stationary mean-field equilibrium. The proof is rather technical, so we have
decided to skip it.

Theorem 9 (Theorem 2 in [H4]) The algorithm as follows:

For each time moment t ≥ 0 repeat the following step:

(a) Every player making his move at time t chooses action at = B(Xt, s).

applied in a semi-Markov mean-field game with total reward satisfying (C1–C5) and

(C6) A(s,X) does not depend on X.

with x0 = δs∗ has the following properties:
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(a) For any α, aαTαi+1
≥ aαTαi , i = 0, 1, . . . , iαe − 1.

(b) Xt is an increasing function of t converging to some X as t→∞, such that (B,X ) is a stationary
mean-field equilibrium in the game.

We have also proved a theorem concerning the relation between the rewards obtained by the players
in the semi-Markov mean-field games with total reward and those in their n-person counterparts,
defined similarly as in the case of discrete-times games (we skip the details of the definition).

Theorem 10 (Theorem 3 in [H4]) Let

Fc = {f ∈ F : f(·|s,X) does not depend on X}.

Suppose the assumption (C1) holds. Then for any ε > 0 there exists an Nε ∈ N such that for n ≥ Nε

the expected reward of player α from playing policy g ∈ Fc against f ∈ Fc played by all the other
players in the n-person counterpart of the semi-Markov mean-field game with total reward differs
from his expected reward when he plays g against f in the mean-field game by at most ε.

The proof is based on the application of the Kurtz theorem (Theorem 5.3 in [56]), which implies that
for any closed interval the trajectories of the process of the global state in n-person counterparts of
the mean-field game when all players but one use some stationary strategy f converge for n → ∞
uniformly in probability to the solution of (4). Using (C1) together with continuity and positivity
of λ, we can find a finite horizon Tε in such a way that the expected payoff of any player after time
Tε from his birth is a sufficiently small fraction of ε. Applying the Kurtz theorem to the interval
[Tα0 , T

α
0 + Tε] and using continuity of r and r̃ we obtain the thesis of the theorem.

The following fact is a natural consequence of the above theorem:

Corollary 1 Suppose a semi-Markov mean-field game with total reward satisfies (C1–C6) and take
any ε > 0. Then for a sufficiently big n, (B(X∗, ·), X∗) and (B(X

∗
, ·), X∗) are weak stationary

ε-equilibria in the class Fc in n-person counterparts of the mean-field game.

4.4 The applications of mean-field game models in wireless telecommunication (pa-
pers [H1,H3])

In the next part of this summary we discuss two applications of the mean-field models discussed
in previous sections. Both of them are related to some engineering problems arising in wireless
telecommunications. The proofs of these results are based on a precise analysis of the properties of
the reward functions (which in both cases can be written in a closed form), which makes them all
rather technical. We have thus decided not to discuss them in this presentation.

4.4.1 Power control for mobile terminals (paper [H1])

The first problem can be described as follows: A large population of mobile phones fights for access
to a base station. Each of them attempts transmission over a sequence of time slots, at each attempt
making a decision on the transmission power. The choice it makes is important for three reasons:

• Bigger transmission power means higher throughput.

• Bigger transmission power implies bigger interference for other players, decreasing their through-
puts.

• Bigger transmission power means that the mobile’s battery gets empty after a shorter period
of time.
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In our model we assume that the transmission ends when the battery is emptied, hence, each player
maximizes his his throughput minus the cost of the transmission over one lifetime of his battery.

As this is a game with a large population of symmetric players, approximating it using a discrete-
time mean-field game seems a good idea. The players maximize their utility aggregated over one
lifetime of the battery, so the total-reward mean-field game model described in section 4.2.3 should
be the most appropriate. The private state si of a player i will be the energy available in his battery.
We shall assume that S = {s1, s2, . . . , sM} ∪ s∗ with s1 < s2 < . . . < sM . Actions of the players will
be their transmission powers. We shall assume that the set of actions is A = {a1, a2, . . . , aK}, with
a1 < a2 < . . . < aK . In addition, we assume that the set of actions available in private state s 6= s∗

is of the form
A(s) = {a1, . . . , aks} ⊂ A,

and such that for any s < s′, ks ≤ ks′ . The transition probabilities in the private Markov chains of
the players will be defined as follows:

• The probability of staying in a private state s 6= s∗ by a player using action a is p(a), where

p(a) = 1− αa− γ,

α and γ are some positive constants.

• The state decreases by 1 with the remaining probability.

State s∗ corresponds to the situation when the battery of a player is empty. At any given time a
mobile whose battery is empty may have it recharged (up to sM) with probability p0N .

The immediate reward of a player in a private state s using action a, if the global state-action
distribution in the game equals τ can be computed using the formula

r(s, a, µ) =
a

σ2 + C
∑K

k=1 al
∑M

m=1 τmk
− βa,

where C is the interference parameter, σ2 is the noise power, while β is the unit energy cost. The
first part of the utility function is the so-called signal to interference ratio (SINR). It is the standard
measure used to evaluate the quality of a wireless transmission (see [48]). The second part is the
cost of the energy used for the transmission.

It is rather easy to verify that the game presented above satisfies all the assumptions of both Theorem
3 and Theorem 4, so the existence of a stationary mean-field equilibrium, as well as the fact that
such equilibrium corresponds to approximate equilibria in similar models with large finite number of
mobiles, are guaranteed. Our main aim in paper [H1] was to prove something more though: firstly,
we wanted to find a class of strategies with the simplest possible structure (which in practice means
that they are easy to implement) which contains an equilibrium in this game; secondly, we wanted
to find efficient algorithms that could allow computing these strategies. The types of strategies of
particular interest are defined below:

Any strategies using only the smallest and the biggest powers available in each state:

Fm =

f ∈ F : ∃r1, . . . , rM ∈ [0, 1], f(sm, µ) = rmδ[a1] + (1− rm)δ[aksm ],m = 1, . . . ,M, µ ∈ ∆(S)

 .

Threshold strategies using only the smallest and the biggest powers available:

Fmp =

f ∈ F : ∃s0 ∈ S,∃r ∈ [0, 1],∀µ ∈ ∆(S), f(s, µ) =


δ[a1], s < s0

rδ[a1] + (1− r)δ[aks ], s = s0

δ[aks ], s > s0

 .
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Theorem 11 (Theorem 2 in [H1]) The game under consideration always possesses a stationary
mean-field equilibrium (f ∗, µ∗) such that f ∗ ∈ Fmp. Moreover,

(i) It is unique in the set Fmp.
(ii) If

βC

∑M
m=1

aksm
αaksm+γ∑M

m=1
1

αaksm+γ
+ 1

p0N

≤ 1− βσ2, (5)

then f ∗ = f+, where f+(s, µ) := δaks , s = s1, . . . , sM , µ ∈ ∆(S).

(iii) If

βCa1 > 1− βσ2 and p0N ≥
(αa1 + γ)(1− βσ2)

M(βCa1 − (1− βσ2))
, (6)

then f ∗ = f−, where f−(s, µ) := δa1, s = s1, . . . , sM , µ ∈ ∆(S).

Theorem 12 (Theorem 3 in [H1]) Suppose neither f+ nor f− is a strategy in a stationary mean-field
equilibrium in the game under consideration. Moreover, the set

S0 := {s ∈ S : |A(s)| > 1}

has at least two elements. Then there is a continuum of stationary mean-field equilibria (f ∗, µ∗) in
the game such that f ∗ ∈ Fm. Moreover, f ∗ ∈ Fm is a strategy in a mean-field equilibrium iff it
satisfies the following equation:

M∑
m=1

rm

(
1

αa1 + γ
− 1

αaksm + γ)

)
=

Cβ(Mp0N + γ

p0N(α− αβσ2 + Cβγ)
−

M∑
m=1

1

αaksm + γ
− 1

p0N

,

where
rm :=

rm(αa1 + γ)

rm + (1− rm)(αaksm + γ)

with rm satisfying f ∗(sm, µ) = rmδ[a1] + (1− rm)δ[aksm ] for m = 1, . . . ,M and µ ∈ ∆(S).

The next two results give us some efficient methods of computing the equilibrium strategies discussed
in the previous theorems:

Theorem 13 (Theorem 4 in [H1]) define θ : S × [0, 1]→ R

θ(s0, r) := σ2 + C

(s0−1)a1
αa1+γ

+
ra1+(1−r)ak

s0

r(αa1+γ)+(1−r)(αak
s0

+γ)
+
∑sM

s=s0+1
aks

αaks+γ

s0−1
αa1+γ

+ 1
r(αa1+γ)+(1−r)(αak

s0
+γ)

+
∑sM

s=s0+1
1

αaks+γ
+ 1

p0N

and h : Fmp → [0,M ]
h(f) := M + 1− ind(s0)− r,

where ind(s) = l⇐⇒ s = sl. A strategy in a stationary mean-field equilibrium f ∗ ∈ Fmp in the game
under consideration can be computed by applying bisection to the function

φ(x) = θ(h−1(x))− 1

β

on [0,M ]. The approximate value of f ∗ will then be given by h−1(x∗), where x∗ is the (approximate)
zero of φ. If for any x ∈ [0,M ], φ(x) < 0, f+ is the strategy in equilibrium. If for any x ∈ [0,M ],
φ(x) > 0, f− is the strategy in equilibrium.
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Theorem 14 (Theorem 5 in [H1])

(i) Let u be any linear function from RN to R. The following procedure gives a strategy f ∗ ∈ Fm in
stationary mean-field equilibrium in the game under consideration, such that the randomization
occurs at most in one private state:

(a) Check whether the parameters of the model satisfy (5) or (6). If they satisfy the former,
take f ∗ := f+; if they satisfy the latter, take f ∗ := f−. If they do not satisfy any of the
two, pass to (b).

(b) Using the simplex method solve the LP:

maximize u(r1, . . . , rM)

subject to
M∑
m=1

rm

(
1

αa1 + γ
− 1

αaksm + γ

)
= D −

M∑
m=1

1

αaksm + γ

0 ≤ rm ≤ 1, m = 1, . . . ,M,

where
D = Cβ

Mp0N + γ

p0N(α− αβσ2 + Cβγ)
− 1

p0N

, (7)

(c) For m = 1, . . . ,M compute rm :=
rm(αaksm+γ)

rm(αaksm+γ)+(1−rm)(αa1+γ)
and f ∗(sm, µ) := rmδ[a1] + (1−

rs)δ[aksm ].

(ii) If we take

u(r1, . . . , rM) :=
M∑
m=1

GM−m
(

1

αa1 + γ
− 1

αaksm + γ

)
rm, (8)

where G > 1 is any fixed constant, Then f ∗ obtained is the unique strategy Fmp in stationary
mean-field equilibrium in the game.

The next result gives us the method to compute a strategy from Fmp which maximizes the average
reward of a player in the game under consideration over the set of all stationary strategies F (we
may assume that this is the strategy that would be chosen, if the choice was made in a centralized
manner).

Theorem 15 (Theorem 6 in [H1]) There exists a strategy f ∈ Fmp which maximizes the average
reward of a player in the game under consideration over the set F . It can be computed using the
following procedure:

(a) Check whether the parameters of the model satisfy (6). If they do, take f := f− and terminate.
If not, pass to (b).

(b) Find d maximizing

H(d) :=

 1

σ2 + C

[
Mp0N+γ

αp0N (d+ 1
p0N

)
− γ

α

] − β
(Mα − γ

α
d

)

on the interval
[∑M

m=1
1

αaksm+γ
, M
αa1+γ

]
, d∗.

(c) Perform steps (b) and (c) of the procedure from Theorem 14 with D replaced by d∗ and u given
by (8).
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The article [H1] also contains some examples comparing the average rewards obtained by the players
in cases when they use their equilibrium strategies and when they use strategies given by the above
theorem. They show that it is possible that the two will be different. A formal analysis of the impact
of independent decision-making on the social welfare in the game (by computing the so-called price
of anarchy, see [37], which is a standard procedure in problems of this type) is tricky, as in our
model the rewards of the players may both be positive and negative. In particular, the rewards in
any stationary mean-field equilibrium in the game when neither f+ nor f− is an equilibrium strategy
is always zero, as implied by the next theorem. It also gives some information about other important
metrics applied in practice in this kind of problems.

Theorem 16 (Theorem 7 in [H1]) Suppose the parameters of the model are such that neither f+ nor
f− is in stationary mean-field equilibrium in the game under consideration. Then for any stationary
mean-field equilibrium (f ∗, µ∗) such that f ∗ ∈ F :

(i) The expected reward of any player at equilibrium is

J(δsM , µ
∗, f ∗, f ∗) = 0.

(ii) The total throughput at any time t if all the players apply strategy f ∗ is

Th(f ∗) =
β(N − γD)

αD

with D defined by (7).

(iii) The average lifetime of a battery when all the players use strategy f ∗ is T (f ∗) = D.

4.4.2 M/M/∞ queues with service cost shared among the users (paper [H3])

The second practical problem that we have considered which can be formulated as a mean-field game
comes from the article [H3]. It can be described as follows: A group of mobile terminals tries to
access some resource, whose quality depends on the lack of significant transmission delays. Examples
of such resources are live sports broadcasts or some TV shows available on demand. The problem
we are dealing with can be described with a help of an M/M/∞ queue. The players are the mobile
terminals deciding to queue or not to queue based on the queue length which they observe. Their
rewards are computed as the value of service (which is the same for any player and equal to γ) minus
the cost of service, which is computed as the integral of a continuous non-increasing16 function of
the queue length c : R+ → R+ from zero to the time the service is completed. The process of arrival
of users and the time of service are modeled by an M/M/∞ queue with known incoming rate λ
and service rate µ. As in such a model the number of players is large and all are identical, we may
approximate it with a mean-field game. As any player takes part in the game only during his service
time, which is an exponential random variable, it will be a semi-Markov mean-field game with total
reward as described in section 4.3. Note however, that the only decision made by any player is
whether to join the queue or not. Moreover, it is made exactly at the moment when he joins the
game. This allows us to simplify the model presented in section 4.3 in the following manner:

• We do not consider private states and assume that the global state of the game at any time t
is the length of the queue Xt.

• The set of players’ actions is A = {E,N}, where E denotes ‘entering the queue’, while N goes
for ‘not entering the queue’.

16The assumption that the cost function is non-increasing is nonstandard. It follows from the interpretation of the model
– in case of a live transmission to a number of mobile terminals we may assume that the cost is divided among all the
terminals, which implies that the cost per terminal decreases with the number of users.
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• The players make their decisions based on the length of the queue Xt, thus their stationary
strategies are functions from R+ to ∆(A).

• The evolution of the global state when all but a finite number use strategy f ∈ F can be
described by a counterpart of the ODE (4) which takes the form{ .

X t(f) = Ef({E}|Xt)λ− µXt(f),∀t ≥ 0

X0 = x0,

• The total reward of a player joining the game at time Tα0 and using strategy f ∈ F against
g ∈ F of all the others can be directly computed using the formula17:

J
α
(XTα0

, f, g) = Ef({E}|XTα0
)

[
γ −

∫ Tα0 +τα0

Tα0

c(Xt(g)) dt,

]

where τα0 is the service time of player α, that is, an exponential (with parameter µ) random
variable.

Unlike in the model from [H4], here we try to find the stationary strategy Nash equilibria in the
game. This obviously implies that the results presented in section 4.3 cannot be applied in here.
The most important result in [H3] is the theorem characterizing all the stationary strategy Nash
equilibria in the model. It makes use of the following definition:

Definition 8 A stationary strategy f ∈ F in the game under consideration is a [Θ, q]-threshold
strategy, if it is of the form:

f(·|x) =


δN(·), if x < Θ
qδE(·) + (1− q)δN(·), if x = Θ
δE(·), if x > Θ

Theorem 17 (Theorem 1 in [H3]) Let Θ and Θ be the unique solutions to the equations

1

λ−Θµ

∫ λ
µ

Θ

c(u) du = γ,
1

Θµ

∫ Θ

0

c(u) du = γ.

The game under consideration always has a symmetric equilibrium where each of the players uses
the same [Θ, q]-threshold strategy. Moreover:

(a) If γ ∈
(

0, 1
µ

limu→∞ c(u)
]
then the equilibrium is unique, with Θ = ∞, which means that the

equilibrium policies prescribe every user never to enter the queue.

(b) If γ ∈
(

1
µ

limu→∞ c(u), 1
λ

∫ λ
µ

0 c(u) du

)
then there are infinitely many equilibria, whose forms

depend on the relation between Θ and λ
µ
:

(b1) If Θ < λ
µ
then there are equilibria of five types: Θ = Θ and any q > Θµ

λ
; Θ = Θ∗, with Θ∗

satisfying c(Θ∗) = µγ and q = Θ∗µ
λ
; Θ = Θ and any q ∈ [0, 1]; any Θ ∈

[
Θ, λ

µ

]
and q = 0; any

Θ ∈
[
Θ, λ

µ

]
and q = 1.

(b2) If Θ = λ
µ
then either Θ = Θ and q ∈ {0, 1} or Θ = Θ and q is any number from [0, 1].

(b3) If Θ > λ
µ
then either Θ = Θ and q is an arbitrary number from [0, 1] or Θ = λ

µ
and q = 0.

17As we do not use private states in the description of this model, here we also skip the first argument of J
α
, which is

the initial distribution of the private state of player α.
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(c) If γ ∈
[

1
λ

∫ λ
µ

0 c(u) du, 1
µ
c(0)

)
then there are infinitely many equilibria of three types: with Θ ∈

[0,Θ] and q = 0; with Θ ∈ [0,Θ] and q = 1; with Θ = Θ∗ satisfying c(Θ∗) = µγ and q = Θ∗µ
λ
.

(d) If γ ≥ 1
µ
c(0) then the equilibrium is unique, with Θ = 0 and q = 1, which means that the

equilibrium policies prescribe every user to always enter the queue.

As in the case of the previous model, we are also interested with a strategy that would have been
chosen, if it was chosen in a centralized manner in order to maximize the average reward of a player
in the game. The next theorem states, how this strategy should be chosen and what average reward
it would induce (depending on the parameters of the model).

Theorem 18 (Theorem 2 in [H3])

(a) If c
(
λ
µ

)
< γµ then the biggest average reward in the game equals 1

µ

(
c
(
λ
µ

)
− γµ

)
and is attained

for the strategy profile consisting of [0, 1]-threshold strategies of all the players, prescribing to
always join the queue.

(b) If c
(
λ
µ

)
= γµ then the biggest average reward in the game equals 0 and is attained for any

symmetric strategy profile consisting of [Θ, q]-threshold strategies such that Θ 6= qλ
µ
.

(c) If c
(
λ
µ

)
> γµ then the biggest average reward in the game equals 0 and is attained for the

strategy profile consisting of [∞, 0]-threshold strategies of all the players, prescribing never to
join the queue.

Comparison of average rewards at equilibria with their optimal values given by Theorem 18 leads to
the following conclusions:

Corollary 2 (Theorem 3 in [H3]) Two situations are possible:

(a) If γ ∈
(

1
µ
c
(
λ
µ

)
, 1
λ

∫ λ
µ

0 c(u) du

)
or γ ∈

[
1
λ

∫ λ
µ

0 c(u) du, 1
µ
c(0)

)
and x0 ≤ Θ, then the average

player’s reward at the worst Nash equilibrium in the game under consideration is zero, even
though a positive average reward is possible.

(b) In any other situation the average reward at any Nash equilibrium in the game is the same as
its optimal value.

Corollary 3 (Theorem 4 in [H3]) Two situations are possible:

(a) If γ ∈
(

1
µ
c
(
λ
µ

)
, 1
λ

∫ λ
µ

0 c(u) du

)
and x0 < Θ, then the average player’s reward at the best Nash

equilibrium in the game under consideration is zero, even though a positive average reward is
possible.

(b) In any other situation there exists a Nash equilibrium in the game the average reward at which
is the same as its optimal value.

Since there are situations when average players’ rewards at any Nash equilibrium in the game are
zero even though positive averages are possible, in the remainder of paper [H3] we have asked, if
it is possible to give incentive to the players to play more efficiently by limiting the information
available to them. More precisely, we have assumed that the players are not able to observe the
exact value of the queue’s length. Instead, the information they have access to is the answer to
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the question whether current value of Xt is greater or smaller than some predefined constant Ψ.
It is a specific game of incomplete information where players do not have access to any statistical
information about exact situation in the game. The solution used in this type of games is that of
robust Nash equilibrium, see [2]. In case of our game it can be defined as follows:

Definition 9 We say that a strategy f ∈ F of player α is a best robust response to the strategy
g ∈ F applied by the others, if

f(·|x1) = f(·|x2), if x1, x2 < Ψ or x1, x2 ≥ Ψ. (9)

Moreover, for any other strategy h ∈ F satisfying (9),

inf
x<Ψ

J
α
(x, f, g) ≥ inf

x<Ψ
J
α
(x, h, g) and inf

x≥Ψ
J
α
(x, f, g) ≥ inf

x≥Ψ
J
α
(x, h, g)

We say that a profile of strategies where all the players use strategy f is a symmetric robust Nash
equilibrium in the game under consideration, if f is a best robust response to f applied by all other
players.

The next theorem describes how the above-defined solution depends on the parameters of the model
and the value of Ψ. It uses the following convention: we say that a player uses strategy (a1, a2),
a1, a2 ∈ A, if he chooses a1, if the global state is smaller than Ψ and action a2, if the global state is
greater or equal Ψ.

Theorem 19 (Theorem 5 in [H3]) Let:

LEE(Ψ) :=
1

λ

∫ λ
µ

0

c(u) du, LNE(Ψ) := LNN(Ψ) :=
1

µ
c(0), HEE(Ψ) :=

1

λ−Ψµ

∫ λ
µ

Ψ

c(u) du,

HNE(Ψ) :=

{
1

Ψµ

∫ Ψ

0
c(u) du, if Ψ > λ

µ

1
λ−Ψµ

∫ λ
µ

Ψ c(u) du, if Ψ ≤ λ
µ

, HNN(Ψ) :=
1

Ψµ

∫ Ψ

0

c(u) du.

For any Ψ ≥ 0 the game with partial information under consideration has a pure-strategy symmetric
robust Nash equilibrium. Moreover:

(a) When γ > LNN(Ψ) then all the players use policy EE in equilibrium;

(b) When LNN(Ψ) ≥ γ ≥ LEE(Ψ) and γ > HNN(Ψ) then strategy profiles where all the players use
policy EE and where all the players use policy NE are equilibria;

(c) When HNN(Ψ) ≥ γ ≥ max{LEE(Ψ), HNE(Ψ)} then any strategy profile where all the players
use the same policy is an equilibrium;

(d) When HNE(Ψ) > γ ≥ LEE(Ψ) then strategy profiles where all the players use policy EE and
where all the players use policy NN are equilibria;

(e) When LEE(Ψ) > γ > HNN(Ψ) then all the players use policy NE in equilibrium;

(f) When min{LEE(Ψ), HNN(Ψ)} ≥ γ ≥ HNE(Ψ) then strategy profiles where all the players use
policy NE and where all the players use policy NN are equilibria;

(g) When min{LEE(Ψ), HNE(Ψ)} > γ then all the players use policy NN in equilibrium.

Using the last theorem, we are able to choose Ψ in order to maximize the average of players’ rewards
at robust Nash equilibria:

Theorem 20 (Theorem 7 in [H3]) If we want to maximize the average of players’ rewards at robust
Nash equilibrium in the game with partial information under consideration, we should choose:
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(a) Any Ψ, if γ ≤ 1
µ

limu→∞ c(u) – then all the players will use strategy NN in equilibrium.

(b) Any Ψ < Θ, if γ ∈
(

1
µ

limu→∞ c(u), 1
µ
c
(
λ
µ

))
– then all the players will use strategy NN in

equilibrium.

(c) Ψ = Θ, if γ ∈
(

1
µ
c
(
λ
µ

)
, 1
λ

∫ λ
µ

0 c(u) du

)
– then all the players will use strategy NE in equilibrium.

(d) Ψ = Θ, if γ ∈
[

1
λ

∫ λ
µ

0 c(u) du, 1
µ
c(0)

)
– then in the pessimistic scenario all the players will use

strategy NE in equilibrium, while in the optimistic one all the players will use strategy EE in
equilibrium.

(e) Ψ = 0, if γ = 1
µ
c(0) – then all the players will use strategy EE in equilibrium.

(f) Any Ψ, if γ > 1
µ
c(0) – then all the players will use strategy EE in equilibrium.

Comparing the average rewards obtained in the above theorem to the optimal average rewards, we
arrive at the following conclusion:

Corollary 4 (Theorem 8 in [H3]) Average rewards in the best and the worst robust Nash equilibria
in the game with partial information when Ψ is chosen in order to maximize these averages are the
same as those in the best and the worst Nash equilibria in the game with complete information.

The last problem that we have addressed in [H3] was the standard problem of the quality of approx-
imation of the real-life models with a large finite numbers of players by our model with infinitely
many players. It should be noted here that the proper rescaling of our mean-field game to n-person
case is a game where the players decide whether to join or not to join an M/M/∞ queue with in-
coming rate nλ, service rate µ and the service cost cn(x) := c

(
x
n

)
. We have formulated the following

result:

Theorem 21 (Theorem 9 in [H3]) Suppose that the initial normalized18 state of the queue x0 ∈
[0, xmax] for some fixed xmax and that player α plays against [Θ, q]-threshold strategies of all the
others in the mean-field model with service cost c, incoming rate λ and service rate µ. Then for any
ε > 0 there exists an Nε ∈ N, such that for any n ≥ Nε his expected total reward if he joins the queue
in the n-person counterpart of the mean-field game where all the other players use [nΘ, q]-threshold
strategies differs from his expected total reward in the mean-field game by at most ε.

One of the crucial consequences of this theorem is that all the equilibria obtained in Theorems 17
and 19 can be treated as approximate equilibria in n-person models. It should be noted though,
that formally for this to be true, the normalized state of the queue at any moment when any player
decides whether to join the queue or not should not exceed xmax, which is not always satisfied.
These statements (with all the assumptions necessary) have been formulated in [H3] as Corollary 4,
Corollary 4 and Corollary 5.

5 Description of other scientific achievements

List of papers which have not been included into the scientific achievement:

[P1] P. Więcek, On application of Schauder’s fixed point theorem in discounted stochastic games. Prace
Naukowe Instytutu Matematyki Politechniki Wrocławskiej. Seria: Konferencje. (I Konferencja dla
Młodych Matematyków - Karpacz 2000) 24 (2000), no. 3, 121–128.

18The normalized state of the queue in the n-person counterpart of the mean-field queuing game under consideration is
Xt = Xt

n .
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[P2] P. Więcek, Convex Stochastic Games of Capital Accumulation with Nondivisible Money Unit. Sci-
entiae Mathematicae Japonicae, 57 (2003), 397–411

[P3] P. Więcek, Continuous Convex Stochastic Games of Capital Accumulation. In Advances in Dynamic
Games. Applications to Economics, Finance, Optimization and Stochastic Control (Annals of the
International Society of Dynamic Games vol. 7), A.S. Nowak, K. Szajowski eds., Birkhäuser,
Boston, 2005, 111–125

[P4] P. Więcek, T. Radzik, On a continuous dynamic strategic market game. In Game Theory and
Applications vol. 11, L. Petrosjan, V. Mazalov eds., Nova Science Publishers, Commack, NY, 2007,
187–195

[P5] W. Połowczuk, P. Więcek, T. Radzik, On the existence of almost-pure-strategy Nash equilibria in
n-person finite games. Mathematical Methods of Operations Research, 65 (2007), 141-152

[P6] A.S. Nowak, P. Więcek, On Nikaido-Isoda type theorems for discounted stochastic games. Journal
of Mathematical Analysis and Applications, 332 (2007), 1109–1118

[P7] P. Więcek, Pure equilibria in a simple dynamic model of strategic market game. Mathematical
Methods of Operations Research, 69 (2009), 59–79

[P8] P. Więcek, n-person dynamic strategic market games. Applied Mathematics & Optimization, vol.
65, no. 2 (2012), 147–173

[P9] W. Połowczuk, T. Radzik, P. Więcek, Simple equilibria in semi-infinite games. International Game
Theory Review, 14(3) (2012) 1250017-1–1250017-19

[P10] M. Haddad, P. Więcek, E. Altman, H. Sidi, An Automated Dynamic Offset for Network Selection
in Heterogeneous Networks. IEEE Transactions on Mobile Computing, 15(9) (2016), 2151–2164

[P11] M. Haddad, P. Więcek, O. Habachi, Y. Hayel, On the Two-User Multi-Carrier Joint Channel
Selection and Power Control Game. IEEE Transactions on Communications, 64(9) (2016), 3759–
3770

In the article [P1] I have presented the results from my Master’s thesis, while the papers [P2,P3,P4,P7]
covered the topics included in my Ph.D. dissertation. Below I briefly describe the results presented in
all the other articles.

5.1 Stochastic games (paper [P6])
The first of the above-mentioned papers deals with two-person non-zero sum stochastic games with
discounted reward. In games of this type the players jointly control a Markov chain of states of the
game, choosing at each of infinitely many stages actions which then influence the distribution of the
state at the next stage of the game. Also at each stage every player obtains an immediate reward
depending on the current state as well as the actions chosen by the players. These immediate rewards at
all the stages of the game are then aggregated into discounted rewards for each of the players. As this
is a non-cooperative game, each player tries to maximize his own discounted reward, knowing that his
opponent does the same (for a precise description of games of this type see [30], chapter 8). The game
is thus described with a set of states S, sets of actions A1 and A2, correspondences describing the sets
of actions available in each of the states Ai : S → Ai, i = 1, 2, immediate reward functions ri : D → R,
i = 1, 2, where D := {(s, a1, a2) : a1 ∈ A1(s), a2 ∈ A2(s)}, a transition probability Q : D → ∆(S) and a
discount factor β ∈ (0, 1). In the classic paper of Federgruen [20] it is proved that each stochastic game
with a countable state space, compact action sets and continuous immediate rewards and transition
probability has a Nash equilibrium in stationary strategies. The main result of [P6] is a generalization
of this result in case of two-person games:
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Theorem 22 (Theorem 1 in [P6]) Every two-person non-zero sum stochastic game with a finite set of
states S and Ai, Ai(s), i = 1, 2, s ∈ S being compact subsets of a metric space, satisfying in addition:

(D1) For every s ∈ S, the function r1(s, ·, ·) + r2(s, ·, ·) is continuous on A1(s)×A2(s);

(D2) For every s ∈ S and a1 ∈ A1(s), a2 ∈ A2(s), the functions ri(s, ·, a2) and ri(s, a1, ·), i = 1, 2, are
continuous on A1(s) and A2(s), respectively;

(D3) For every s, s′ ∈ S, the function Q(s′|s, ·, ·) is continuous on A1(s)×A2(s);

has a stationary Nash equilibrium in the class of all strategies of the players.

The proof of this theorem is based on an approximation of the stochastic game under consideration with
games with finite sets of actions An1 , An2 constructed in such a way that Ani ⊂ An+1

i , n = 1, 2, . . . and⋃∞
n=1A

n
i are dense in Ai (i = 1, 2). Each of such games has a stationary equilibrium by Federgruen’s

theorem. If we take the limit over a subsequence of the sequence of stationary strategies in equilibria
in the approximating games (such a limit exists, as the sets of stationary strategies of the players are
compact by Tikhonov’s theorem), we obtain a pair of stationary strategies in the approximated game,
(f ∗, g∗). Using assumptions (D1) and (D2) we can then prove that the players’ discounted rewards
preserve the continuity properties of immediate rewards (as functions of stationary strategies of the
players). Using these properties we then show that (f ∗, g∗) is a Nash equilibrium in the stochastic game
discussed in the theorem.

The second result proved in [P6] (Theorem 2) says that under additional assumptions about the con-
cavity of immediate rewards and affinity of transition probability, the equilibrium obtained in Theorem
22 is a nonrandomized one. The proof of this fact is elementary. It is based on the observation that
under these additional assumptions the function on the RHS of the Bellman equation of each player is
concave.

5.2 Dynamic strategic market games (paper [P8])
The next paper was a continuation of articles [P4,P7] based on parts of my Ph.D. thesis. Its subject
was an n-person discounted stochastic game based on the following simple economic model: n players –
each holding an integral amount of money – compete for portions of some nondurable commodity. At
each of infinitely many stages of the game, one (nondivisible) unit of the good is brought to the market,
and players compete for it in an auction, bidding integral parts of their money. If a bid of a player is
accepted, he consumes the good (which gives him some positive utility), but he also pays for it, which
decreases his budget for the future consumption. We assume that there is also a constant inflow of
money into the game with budgets of the players supplied with some random amounts at each stage of
the game. The state in this game is the vector of amounts of money possessed by each of the players
s = (s1, . . . , sn) ∈ Nn, while the actions are the offers of the players. Hence, for any i, ai ∈ {0, , 1, . . . , si}.
The other objects defining this game (the immediate rewards and the transition probability) are given
by the formulas:19

ri(s, a1, . . . , an) =

{ 1
|{j:aj=ai}|ui(1) if ai = maxj aj
ui(0) if ai < maxj aj

,

where ui is the utility function of player i;

Q(·|s, a1, . . . , an) =
1

n
δs(·) +

1

n

∑
k 6=i

δ(s−i−k,si−ai,sk+ai)(·), where i = arg max
j
aj.

Two variants of games of this type were considered in the literature before: my previous papers
[P4,P7] and [59, 57, 58] concentrated on the 2-player case, while [35, 36, 22] analyzed similar models

19(s−i−k, s
′
i, s
′
k) denotes here the vector s with its i-th coordinate replaced by s′i and its k-th one replaced by s′k.

28



with a continuum of players. The only results dealing with n-person games of this type appeared in
[47] (there however the good was divisible and divided proportionally to the offers made by the players).
Two main results of [P8] characterize the equilibria in the game and present some basic properties of
the expected discounted rewards of the players when the equilibrium strategies are applied under the
assumption that the discount factor is small enough. Below we present the first of these theorems.

Theorem 23 (Theorem 1 in [P8]) Let us define the following classes of strategies in the dynamic strate-
gic market game under consideration:
A stationary strategy fi of player i is called bold, if fi(·|s) = δsi for si ≤ maxj 6=i sj and fi({maxj 6=i sj +
1, . . . , si}|s)) = 1 for si > maxj 6=i sj.
A stationary strategy fi of player i is called weakly bold, if fi(·|s) = δsi for si ≤ maxj 6=i sj and
fi({maxj 6=i sj, . . . , si}|s)) = 1 for si > maxj 6=i sj.
The following statements are true:

(a) For every n ≥ 3 and every β ≤ 1
3
, the game possesses a symmetric stationary equilibrium f =

(f1, f2, . . . , fn), where fi are bold strategies.

(b) For every n ≥ 3 and every β ≤ 1− 3

√
2n2−6n+4

n3 , the game possesses a symmetric stationary equilibrium
f = (f1, f2, . . . , fn), where fi are weakly bold strategies.

(c) For every β ≥ 1
2
there exists an nβ such that for every n ≥ nβ, there is no strategy profile where the

strategies of all the players are bold which is a stationary equilibrium in the game.

An important consequence of part (b) of the above theorem is stated by the corollary below:

Corollary 5 (Corollary 1 in [P6]) For every β ∈ (0, 1) there exists an n0 ∈ N such that for any
n ≥ n0 the n-person dynamic strategic market game possesses a symmetric stationary equilibrium f =
(f1, f2, . . . , fn), where fi are weakly bold strategies.

It means that the results obtained in [P6] are true for any discount factor, provided that the number of
players n is big enough.

The proofs of Theorem 23 and Theorem 2 in [P6] are rather technical. Their main part is a de-
tailed analysis of the properties of the RHS of the Bellman equation in the problem of maximization of
discounted reward of a player when his opponents use strategies from the classes defined in Theorem
23. The application of the Banach fixed point theorem allows then to prove that the optimal discounted
rewards in this case have the same properties. They are next used to show that the best responses to any
vector of (weakly) bold strategies in the game is a strategy of the same type (under assumptions given in
parts (a) and (b) of Theorem 23, respectively). In the last step of the proof we apply the Kakutani fixed
point theorem to the best-response correspondence (against a vector of identical (weakly) bold strategies
of other players). The fixed point obtained is the strategy used in the symmetric Nash equilibrium in
the game.

5.3 Equilibria in one-stage games with a specific structure (papers [P5,P9])
In article [P5] we have considered n-person one-stage games with finite strategy sets and utility functions
having some properties which can be identified as discrete counterparts of convexity or concavity. We
define them below:

Definition 10 Let E1 = {1, . . . , k1},. . . , En = {1, . . . , k1} and E = E1×. . .×En. We say that a function
H : E → R is convex (concave) in its i-th variable, if for j = 1, . . . , n there exist strictly increasing
sequences (xj1, . . . , x

j
kj

) of elements of [0, 1] and a function H : [0, 1]n → R which is convex (concave) in
its i-th variable, and satisfying for every i1 ∈ E1,. . . , in ∈ En the equality H(i1, . . . , in) = H(x1

i1
, . . . , xnin).

Two main results of [P5] are the following theorems:
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Theorem 24 (Theorem 4.4 in [P5]) Let 1 ≤ s ≤ n. If in an n-person one-stage game with strategy
sets E1,. . . , En and utility functions H1,. . . , Hn, for each i ∈ {1, . . . , s}, Hi is concave in its i-th
variable, then the game has a mixed-strategy Nash equilibrium (µ∗1, . . . , µ

∗
n) where each of the strategies

µ∗i , i = 1, . . . , s is concentrated on two adjoining elements of Ei.

Theorem 25 (Theorem 4.5 in [P5]) Let 1 ≤ s ≤ n. If in an n-person one-stage game with strategy sets
E1,. . . , En and utility functions H1,. . . , Hn, for each i ∈ {1, . . . , s}, Hi is convex in its i-th variable, then
the game has a mixed-strategy Nash equilibrium (µ∗1, . . . , µ

∗
n) where each of the strategies µ∗i , i = 1, . . . , s

is concentrated on the set {1, ki}.

The proof of the first theorem is based on the observation that for each i ∈ {1, . . . , s} the set of mixed
strategies concentrated on adjoining elements of set Ei is homeomorphic with Xi := [1, ki]. We then
define a game with strategy sets X1, . . . , Xs,∆(Es+1), . . . ,∆(En) and utility functions computed as the
expected utilities in the initial game corresponding to the strategies which are homeomorhic to respective
strategies from Xi. Such a game satisfies the assumptions of the well-known generalization of the Nash
theorem for games with quasi-concave utilities due to Glicksberg (see [24]). The pure strategy equilibrium
in the modified game corresponds to the mixed-strategy equilibrium we are looking for in Theorem 24.
The proof of Theorem 25 is also based on a modification of the game given there – this time we reduce the
strategy sets in the game to {1, k1},. . . ,{1, ks}, Es+1,. . . , En. This new game has a mixed-strategy Nash
equilibrium by the Nash theorem. It is then immediate to show that the equilibrium in the modified
game is exactly the equilibrium in the initial game we are looking for.

In article [P9] we have presented some generalizations of the above results and the results presented
in [50, 51, 45, 46] to two-person games, where the set of pure strategies of one of the players is finite,
while that of his opponent is infinite but countable (or, in case of some results, it is any compact metric
set). Seven theorems presented there give conditions similar to those appearing in Theorems 24 and
25 for the existence of Nash equilibria (or ε-Nash equilibria in some cases) where the players use pure
strategies or mixed strategies with two-point supports.

5.4 Network (channel) selection in wireless networks (papers [P10,P11])
The last two papers we shall discuss here concern some applications of noncooperative games in wireless
telecommunication. In the first of the two, [P10], we consider a game between mobile phones deciding
which of the two networks to connect to. In the case of the first network, the quality of connection is
guaranteed by the operator. The quality of connection to the second network depends on the channel
the player gets access to. It may therefore be either better or worse than that for the first network.
In addition, we assume that the player has no access to the exact information about the quality of his
channel. All that he knows is the information whether the channel quality indicator, denoted by hi,
is bigger or smaller than some predefined threshold Ψi plus the probability distribution of hi (in real
wireless networks this distribution is known to be exponential, and the parameter of this distribution
can be estimated using some historical data). In addition, he knows that the quality of connection to
this network also depends on the number of the phones connected there. This situation can be described
as an n-person one-stage game of incomplete information. The main results of the article can be divided
into two groups. The first group consists of characterizations of Bayes-Nash equilibria in this game in
2-person case (Proposition 1 in [P10]) and in the symmetric20 n-person case (Proposition 5). The second
group tries to answer the questions, how the thresholds Ψi should be chosen in order to obtain one of
two practical goals:

(a) to maximize the throughput of average user;
20Symmetry here means that the distributions from which all the channel quality indicators hi are drawn are the same,

and that each threshold Ψi is the same. In the two-person case we have also considered the case when these parameters
differ.
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(b) to maximize the total throughput of the first network.

The paper gives answers to them in the 2-person case (Proposition 3) and the symmetric n-person case
(Proposition 6). In addition we present the analysis of computational complexity of the algorithm given
in Proposition 6 (in Proposition 8) and a comprehensive numerical study of the proposed solutions.

In [P11] we consider the situation when two mobile phones send some data using a wireless network
withK channels, taking into account the quality of each channel, which may be different both for different
phones and different channels (in this case we assume that the players have full information about the
quality of all the channels). The choice they make is about the powers they use to transmit on different
channels. In this case however they do not maximize their throughput, but their energy efficiency, which
can be defined as the ratio of some measure of the quality of transmission and the energy used for this
transmission (the formal definition of energy efficiency is given in [27]). The problem of this type has
already been considered in [41], where the problem has been presented as a non-cooperative game and a
heuristic algorithm allowing to compute a Nash equilibrium in this game has been given. The question
that we have posed was the following: does introducing hierarchy in this model (which in game-theoretic
terms means replacing Nash equilibrium with Stackelberg solution) affect the solution to this game and
energy efficiency corresponding to this solution. It is worth noting that it is not a question without a
practical meaning – in all real networks the choices made by the players are asynchronous. The main
results of [P11] were two algorithms: the first one (given in Proposition 3) allowed to compute the
Stackelberg solution in this model, if it exists. The second one (from Proposition 4) allowed to compute
ε-Stackelberg solutions, if it does not. Further results (Proposition 7–Proposition 10) were meant to
compare in several ways the quality of solutions obtained by our algorithms to that of Nash equilibria
computed in [41]. We have also presented some numerical illustrations of our findings.
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