FACULTY W10

SUBJECT CARD

Name in English MATHEMATICAL ANALYSIS I

Name in Polish ANALIZA MATEMATYCZNA I

Main field of study (if applicable)

Specialization (if applicable)

Level and form of studies

Kind of subject

Subject code

I level, full time
obligatory
MAT001648

Group of courses NO

	Lecture	Exercise class	Laboratory	Project	Seminar
Number of hours of organized University classes (ZZU)	30	30			
Number of hours of total student workload (CNPS)	150	90			
Form of crediting	exam	crediting with grade			
For a group of courses mark the final course (X)					
Number of ECTS points	5	3			
including number of ECTS points for practical (P) classes					
including number of ECTS points for direct teacher-student contact (BK) classes					

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

It is recommended that the knowledge of mathematics is equivalent to high school certificate at the advanced level.

SUBJECT OBJECTIVES

- C1. Exposition of basic elementary functions and their properties.
- C2. Exposition of basic notions and theorems of differential calculus of functions of a single variable.
- C3. Introduction of the concept of the definite integral, its basic properties and methods of calculation.
- C4. Presentation of practical applications of methods of differential and integral calculus of functions of a single variable.

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge a student:

PEK_W1 knows the graphs and properties of basic elementary functions,

PEK_W2 knows basic notions and theorems of differential calculus of functions of a single variable,

PEK_W3 knows the concept of the definite integral, its properties and the basic applications.

Relating to skills a student:

PEK_U1 can solve typical equations and inequalities with elementary functions,

PEK_U2 can examine a function and draw its graph,

PEK_U3 can evaluate typical indefinite integrals and calculate definite integrals, PEK_U4 can apply differential and integral calculus to solve practical problems.

Relating to social competences a student:

PEK_K1 understands the need for systematic and independent work on mastery of course material.

	PROGRAMME CONTENT	
	Form of classes - lecture	Hours
Lec1	Definition of a function. Basic examples: linear, quadratic and polynomial functions. Rational functions. Composition of functions. Transformations of graphs of functions.	3
Lec2	Injective functions. The inverse function and its graph. Power and exponential functions and their inverses. Properties of logarithms.	2
Lec3	Trigonometric functions. Unit (trigonometric) circle. Inverse trigonometric functions.	2
Lec4	Sequences of real numbers. Finite and infinite limit of a sequence. Basic theorems on limits of sequences. Indeterminate expressions. The number e .	3
Lec5	The limit of a function at a point and the limit at infinity. Examples of the limits of certain indeterminate expressions. Asymptotes.	2
Lec6	Continuity of a function at a point and on an interval. Basic properties of continuous functions. Approximate solutions of equations.	2
Lec7	The derivative of a function. Geometrical and physical interpretations of the derivative. Tangent line. Differential of a function. Derivatives of basic elementary functions. Differentiation rules.	2
Lec8	Lagrange's theorem. Intervals of monotonicity of a function. De l'Hospital's rule.	2
Lec9	Local and global extrema. Examples of optimization problems.	2
Lec10	Definition and basic properties of indefinite integral. Basic rules. The substitution rule and integration by parts.	2
Lec11	Definition and basic properties of definite integral. Fundamental theorem of calculus (Newton-Leibniz theorem).	2
Lec12	Applications of integral calculus (e.g. average value of a function, area of a flat region, volumes of solids of revolution, arc length etc.)	2
Lec13	Integration of rational and trigonometric functions.	2
Lec14	Examples of applications of methods of mathematical analysis of a single variable (e.g. Taylor's theorem, convexity and inflection points of a function or other applications typical for the field of study).	2
	Total hours	30
	Form of classes – classes	Hours
C11	Elements of mathematical logic (logical connectives, quantifiers). Determination of the domain of a function. Even and odd functions.	2
C12	Composition of functions. Transformations of graphs of functions. Polynomial and rational equations and inequalities.	2
C13	The inverse function. Typical equations and inequalities with exponential and logarithmic functions.	2
Cl4	Trigonometric and inverse trigonometric functions. Unit (trigonometric) circle. Typical trigonometric equations and inequalities.	2
C15	Monotonicity and boundedness of sequences. Computing proper and improper limits of sequences.	2
O1.	Limits of functions. Asymptotes.	2
Cl6	Limits of functions. Asymptotes.	

C18	Derivative of a function. Rules of differentiation. Tangent line. Differentials and their applications.	2	
C19	De l'Hospital's rule. Intervals of monotonicity of a function.		
Cl10	Determining local and global extrema of a function.	2	
Cl11	Evaluation of indefinite integrals of elementary functions. Integration by parts and by substitution.	2	
C112	Calculating definite integrals. Area of a flat region as an application of definite integral.	2	
C113	Applications of definite integral.	2	
Cl14	Integration of rational and trigonometric functions.	2	
Cl15	Test.	2	
	Total hours	30	

TEACHING TOOLS USED

- N1. Lecture traditional method.
- N2. Classes traditional method (problems sessions and discussion).
- N3. Student's self-study with the assistance of mathematical packages.
- N4. Tutorial.

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT					
Evaluation (F-forming; P - concluding)	Educational effect number	Way of evaluating educational effect achievement			
F-Cl	PEK_U1-PEK_U4,	tests, oral presentations, quizzes			
	PEK_K1				
F-Lec	PEK_W1-PEK_W3	exam			
P - rules set by the lecturer					

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] G. Decewicz, W. Żakowski, Matematyka, Cz.1, WNT, Warszawa 2007.
- [2] M. Gewert, Z. Skoczylas, Analiza matematyczna 1. Definicje, twierdzenia, wzory, Oficyna Wydawnicza GiS, Wrocław 2015.
- [3] M. Gewert, Z. Skoczylas, Analiza matematyczna 1. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław 2015.
- [4] W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach, Cz. I, PWN, Warszawa 2006.

SECONDARY LITERATURE:

- [1] F. Leja, Rachunek różniczkowy i całkowy, PWN, 2012.
- [2] R. Leitner, Zarys matematyki wyższej dla studiów technicznych, cz.1-2, WNT, Warszawa 2006.
- [3] M. Zakrzewski, Markowe wykłady z matematyki. Analiza, Oficyna Wydawnicza GiS, Wrocław 2013.

SUBJECT SUPERVISORS

Wydziałowa Komisja Programowa ds. Kursów Ogólnouczelnianych dr Jolanta Sulkowska (Jolanta.Sulkowska@pwr.edu.pl)

CORRELATION MATRIX BETWEEN EDUCATIONAL EFFECTS FOR SUBJECT MATHEMATICAL ANALYSIS 1 MAT001648

AND EDUCATIONAL EFFECTS FOR MAIN FIELD OF STUDY AND SPECIALIZATION

Subject educational effect	Correlation between subject educational effect and educational effects defined for main field of study and specialization (if applicable)	Subject objectives	Programme content	Teaching tool number
PEK_W1		C1	Lec1-Lec6	N1-N4
PEK_W2		C2	Lec7-Lec9, Lec14	N1-N4
PEK_W3		C3	Lec10-Lec13	N1-N4
PEK_U1		C1	Lec1-Lec3, Cl1-Cl4	N1-N4
PEK_U2		C1	Lec5-Lec9, Cl5-Cl7	N1-N4
PEK_U3		C3	Lec10, Lec11, Lec13, Cl11, Cl12, Cl14	N1-N4
PEK_U4		C2, C4	Lec7, Lec12, Lec14, Cl8-Cl10, Cl12, Cl13	N1-N4
PEK_K1		C1-C4	Lec1-Lec14, Cl1-Cl14	N1-N4