FACULTY OF COMPUTER SCIENCE AND MANAGEMENT

SUBJECT CARD

Name in English ALGEBRA AND ANALYTIC GEOMETRY

Name in Polish ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

Main field of study (if applicable)

Level and form of studies

Kind of subject

Subject code

Computer Science
I level, full time
obligatory
MAT001688

Group of courses YES

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	30			
Number of hours of total student workload (CNPS)					
Form of crediting	exam	crediting with grade			
For group of courses mark (X) final course	X				
Number of ECTS points					
including number of ECTS points for practical (P) classes					
including number of ECTS points for direct teacher-student contact (BK) classes					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

It is recommended that the knowledge of mathematics is equivalent to high school certificate at the basic level.

SUBJECT OBJECTIVES

- C1 Presentation of basic theorems and algorithms concerning the theory of linear equations.
- C2 Presentation of basic notions concerning matrix calculus, eigenvalues and eigenvectors of matrices.
- C3 Exposition of rudiments of the theory of complex numbers, polynomial and rational functions.
- C4 Exposition of rudiments of analytic geometry in \mathbb{R}^3 .
- C5 Expalining the basic notions of theory of vector spaces.

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge a student

- PEK_W1 knows basic methods of solving systems of linear equations,
- PEK_W2 knows basic properties of complex numbers,
- PEK_W3 knows basic algebraic properties of polynomials,
- PEK W4 knows characterizations of lines and planes in R³.
- PEK_W5 knows basic notions of theory of vector spaces.

Relating to skills a student:

- PEK_U1 can add and multiply matrices and calculate determinants,
- PEK_U2 can solve systems of linear equations,
- PEK_U3 can find eigenvalues and eigenvectors of a matrix,
- PEK_U4 can carry out calculations with use of complex numbers,
- PEK_U5 can find line and plane equations in the space R³.

PROGRAM CONTENT				
Form of classes - lectures	Hours			
Lec1 Mathematical induction. Newton's binomial formula.	1			
Lec2 The notion of a matrix. Operations on matrices. Transposition. Examples of matrices	2			
(triangular, symmetric, diagonal etc.).	2			
The determinant of a matrix. The Laplace expansion. Cofactor of an element of a				
Lec3 matrix. Minors. Properties of determinants. Calculation of determinants by	3			
elementary row and column operations. Cauchy's theorem. Nonsingular matrix.				
Inverse matrix. Computation of inverse matrix by cofactors or by elementary row				
Lec4 operations. Properties of inverse matrices. Matrix equations. Rank of a matrix.	2			
Applications of determinants, their connections with rank and invertibility.				
Lec5 Systems of linear equations. Rouché–Capelli theorem. Cramer's formulas. Gaussian	3			
elimination. Solving arbitrary systems of linear equations.	3			
Complex numbers. Operations on complex numbers in algebraic form. Complex	2			
Lec6 Complex numbers: Operations on complex numbers in algebraic form: Complex conjugate. Modulus. Argument.	2			
Geometric interpretation of a complex number. Polar form of a complex number. De	2			
Lec7 Moivre's formula. Roots of complex numbers.	2			
Lec8 Polynomials. Polynomial remainder theorem. Fundamental theorem of algebra.	2			
Roots of polynomials with real coefficients.	2			
Linear and quadratic factors of a real polynomial. Decomposition of a polynomial				
Lec9 into factors. Rational functions. Real partial fractions with irreducible denominators.	2			
Partial fraction decomposition of a real rational function.				
Lec10 Eigenvalues and eigenvectors of a matrix.	2			
Lec 11 Analytic geometry in the space R ³ . Operations on vectors. Length of a vector. Scalar	2			
product, cross product and triple product of vectors - computing area and volume.	<i>L</i>			
Lec12 Planes. Normal to a plane. Equations of a plane. Relative location of planes.	1			
Line in the space. Equations of a line (parametric, directional). Line as an intersection				
Lec13 of planes. Relative location of two lines. Relative location of a line and a plane.	3			
Orthogonal projection of a point onto a line or a plane.				
Vector spaces (finite dimensional) Linear combination of vectors. Linear	2			
Lec14 Vector spaces (finite dimensional). Emeal combination of vectors. Emeal independence. Basis and dimension of a vector space.	3			
Total hours	30			

	Form of classes – classes	Hours
Cl1	Transformation of algebraic expressions. Newton's binomial formula.	1
Cl2	Operations on matrices.	1
C13	Calculation of matrix determinants with use of their properties. Laplace expansion. Computation of an inverse matrix. Solving matrix equations. Evaluation of the rank of a matrix.	4

Cl4	Kronecker-Capelli theorem. Cramer's formulas. Gaussian elimination. Solving of arbitrary systems of linear equations.	4
C15	Operations on complex numbers in algebraic form. Polar form. Geometric interpretation. Powers and roots of complex numbers. Solving simple equations and inequalities.	6
Cl6	Finding roots of polynomials. Decomposition of a polynomial into irreducible components. Partial fraction decomposition of a real rational function.	
Cl7	Eigenvalues and eigenvectors of a matrix.	2
C18	Vector operations. Scalar, cross or triple product of vectors and their applications to calculating area and volume.	2
C19	Solving problems in analytic geometry in R ³ – finding equations of lines and planes, finding projections of vectors etc.	4
Cl10	Test.	2
	Total hours	30

TEACHING TOOLS USED

- N1 Lectures traditional or using multimedia tools.
- N2 Classes traditional method (problems sessions and discussion).
- N3 Student's self-study with the assistance of mathematical packages.
- N4 Tutorial.

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F-forming; P -	Educational effect number	Way of evaluating educational		
concluding)		effect achievement		
F-Cl	PEK_U1 - PEK_U5	oral presentations, quizzes, tests		
F-Lec	PEK_W1 - PEK_W5	exam		
P - rules set by the lecturer				

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE

- [1] T. Jurlewicz, Z. Skoczylas, Algebra i geometria analityczna. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław 2015.
- [2] T. Jurlewicz, Z. Skoczylas, Algebra i geometria analityczna. Definicje, twierdzenia, wzory. Oficyna Wydawnicza GiS, Wrocław 2014.
- [3] P. Kajetanowicz, J. Wierzejewski, Algebra z geometrią analityczną, PWN 2008.
- [4] M. Zakrzewski, Markowe wykłady z matematyki, Algebra z geometrią, Oficyna Wyd. GiS, Wrocław 2015.

SECONDARY LITERATURE

- [1] B. Gleichgewicht, Algebra, Oficyna Wydawnicza GiS, Wrocław 2004.
- [2] A. Mostowski, M. Stark, Elementy algebry wyższej, PWN, Warszawa 1963.
- [3] W. Stankiewicz, Zadania z matematyki dla wyższych uczelni technicznych, Cz. A, PWN, Warszawa 2003.
- [4] F. Leja, Geometria analityczna, PWN, Warszawa 1972.
- [5] E. Kącki, D. Sadowska, L. Siewierski, Geometria analityczna w zadaniach, PWN, Warszawa 1993.

SUBJECT SUPERVISORS

Wydziałowa Komisja Programowa ds. kursów ogólnouczelnianych dr Karina Olszak (Karina.Olszak@pwr.edu.pl)

CORRELATION MATRIX BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT ALGEBRA AND ANALYTIC GEOMETRY MAT001688

AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY Computer science

Subject	Correlation between subject	Subject	Programme content	Teaching
educational	educational effect and	objectives		tool number
effect	educational effects defined for			
	main field of study and			
	specialization (if applicable)			
PEK_W1	K1INF_W01	C1, C2	Lec5, Cl4	N1-N4
PEK_W2	K1INF_W01	C3	Lec6-Lec9, Cl5, Cl6	N1-N4
PEK_W3	K1INF_W01	C3	Lec8, Lec9, Cl6	N1-N4
PEK_W4	K1INF_W01	C4	Lec11-Lec13, Cl8, Cl9	N1-N4
PEK_W5	K1INF_W01	C5	Lec14	N1, N3, N4
PEK_U1	K1INF_W01	C2	Lec2-Lec4, Lec10, Cl2, Cl3	N1-N4
PEK_U2	K1INF_W01	C1, C2	Lec5, Cl4	N1-N4
PEK_U3	K1INF_W01	C2	Lec10, Cl7	N1-N4
PEK_U4	K1INF_W01	C3	Lec6-Lec9, Cl5, Cl6	N1-N4
PEK_U5	K1INF_W01	C4	Lec11-Lec13, Cl8, Cl9	N1-N4