FACULTY OF ARCHITECTURE

	SUBJECT CARD
English name	ELEMENTS OF HIGHER MATHEMATICS
Polish name	Elementy matematyki wyższej
Main field of study	Spatial Planning
Level and form of studies	II level, full time
Kind of subject	obligatory
Subject code	MAT001675
Group of courses	NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30				
Number of hours of total student workload (CNPS)					
Form of crediting	crediting with grade				
In case of a group of courses, mark the					
final course (X)					
Number of ECTS points	2				
including number of ECTS points for					
practical (P) classes					
including number of ECTS points for					
direct teacher-student contact (BK) classes					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCIES

Knowledge of mathematics equivalent to high school certificate at the advanced level is recommended.

SUBJECT OBJECTIVES

- C1 Explaining the basic notions and examples in topology.
- C2 Presenting the basic information on graph theory with an emphasis on applications.
- C3 A basic exposition of cellular automata and their applications.
- C4 Explaining the basics of statistical testing.

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge a student

PEK_W1 knows the definition and basic examples of metric spaces, understands the notion of convergence and continuity, knows some basic examples of metric spaces,

PEK_W2 has basic knowledge of graph theory and its role in applications,

PEK_W3 has a basic understanding of cellular automata,

PEK_W4 has a basic knowledge of statistical hypothesis testing.

Relating to skills a student

PEK_U1 can investigate the basic properties of metric spaces and can use the basic notions of metric topology,

PEK_U2 can solve elementary problems in graph theory, can apply graph theory to other areas of science and can formulate application problems in the language of graph theory, PEK_U3 can use basic statistical tests for comparing distributions of statistical samples.

PROGRAMME CONTENT		
	Form of classes - lectures	Hours
Lec1	Basic notions in topology. Open sets. Topological spaces. Metrics. Continuous maps. Homeomorphisms. Compactness. Connectedness. Examples.	4
Lec2	The notion of dimension, with intuitive understanding and formal definitions. The Minkowski dimension (the "box-counting" dimension). Fractals as sets of non-integer dimension.	2
Lec3	Special types of fractals: the Cantor and Sierpinski sets. IFS fractals, such as Barnsley's fern. Examples of real-life objects and phenomena which exhibit fractal character.	2
Lec4	Introduction to graph theory. Basic definitions and notions in graph theory. Representing graphs using matrices. Graph isomorphism.	2
Lec5	Paths and cycles in graphs. Eulerian and Hamiltonian graphs. The Chinese postman problem and the traveling salesman problem.	2
Lec6	Trees, planar graphs and the Euler formula.	2
Lec7	Coloring graphs: the chromatic number and the chromatic index. The four-color theorem, and contrasting the situation on a plane with surfaces of other genus.	2
Lec8	Matchings in bipartite graphs. Transversals. The Hall and Menger theorems.	2
Lec9	Directed graphs. Network flow analysis. The Ford-Fulkerson algorithm.	2
Lec10	Analyzing networks. Vertex degree distribution, distance statistics, clusters.	2
Lec11	Randomized networks. Statistical properties of random graphs. The small-world phenomenon. Scale-free networks.	2
Lec12	The definition of cellular automata. Examples of cellular automata: Wolfram's "Rule 90", Conway's "Life". Cellular automata on the plane: Moore and von Neumann neighborhoods. Possible behaviors: stability, periodicity, chaos. Using cellular automata for modeling real-life phenomena.	2
Lec13	Basic notions in statistical hypothesis testing: statistical tests, the two kinds of errors, significance, critical value, critical area, the power of a test.	2
Lec14	Tests for mean and variance of statistical samples, independence tests.	2
	Total hours	30

TEACHING TOOLS USED

N1 Lectures – traditional and using multimedia tools. N2 Tutorial. N3 Student's self-study.

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation: F – forming (during	Educational effect	Way of evaluating educational effect
the semester), P – concluding (at	number	achievement
the end of the semester)		
F	PEK_U1-PEK_U3	final test
	PEK_W1-PEK_W4	
P – rules set by the lecturer		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE

- [1] I. Kaplansky, Set theory and metric spaces.
- [2] R. J. Wilson, Introduction to Graph Theory.

ADDITIONAL LITERATURE

[1] J.R. Weeks, The Shape of Space.

[2] M. Batty, Cities and Complexity.

SUBJECT SUPERVISOR (NAME AND E-MAIL)

Wydziałowa Komisja Programowa ds. Kursów Ogólnouczelnianych dr inż. Dawid Huczek (Dawid.Huczek@pwr.edu.pl)

MATRIX OF CORRELATION BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT **ELEMENTS OF HIGHER MATHEMATICS MAT001675** AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY *Spatial Planning*

Subject	Correlation between subject	Subject	Programme content	Teaching
educational	educational effect and educational	objectives		tool number
effect	effects defined for main field of study			
	and specialization (if applicable)			
PEK_W1	K2GP_W01	C1	Lec1-Lec3	N1-N3
PEK_W2	K2GP_W01	C2	Lec4-Lec9	N1-N3
PEK_W3	K2GP_W02	C3	Lec10-Lec12	N1-N3
PEK_W4	K2GP_W02	C4	Lec13, Lec14	N1-N3
PEK_U1		C1	Lec1-Lec3	N1-N3
PEK_U2	K2GP_U03	C2	Lec4-Lec9	N1-N3
PEK_U3	K2GP_U03, K2GP_U15	C4	Lec13, Lec14	N1-N3