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Hitting times of points for symmetric Lévy processes
with completely monotone jumps*

Tomasz Juszczyszyn† Mateusz Kwaśnicki‡

Abstract

Small-space and large-time estimates and asymptotic expansion of the distribution
function and (the derivatives of) the density function of hitting times of points for
symmetric Lévy processes are studied. The Lévy measure is assumed to have com-
pletely monotone density function, and a scaling-type condition inf ξΨ′′(ξ)/Ψ′(ξ) > 0
is imposed on the Lévy–Khintchine exponent Ψ. Proofs are based on generalised
eigenfunction expansion for processes killed upon hitting the origin.
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1 Introduction and statement of the results

Let X be a one-dimensional Lévy process, that is, a real-valued stochastic process
with stationary and independent increments, càdlàg paths, and initial value X0 = 0. The
process X is completely characterised by its Lévy–Khintchine exponent Ψ, which is given
by the Lévy–Khintchine formula:

Ψ(ξ) = − log(EeiξX1) = aξ2 − ibξ +

∫
R\{0}

(1− eiξz + iξz1(−1,1)(z))ν(dz)

for ξ ∈ R, where a ≥ 0 is the Gaussian component, b ∈ R is the drift coefficient and ν is
a non-negative measure such that

∫
R\{0}min(1, z2)ν(dz) <∞, called Lévy measure. The

first hitting time of a point x ∈ R is defined by the formula

τx = inf{t ≥ 0 : Xt = x}.

In this article estimates and asymptotic formulae, in terms of the Lévy–Khintchine
exponent Ψ, for the tail and the density function of τx are derived, under a number of
conditions on the process X.
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Hitting times of points for symmetric Lévy processes

The distribution of τx plays an important role in various contexts: local times and
excursion theory ([2, 7, 18, 29]), potential theory ([3]), penalisation problems ([19, 28,
30, 31]). The estimates of τx may also prove useful in the study of one-dimensional
unimodal Lévy processes, developed recently in [5, 6, 9]. More precisely, description
of τx is the limiting case of a more general problem of finding the time and place the
process X first hits a (small) ball, see [6] and a recent preprint [10].

Surprisingly little is known about the properties of τx for general Lévy processes.
By [23, Theorem 43.3 and Remark 43.6], if 1/|Ψ| is integrable at infinity, then∫

R

eiξxEe−λτxdx =
cλ

λ+ Ψ(ξ)
, with cλ =

(∫
R

1

λ+ Ψ(ξ)
dξ

)−1

. (1.1)

The inversion of the Laplace and Fourier transforms in (1.1) is often problematic. An
application of the inverse Fourier transform to both sides of (1.1) leads to an expression
for Ee−λτx in terms of an oscillatory integral. In fact,

uλ(x) = c−1
λ Ee−λτx (1.2)

is a well-studied object, the λ-potential density of X. Nevertheless, a closed-form
expression for uλ is known only in some special cases, e.g. when X is stable and λ = 0,
or when X is relativistic with β = 2 (with the notation of Example 1.4 below) and
λ = 1. Therefore, in order to invert the Laplace transform in (1.2), one needs additional
regularity of Ψ. This is the rough idea of the proof of the main result of [13], which is
recalled as Theorem 1.9 below, and which is the starting point for our development.

There are essentially two classes of Lévy processes for which the description of τx
simplifies dramatically and has been studied. When X is an α-stable process, τx is equal
in distribution to xατ1 (scaling), so the originally two-dimensional problem becomes
one-dimensional. Numerous results are available in this case. In particular, a complete
series expansion of the distribution function of τx is known (see [20] for processes with
one-sided jumps, [4, 7, 21, 30] for the symmetric case, and [11] for the general result).
Other closely related results for the stable case (unimodality, distributional identities,
applications) can be found in [16, 26, 31].

The distribution of τx for x > 0 is rather well-studied also for Lévy processes with
negative jumps only (also known as spectrally negative processes). Then τx is equal
to the first passage time through the level x, τx = inf{t ≥ 0 : Xt ≥ x}, and fluctuation
theory for Lévy processes can be used to study the properties of τx. We refer to [23,
Chapter 9] for more information.

For non-stable Lévy processes with two-sided jumps, we are aware of no estimates or
asymptotic formulae similar to the main results of this article.

Throughout the article, X is assumed to be symmetric, that is, b = 0 and ν(E) = ν(−E)

for all Borel E ⊆ R. In this case Ψ is a real function with non-negative values. We impose
two additional restrictions: we require X to have completely monotone jumps and satisfy
a certain scaling-type condition. These notions are briefly discussed below.

Recall that a function f : (0,∞)→ R is said to be completely monotone if it is infinitely
differentiable and (−1)nf (n)(ξ) ≥ 0 for all ξ > 0 and n = 0, 1, 2, . . . By Bernstein’s
theorem, this is equivalent to f being the Laplace transform of a non-negative Radon
measure on [0,∞). Similarly, we say that a process X has completely monotone jumps
if its Lévy measure ν is absolutely continuous with respect to the Lebesgue measure,
and its density is a completely monotone function on (0,∞). Note that due to symmetry,
the density of ν on (−∞, 0) is absolutely monotone: its derivatives of all orders are
non-negative.

Lévy processes with completely monotone jumps (without the symmetry condition)
were introduced by Rogers in [22], see also [14]. In the symmetric case, an equivalent
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Hitting times of points for symmetric Lévy processes

condition can be given in terms of Ψ. Recall that ψ is a complete Bernstein function if
and only if

ψ(ξ) = c1 + c2ξ +

∫
(0,∞)

ξ

s+ ξ

µ(ds)

s

for ξ ≥ 0, where c1, c2 ≥ 0 and µ is a non-negative measure for which the above integral
converges (see [24]). A symmetric Lévy process X has completely monotone jumps if
and only if Ψ(ξ) = ψ(ξ2) for a complete Bernstein function ψ (see [12, 22]). The most
prominent examples of symmetric processes with completely monotone jumps are stable
processes, with Ψ(ξ) = c|ξ|α for some c > 0 and α ∈ (0, 2]. This class includes also
mixtures of stable processes and relativistic Lévy processes (discussed later in this
section), as well as variance gamma process and geometric stable processes (which with
probability one do not hit single points and thus are not considered here; see [25] for
definitions and properties of these processes).

The aforementioned scaling-type condition of order α requires that

ξΨ′′(ξ)

Ψ′(ξ)
≥ α− 1 (1.3)

for all ξ > 0. Here α is an arbitrary real number, although in our main theorems we
assume that α ∈ (1, 2]. The scaling-type condition plays a crucial role in our development.
By integration, (1.3) implies that (and in fact, it is equivalent to)

Ψ′(ξ2)

Ψ′(ξ1)
≥
(
ξ2
ξ1

)α−1

for all ξ2 > ξ1 > 0. In Lemma 2.2 we will see that (1.3) also gives (but it is essentially
stronger than)

Ψ(ξ2)

Ψ(ξ1)
≥
(
ξ2
ξ1

)α
(1.4)

for all ξ2 > ξ1 > 0. This explains why we call (1.3) a scaling-type condition.
We note that the scaling-type condition of order α > 1 implies that P(τx <∞) = 1 for

all x ∈ R. Indeed, by (1.4), 1/|Ψ| is not integrable near 0, so X is recurrent by Chung–
Fuchs criterion ([23, Theorem 37.5]). Furthermore, again by (1.4), 1/|Ψ| is integrable
at infinity, so P(τx <∞) > 0 by [23, Remark 43.6]. Now P(τx <∞) = 1 follows by [23,
Remark 43.12].

The scaling-type condition (1.3) with α ∈ (1, 2] is satisfied by the typical examples of
symmetric Lévy processes with completely monotone jumps which hit single points with
probability 1: stable, mixed stable (see Example 1.5) and relativistic (see Example 1.4).
An equivalent form of (1.3), as well as a sufficient condition in terms of the Lévy measure,
are given in Remark 1.8. Nevertheless, (1.3) is rather restrictive, see Example 1.7.
We conjecture that the estimates of P(τx > t) hold in greater generality, for example,
with (1.3) replaced by Ψ(ξ2)/Ψ(ξ1) ≥ C(ξ2/ξ1)α for some C > 0 and α > 1 (a more
general version of (1.4), see [5, 6, 9]). However, with the present methods, we were
unable to significantly relax the assumption that (1.3) holds with α > 1.

For symmetric processes with completely monotone jumps, Ψ is an increasing function
on (0,∞). Let Ψ−1 denote the inverse function of the restriction of Ψ to (0,∞). Our first
main result provides large t and small x estimates of P(τx > t) and its time derivatives.
A corollary that follows extends the estimate of P(τx > t) (with no time derivative) to the
full range of t > 0 and x ∈ R \ {0}. The constants in these estimates are given explicitly,
see Remark 5.5.

Below we state the main results of the paper.
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Hitting times of points for symmetric Lévy processes

Theorem 1.1. Suppose that X is a symmetric Lévy process with completely monotone
jumps, which satisfies the scaling-type condition (1.3) for some α ∈ (1, 2]. Then there
are positive constants C1(α, n), C2(α, n), C3(α, n) such that

C1(α, n)

tn+1|x|Ψ(1/|x|)Ψ−1(1/t)
≤ (− d

dt )
nP(τx > t) ≤ C2(α, n)

tn+1|x|Ψ(1/|x|)Ψ−1(1/t)
(1.5)

for all n ≥ 0, t > 0 and x ∈ R \ {0} such that tΨ(1/|x|) ≥ C3(α, n).

Corollary 1.2. For n = 0, the conclusion of Theorem 1.1 can be rewritten as follows:
there are positive constants C̃1(α) and C̃2(α) such that

C̃1(α)

1 + t|x|Ψ(1/|x|)Ψ−1(1/t)
≤ P(τx > t) ≤ C̃2(α)

1 + t|x|Ψ(1/|x|)Ψ−1(1/t)
(1.6)

for all t > 0 and x ∈ R \ {0}.
Under an additional regularity condition, the above two-sided estimates can be

turned into asymptotic formulae for P(τx > t) as t→∞ or x→ 0. Recall that a function
ψ : (0,∞) → R is regularly varying at infinity with index α if limξ→∞ ψ(kξ)/ψ(ξ) = kα

for all k > 0. If the same equation holds with the limit as ξ → 0+ instead of ξ → ∞,
ψ is said to be regularly varying at zero with index α. Observe that if Ψ satisfies the
scaling-type condition (1.3) and it is regularly varying with index γ at infinity or at zero,
then, by (1.4), we have γ ≥ α.

Theorem 1.3. Suppose that X is a symmetric Lévy process with completely monotone
jumps, which satisfies the scaling-type condition (1.3) for some α ∈ (1, 2].

(a) If Ψ is regularly varying at infinity with index γ ∈ (1, 2], then the limit

lim
x→0

(
|x|Ψ( 1

|x| )(−
d
dt )

nP(τx > t)
)

exists and belongs to (0,∞) for all n ≥ 0 and t > 0.

(b) If Ψ is regularly varying at zero with index δ ∈ (1, 2], then the limit

lim
t→∞

(
tn+1Ψ−1( 1

t )(−
d
dt )

nP(τx > t)
)

exists and belongs to (0,∞) for all n ≥ 0 and x ∈ R \ {0}.

The limits in the above theorem are given explicitly by rather complicated expressions,
see Remark 5.6. In the following examples, application of Theorems 1.1 and 1.3 to three
types of symmetric Lévy processes with completely monotone jumps is given. Technical
details, such as verification of (1.3), are left to the reader.

Note that our main results for symmetric stable processes follow immediately from
the full series expansion given in [11]: Theorem 1.3 gives the first term, and two-sided
estimates of Theorem 1.1 follow easily by a scaling argument. On the other hand,
Theorems 1.1 and 1.3 seem to be completely new for non-stable processes.

Example 1.4. Suppose that 1 < α < β ≤ 2 and let X be the Lévy process with Lévy–
Khintchine exponent Ψ(ξ) = (1 + |ξ|β)α/β − 1 (sometimes X is called the relativistic Lévy
process). Then

c1(α, n)|x|α−1(1 + |x|)β−α

tn+1−1/α(1 + t)1/α−1/β
≤
(
− d

dt

)n
P(τx > t) ≤ c2(α, n)|x|α−1(1 + |x|)β−α

tn+1−1/α(1 + t)1/α−1/β

for all n ≥ 0, t > 0 and x ∈ R \ {0} such that t/min(|x|α, |x|β) ≥ c3(α, n). Furthermore,
finite and positive limits

lim
x→0

(
|x|1−α(− d

dt )
nP(τx > t)

)
, lim

t→∞

(
tn+1−1/β(− d

dt )
nP(τx > t)

)
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Hitting times of points for symmetric Lévy processes

exist for all n ≥ 0, t > 0 and x ∈ R \ {0}. Note that the restriction α > 1 is required by
the scaling-type condition (1.3). Otherwise, if α ≤ 1, we have that P(τx <∞) = 0.

Example 1.5. Suppose that 1 < α < β ≤ 2, and let X be the Lévy process with Lévy–
Khintchine exponent Ψ(ξ) = |ξ|α + |ξ|β (that is, X is the sum of independent stable Lévy
processes). Then

c1(α, n)|x|β−1(1 + t)1/α−1/β

tn+1−1/β(1 + |x|)β−α
≤
(
− d

dt

)n
P(τx > t) ≤ c2(α, n)|x|β−1(1 + t)1/α−1/β

tn+1−1/β(1 + |x|)β−α

for all n ≥ 0, t > 0 and x ∈ R \ {0} such that t/max(|x|α, |x|β) ≥ c3(α, n). Furthermore,
finite and positive limits

lim
x→0

(
|x|1−β(− d

dt )
nP(τx > t)

)
, lim

t→∞

(
tn+1−1/α(− d

dt )
nP(τx > t)

)
exist for all n ≥ 0, t > 0 and x ∈ R \ {0}. As in the previous example, the restriction α > 1

is required by the scaling-type condition (1.3). If α ≤ 1 < β, then 0 < P(τx <∞) < 1 and
the estimates of P(τx < t) are unknown. When β ≤ 1, then P(τx <∞) = 0.

Example 1.6. Let X be the pure-jump Lévy process with Lévy–Khintchine exponent
Ψ(ξ) = ξ2(log(1 + ξ2))−1 − 1 (see [17]). Since Ψ is regularly varying with index 2 both at
0 and at infinity, it can be checked that both large-time and small-time scaling limits:

(k−1/2Xkt : t ≥ 0) as k →∞,

((2k)−1/2Xk log(1/k)t : t ≥ 0) as k → 0+,

are standard Wiener processes (cf. [8]). Let ϕ(t) = 1 for t ≥ 1
e and ϕ(t) = (te−W−1(−t))1/2

when 0 < t < 1
e (where W−1 is the lower branch of the Lambert W function). We have

c1(n)|x| log(2 + 1
|x| )

tn+1/2ϕ(t)
≤
(
− d

dt

)n
P(τx > t) ≤

c2(n)|x| log(2 + 1
|x| )

tn+1/2ϕ(t)

for all n ≥ 0, t > 0 and x ∈ R \ {0} such that t/(|x|2 log(2 + 1
|x| )) ≥ c3(n). Furthermore,

finite and positive limits

lim
x→0

(− d
dt )

nP(τx > t)

|x| log(2 + 1
|x| )

, lim
t→∞

(
tn+1/2(− d

dt )
nP(τx > t)

)
exist for all n ≥ 0, t > 0 and x ∈ R \ {0}.
Example 1.7. Let X be the sum of a standard Wiener process and a compound Poisson
process with Lévy measure ce−|x|dx. Then X is symmetric, has completely monotone
jumps and Ψ(ξ) = 1

2ξ
2 + cξ2/(1 + ξ2). By a direct calculation,

ξΨ′′(ξ)

Ψ′(ξ)
= 1− 8cξ2

((1 + ξ2)2 + 2c)(1 + ξ2)
.

The right-hand side decreases with c ≥ 0, and for c = 2 we have

inf

{
ξΨ′′(ξ)

Ψ′(ξ)
: ξ ∈ (0,∞)

}
=

Ψ′′(1)

Ψ′(1)
= 0.

It follows that X satisfies the scaling-type condition (1.3) with α ∈ (1, 2] if and only if
c ∈ [0, 2). We remark that the restriction c < 2 is apparently the limitation of our method,
there is no reason to believe that for c ≥ 2 the conclusions of Theorems 1.1 and 1.3 no
longer hold.
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Hitting times of points for symmetric Lévy processes

Remark 1.8. The scaling-type condition (1.3) with α ∈ (1, 2] is easily shown to be
equivalent to concavity of Ψ(ξ1−ε) for some ε ∈ (0, 1

2 ] (with α − 1 = ε
1−ε ). A sufficient

condition for (1.3) with α ∈ (1, 2] in terms of the Lévy measure of X is described below.
Let X be a symmetric Lévy process with completely monotone jumps, and denote the

density function of the Lévy measure ν of X by the same symbol ν. Then

Ψ(ξ) = aξ2 + 2

∫ ∞
0

(1− cos(ξz))ν(z)dz = aξ2 + 2

∫ ∞
0

(1− cos s) 1
ξ ν( sξ )ds.

Assuming that d
dξ ( 1

ξ ν( sξ )) ≥ 0 and d2

dξ2 ( 1
ξ ν( sξ )) ≥ 0, differentiation in ξ under the integral

sign is permitted. It follows that

ξ2Ψ′′(ξ)− (α− 1)ξΨ′(ξ) = 2a(2− α)ξ2

+ 2

∫ ∞
0

(1− cos s) 1
ξ (( sξ )2ν′′( sξ ) + (3 + α) sξν

′( sξ ) + (1 + α)ν( sξ ))ds.

The right-hand side is non-negative if z2ν′′(z) + (3 + α)zν′(z) + (1 + α)ν(z) ≥ 0 for all

z > 0, which is equivalent to d2

dz2 (z−1/αν(z−1/α)) ≥ 0. This condition alone implies that
d2

dξ2 ( 1
ξ ν( sξ )) ≥ 0, and if z−1/αν(z−1/α) is increasing, then also d

dξ ( 1
ξ ν( sξ )) ≥ 0.

The above argument shows that if α ∈ (1, 2] and z−1/αν(z−1/α) is convex and nonde-
creasing in z > 0, then (1.3) holds.

Since the proofs of main theorems are rather technical, below we outline the main
idea and briefly discuss the structure of the article. Our starting point is the following
generalised eigenfunction expansion, proved in [13]. Note that in the original statement
the condition ξΨ′′(ξ) ≤ Ψ′(ξ) was erroneously given as 2ξΨ′′(ξ) ≤ Ψ′(ξ) (the proof,
however, used the correct condition). In the statement, as well as in the remaining
part of the article, by Ff(ξ) =

∫∞
−∞ f(s)e−isξds we denote the Fourier transform of

an integrable function f . Occasionally, the distributional Fourier transform is used:
if f is a Schwartz distribution, then Ff is again a Schwartz distribution, defined by
〈Ff, ϕ〉 = 〈f,Fϕ〉 for all ϕ in the Schwartz class.

Theorem 1.9 ([13, Theorem 1.1 and Remark 1.2]). Suppose that X is a symmetric Lévy
process. If 1/Ψ is integrable at infinity and

Ψ′(ξ) > 0,
ξΨ′′(ξ)

Ψ′(ξ)
≤ 1 (1.7)

for all ξ > 0 (cf. (1.3)), then

(− d
dt )

nP(t < τx <∞) =
1

π

∫ ∞
0

cosϑλe
−tΨ(λ)Ψ′(λ)(Ψ(λ))n−1Fλ(x)dλ (1.8)

for all n ≥ 0 and t > 0, and almost all x ∈ R. Here Fλ is a bounded, continuous function,
defined by

Fλ(x) = sin(λ|x|+ ϑλ)−Gλ(x)

for all x ∈ R, where

ϑλ = arctan

(
1

π

∫ ∞
0

(
Ψ′(λ)

Ψ(ξ)−Ψ(λ)
− 2λ

ξ2 − λ2

)
dξ

)
(1.9)

and Gλ is an L2(R) ∩ C0(R) function with (integrable) Fourier transform

FGλ(ξ) = cosϑλ

(
Ψ′(λ)

Ψ(ξ)−Ψ(λ)
− 2λ

ξ2 − λ2

)
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Hitting times of points for symmetric Lévy processes

for all ξ ∈ R \ {−λ, λ}. The distributional Fourier transform of Fλ is given by

〈FFλ, ϕ〉 = cosϑλ pv

∫ ∞
−∞

Ψ′(λ)ϕ(ξ)

Ψ(λ)−Ψ(ξ)
dξ + π sinϑλ(ϕ(λ) + ϕ(−λ))

for ϕ in the Schwartz class (here pv
∫

stands for the Cauchy principal value integral).

As it is explained right after formula (1.11) below, symmetric Lévy processes with
completely monotone jumps automatically satisfy (1.7), so Theorem 1.9 can be applied
whenever 1/Ψ is integrable at infinity. The latter condition holds, for example, if the
scaling-type condition (1.3) is satisfied with α ∈ (1, 2].

The main idea of the proof of Theorems 1.1 and 1.3 is taken from [15], where a similar
problem for first passage times was studied. The generalised eigenfunctions Fλ(x) are
oscillatory due to the sin(λ|x|+ ϑλ) term, but Fλ(x) > 0 when λ|x| is small enough, and
two-sided estimates for Fλ(x) can be given in this case. Thanks to the exponential term
e−tΨ(λ) in (1.8), the main contribution to the integral comes from λ ∈ (0, c

|x| ), provided
that t is large enough, or |x| is small enough. This essentially gives Theorem 1.1. The
proof of Theorem 1.3 requires in addition an asymptotic expression for Fλ(x) as x→ 0

or λ→ 0.
We collect some simple technical results in Section 2, so that they do not distract

attention of the reader at a later point. In Section 3 the properties of ϑλ are studied. In
Lemma 3.1 it is proved that the scaling-type condition (1.3) implies ϑλ ≤ π

α −
π
2 for all

λ > 0. The asymptotic behaviour of ϑλ as λ→ 0+ or λ→∞ is given in Lemma 3.2.
The estimates and asymptotic properties of Fλ are given in Section 4. Lemma 4.3

contains a rather general estimate, which is then simplified in Lemma 4.4 for processes
satisfying the scaling-type condition (1.3). Asymptotic expansions of Fλ are given in
Lemmas 4.5 and 4.6.

The final Section 5 contains proofs of main theorems, preceded by two propositions
of more general nature and two technical lemmas. Proposition 5.2 extends (1.8) to all
x ∈ R \ {0}. Lemmas 5.4 and 5.3 contain estimates of the main part (λ < c

|x| ) and the
remainder part (λ > c

|x| ) of the integral in (1.8).
Instead of using the Lévy–Khintchine exponent Ψ, it is convenient to work with

ψ(ξ) = Ψ(
√
ξ). Recall that when X has completely monotone jumps, then ψ is a complete

Bernstein function. In the remaining part of the article Ψ is virtually dropped from the
notation. For reader’s convenience, we note that

Ψ(ξ) = ψ(ξ2),
ξΨ′(ξ)

Ψ(ξ)
= 2

ξ2ψ′(ξ2)

ψ(ξ2)
,

ξΨ′′(ξ)

Ψ′(ξ)
= 1 + 2

ξ2ψ′′(ξ2)

ψ′(ξ2)
, (1.10)

so that the scaling-type condition (1.3) translates to

−ξψ′′(ξ)
ψ′(ξ)

≤ 2− α
2

.

To facilitate extensions, all intermediate results are stated for rather general functions ψ.
For this reason, statements of the results often contain assumptions, such as differen-
tiability or monotonicity of ψ, which are automatically satisfied when ψ corresponds to
a symmetric Lévy process with completely monotone jumps (that is, ψ is a complete
Bernstein function). In particular, in this more general setting, a two-sided scaling-type
condition

2− β
2
≤ −ξψ

′′(ξ)

ψ′(ξ)
≤ 2− α

2
(1.11)

is often imposed. When ψ is a complete Bernstein function, the lower bound in (1.11)
always holds with β = 2 (see [12, Proposition 2.21]).
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It should be pointed out that although we follow closely the approach of [15], there
are essential differences between the present problem and the one considered therein.
The overall form of the generalised eigenfunctions is similar (sine term plus completely
monotone correction Gλ), but the expressions for ϑλ and Gλ are different, and thus
require different methods. For example, the estimates of Gλ in [15] follow easily from
the expression for the Laplace transform of Gλ. We were unable to follow the same
approach and needed to use Fourier transform instead. Also the technical details of the
arguments are different, so virtually no part of [15] can be re-used in our setting.

2 Preliminaries

Throughout the article, by c, c1, c2, etc. we denote positive constants. Dependence
on a parameter α is always indicated by writing c(α), etc.

Following [15], for λ > 0 and a continuous function ψ : (0,∞) → (0,∞) such that
ψ(ξ) 6= ψ(λ2) when ξ 6= λ2, we define

ψλ(ξ) =
1− ξ

λ2

1− ψ(ξ)
ψ(λ2)

for ξ > 0, ξ 6= λ2. This definition is extended continuously at ξ = λ2 by ψλ(λ2) =

ψ(λ2)/(λ2ψ′(λ2)) whenever ψ is differentiable at λ2 and ψ′(λ2) > 0. In this case we say
that ψλ is well-defined.

If for some λ > 0 the function ψλ is well-defined and ψλ(ξ) 6= ψλ(λ2) for ξ 6= λ2, then
(ψλ)λ can be defined, and

1

(ψλ)λ(ξ2)
=

λ2ψ′(λ2)

ψ(ξ2)− ψ(λ2)
− λ2

ξ2 − λ2
(2.1)

for ξ > 0, ξ 6= λ2. Note that if ψ : (0,∞) → (0,∞) is twice differentiable and ψ′(ξ) > 0,
ψ′′(ξ) < 0 for all ξ > 0, then ψλ is strictly increasing for every λ > 0, and hence
(ψλ)λ is well-defined and positive. Furthermore, if ψ is a complete Bernstein function
(equivalently, if Ψ(ξ) = ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric Lévy
process with completely monotone jumps), then also ψλ and (ψλ)λ are complete Bernstein
functions (see [13, 24]).

Below we list some rather elementary results used in the proofs of main results.

Lemma 2.1. If ψ, ψ̃ : (0,∞) → (0,∞) are twice differentiable, ψ′(ξ), ψ̃′(ξ) > 0 and
ψ′′(ξ), ψ̃′′(ξ) ≤ 0 for all ξ > 0, and furthermore

−ψ′′(ξ)
ψ′(ξ)

≤ −ψ̃
′′(ξ)

ψ̃′(ξ)
(2.2)

for all ξ > 0, then

(ψλ)λ(ξ2) ≥ (ψ̃λ)λ(ξ2) (2.3)

for all λ, ξ > 0.

Proof. Integration of (2.2) in ξ gives

ψ′(ζ)

ψ′(ξ1)
≥ ψ̃′(ζ)

ψ̃′(ξ1)

when 0 < ξ1 < ζ. By another integration in ζ,

ψ(ξ2)− ψ(ξ1)

ψ′(ξ1)
≥ ψ̃(ξ2)− ψ̃(ξ1)

ψ̃′(ξ1)
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when 0 < ξ1 < ξ2. Substituting ξ1 = λ2 and ξ2 = ξ2, one gets

λ2ψ′(λ2)

ψ(ξ2)− ψ(λ2)
− λ2

ξ2 − λ2
≤ λ2ψ̃′(λ2)

ψ̃(ξ2)− ψ̃(λ2)
− λ2

ξ2 − λ2
,

that is, (2.3), provided that 0 < λ < ξ. A similar argument can be given when 0 < ξ < λ.
The case λ = ξ > 0 follows by continuity.

Lemma 2.2. If ψ : (0,∞)→ (0,∞) is twice differentiable, ψ′(ξ) > 0 for all ξ > 0, and the
scaling-type condition (1.11) holds for some α, β > 0 and all ξ > 0, then

α

2
≤ ξψ′(ξ)

ψ(ξ)− ψ(0+)
≤ β

2
(2.4)

for all ξ > 0, and(
ξ1
ξ2

)1−α2
≤ ψ′(ξ2)

ψ′(ξ1)
≤
(
ξ1
ξ2

)1− β2
,

(
ξ2
ξ1

)α
2

≤ ψ(ξ2)− ψ(0+)

ψ(ξ1)− ψ(0+)
≤
(
ξ2
ξ1

) β
2

(2.5)

whenever 0 < ξ1 < ξ2.

Proof. By (1.11), if 0 < ξ1 < ξ2,

log

(
ξ2
ξ1

)1−α2
=

∫ ξ2

ξ1

1− α
2

ζ
dζ ≥

∫ ξ2

ξ1

−ψ′′(ζ)

ψ′(ζ)
dζ = log

ψ′(ξ1)

ψ′(ξ2)
,

proving the lower bound in the first part of (2.5). Hence,

ξ2
α
2

=

∫ ξ2

0

(
ξ2
ξ1

)1−α2
dξ1 ≥

∫ ξ2

0

ψ′(ξ1)

ψ′(ξ2)
dξ1 =

ψ(ξ2)− ψ(0+)

ψ′(ξ2)
,

which shows the lower bound in (2.4). Furthermore,

log

(
ξ2
ξ1

)α
2

=

∫ ξ2

ξ1

α
2

ζ
dζ ≤

∫ ξ2

ξ1

ψ′(ζ)

ψ(ζ)− ψ(0+)
dζ = log

ψ(ξ2)− ψ(0+)

ψ(ξ1)− ψ(0+)
,

proving the other lower bound in (2.5). The upper bounds are proved in the same way.

When ψ(ξ2) is the Lévy–Khintchine exponent of a Lévy process, then ψ(0+) = 0.
Hence, the latter part of (2.5) takes the simpler form(

ξ2
ξ1

)α
2

≤ ψ(ξ2)

ψ(ξ1)
≤
(
ξ2
ξ1

) β
2

.

Note that in this case (
t2
t1

) 2
β

≤ ψ−1(t2)

ψ−1(t1)
≤
(
t2
t1

) 2
α

(2.6)

for all t1, t2 > 0 such that t1 < t2.

Lemma 2.3. If g : (0,∞)→ (0,∞) is integrable and decreasing, then

lim
ξ→∞

(ξg(ξ)) = 0.

Proof. As an integrable and decreasing function, g(ξ) converges to 0 as ξ →∞. Since
g(ξ)1(0,ξ)(ζ) ≤ g(ζ) for all ξ, ζ > 0, by the Dominated Convergence Theorem,

lim
ξ→∞

(ξg(ξ)) = lim
ξ→∞

∫ ∞
0

g(ξ)1(0,ξ)(ζ)dζ = 0.
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Lemma 2.4. If g : R→ (0,∞) is integrable and decreasing on (0,∞), and g(ξ) = g(−ξ)
for ξ > 0, then

1

2

∫ ∞
0

min(ξ2x2, 4)g(ξ)dξ ≤ Fg(0)−Fg(x) ≤
∫ ∞

0

min(ξ2x2, 4)g(ξ)dξ (2.7)

for all x ∈ R. Furthermore,

|Fg(x1)−Fg(x2)| ≤
∫ ∞

0

min(ξ|x1 − x2|, 2) min(ξ|x1 + x2|, 2)g(ξ)dξ (2.8)

for all x1, x2 ∈ R.

Proof. Fix x > 0. By symmetry of g,

Fg(0)−Fg(x) = 2

∫ ∞
0

(1− cos(ξx))g(ξ)dξ.

Clearly, 1− cos(ξx) ≤ 2 and 1− cos(ξx) = 2 sin( ξx2 )2 ≤ 1
2ξ

2x2. Therefore,

Fg(0)−Fg(x) ≤
∫ 2

x

0

ξ2x2g(ξ)dξ +

∫ ∞
2
x

4g(ξ)dξ.

For the lower bound, integration by parts gives

Fg(0)−Fg(x) = 2 lim
ξ→∞

(
(ξ − 1

x sin(ξx))g(ξ)
)

+ 2

∫ ∞
0

(ξ − 1
x sin(ξx))(−dg(ξ)),

where the integral in the right-hand side is a Lebesgue–Stieltjes one (if g is differen-
tiable, then (−dg(ξ)) = (−g′(ξ))dξ). By Lemma 2.3, the limit in the right-hand side is 0.
Furthermore, (−dg(ξ)) is a non-negative measure on (0,∞), and one easily verifies that
ξ − 1

x sin(ξx) ≥ 1
8ξ

3x2 for ξ ∈ (0, 2
x ) and ξ − 1

x sin(ξx) ≥ ξ − 1
x for ξ ∈ ( 2

x ,∞). Hence,

Fg(0)−Fg(x) ≥
∫ 2

x

0

ξ3x2

4
(−dg(ξ)) +

∫ ∞
2
x

2(ξ − 1
x )(−dg(ξ)).

The function 1
4ξ

3x21(0,2/x)(ξ) + 2(ξ − 1
x )1[2/x,∞)(ξ) is continuous at ξ = 2

x . Therefore,
another integration by parts gives

Fg(0)−Fg(x) ≥
∫ 2

x

0

3
4ξ

2x2g(ξ)dξ +

∫ ∞
2
x

2g(ξ)dξ.

It follows that

Fg(0)−Fg(x) ≥ 1

2

(∫ 2
x

0

ξ2x2g(ξ)dξ +

∫ ∞
2
x

4g(ξ)dξ

)
,

as desired. The estimates (2.7) for x < 0 follow by symmetry.
In a similar manner, for x1, x2 ∈ R,

|Fg(x1)−Fg(x2)| ≤ 2

∫ ∞
0

|cos(ξx1)− cos(ξx2)|g(ξ)dξ

= 4

∫ ∞
0

|sin ξx1−ξx2

2 ||sin ξx1+ξx2

2 |g(ξ)dξ,

and (2.8) follows from |sin s| ≤ min(s, 1) for s > 0.
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Lemma 2.5. If ψ : (0,∞)→ (0,∞) and ξ/ψ(ξ) is increasing in ξ > 0, then∫ ξ

0

ζ2

ψ(ζ2)
dζ ≤ ξ2

∫ ∞
ξ

1

ψ(ζ2)
dζ (2.9)

for all ξ > 0.

Proof. When 0 < ζ < ξ, then ζ2/ψ(ζ2) ≤ ξ2/ψ(ξ2), and so∫ ξ

0

ζ2

ψ(ζ2)
dζ ≤

∫ ξ

0

ξ2

ψ(ξ2)
dζ =

ξ3

ψ(ξ2)
.

When 0 < ξ < ζ, then ζ/ψ(ζ2) ≥ ξ2/ψ(ξ2), so that∫ ∞
ξ

1

ψ(ζ2)
dζ ≥

∫ ∞
ξ

ξ2

ζ2ψ(ξ2)
dζ =

ξ

ψ(ξ2)
.

Formula (2.9) follows.

Lemma 2.6. If g : R→ R is integrable and regularly varying at infinity with index −γ
for γ ∈ (1, 3), and g(x) = g(−x) for x > 0, then

lim
x→0+

(
x

g(1/x)
(Fg(0)−Fg(x))

)
=

π

Γ(γ)|cos γπ2 |
.

Proof. Clearly, Fg(x) = 2
∫∞

0
g(ξ) cos(ξx)dξ. By [27, Theorem 5],

lim
x→0+

(
x

g(1/x)
(Fg(x)−Fg(0))

)
= 2Γ(1− γ) sin γπ

2 ,

where for γ = 2 it is understood that the right-hand side is equal to π. Furthermore,
Γ(1− γ)Γ(γ) = π/ sin(γπ).

3 Estimates of ϑλ

Recall that

ϑλ = arctan

(
1

π

∫ ∞
0

2

λ

1

(ψλ)λ(ξ2)
dξ

)
(3.1)

for λ > 0.

Lemma 3.1. If ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric Lévy process,
ψ′(ξ) > 0 for all ξ > 0 and the scaling-type condition (1.11) holds for some α, β ∈ [1, 2]

and all ξ > 0, then

π

β
− π

2
≤ ϑλ ≤

π

α
− π

2

for all λ > 0.

Proof. If ψ̃(ξ) = ξα/2, then −ξψ̃′′(ξ)/ψ̃′(ξ) = 1− α
2 . Hence, by Lemma 2.1,

(ψλ)λ(ξ2) ≥ (ψ̃λ)λ(ξ2)

for all λ, ξ > 0. By (3.1), it follows that ϑλ ≤ ϑ̃λ, where ϑ̃λ is defined as ϑλ, but using ψ̃
instead of ψ. By [15, Example 5.1], ϑ̃λ = π

α −
π
2 . This proves the upper bound. The lower

one is obtained in a similar manner.
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Lemma 3.2. Suppose that ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric Lévy
process, ψ′(ξ) > 0 for all ξ > 0, and the scaling-type condition (1.11) holds for some
α, β ∈ [1, 2] and all ξ > 0. If ψ′ is regularly varying at zero with index δ

2 − 1 for some
δ ∈ [1, 2], then

lim
λ→0+

ϑλ =
π

δ
− π

2
.

Similarly, if ψ′ is regularly varying at infinity with index γ
2 − 1 for some γ ∈ [1, 2], then

lim
λ→∞

ϑλ =
π

γ
− π

2
.

Proof. Suppose that ψ′ is regularly varying at zero with index δ
2 − 1 and let ψ̃(ξ) =

ξα/2, so that −ξψ̃′′(ξ)/ψ̃′(ξ) = 1 − α
2 . By Karamata’s theorem [1, Theorem 1.5.11],

limλ→0+(λ2ψ′(λ2)/ψ(λ2)) = δ
2 and ψ is regularly varying at zero with index δ

2 .
By a substitution ξ = λs,

lim
λ→0+

ϑλ = arctan

(
1

π
lim
λ→0+

∫ ∞
0

2

(ψλ)λ(λ2s2)
ds

)
= arctan

(
1

π
lim
λ→0+

∫ ∞
0

(
2λ2ψ′(λ2)/ψ(λ2)

ψ(λ2s2)/ψ(λ2)− 1
− 2

s2 − 1

)
ds

)
.

As λ→ 0+, the integrand converges pointwise to δ/(sδ − 1)− 2/(s2 − 1). Furthermore, it
is positive and bounded above by 2/(ψ̃λ)λ(λ2s2) = α/(sα − 1)− 2/(s2 − 1) by Lemma 2.1.
Note that this upper bound does not depend on λ > 0 and it is integrable in s ∈ (0,∞).
Hence, by the Dominated Convergence Theorem and [13, Example 5.1],

lim
λ→0+

ϑλ = arctan

(
1

π

∫ ∞
0

(
δ

sδ − 1
− 2

s2 − 1

)
ds

)
=
π

δ
− π

2
.

The other statement is proved in an analogous way.

4 Estimates of Fλ(x)

Recall that

FGλ(ξ) =
2 cosϑλ

λ

1

(ψλ)λ(ξ2)
with

1

(ψλ)λ(ξ2)
=

λ2ψ′(λ2)

ψ(ξ2)− ψ(λ2)
− λ2

ξ2 − λ2

for λ > 0, ξ ∈ R, and

Fλ(x) = sin(λ|x|+ ϑλ)−Gλ(x)

for λ > 0, x ∈ R.

Lemma 4.1. If ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric Lévy process,
1/(1 + ψ(ξ2)) is integrable, λ > 0 and (ψλ)λ(ξ) is well-defined and increasing in ξ > 0,
then

1

4π

∫ ∞
0

min(ξ2x2, 4)FGλ(ξ)dξ ≤ Gλ(0)−Gλ(x) ≤ 1

2π

∫ ∞
0

min(ξ2x2, 4)FGλ(ξ)dξ

for all x ∈ R. Furthermore,

|Gλ(x1)−Gλ(x2)| ≤ 1

2π

∫ ∞
0

min(ξ|x1 − x2|, 2) min(ξ|x1 + x2|, 2)FGλ(ξ)dξ

for all x1, x2 ∈ R.
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Proof. Due to symmetry of Gλ, F(FGλ) = 2πGλ. Furthermore, FGλ is differentiable
and decreasing on (0,∞). Hence, the result follows by Lemma 2.4.

Lemma 4.2. If ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric Lévy process,
1/(1 + ψ(ξ2)) is integrable, λ > 0, (ψλ)λ(ξ) is well-defined and (ψλ)λ(ξ) and ξ/(ψλ)λ(ξ)

are increasing in ξ > 0, then

1

π

∫ ∞
2
|x|

FGλ(ξ)dξ ≤ Gλ(0)−Gλ(x) ≤ 4

π

∫ ∞
2
|x|

FGλ(ξ)dξ

for all x ∈ R.

Proof. Since ξ/(ψλ)λ(ξ) is increasing in ξ > 0, by Lemma 2.5,∫ 2
|x|

0

ξ2x2FGλ(ξ)dξ ≤
∫ ∞

2
|x|

4FGλ(ξ)dξ.

The result follows now from Lemma 4.1.

Lemma 4.3. If ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric Lévy process,
1/(1 + ψ(ξ2)) is integrable, λ > 0, (ψλ)λ(ξ) is well-defined and (ψλ)λ(ξ) and ξ/(ψλ)λ(ξ)

are increasing in ξ > 0, then

cosϑλ
π

∫ ∞
2
x

2λψ′(λ2)

ψ(ξ2)− ψ(λ2)
dξ ≤ Fλ(x) ≤ 4

π

∫ ∞
2
x

2λψ′(λ2)

ψ(ξ2)− ψ(λ2)
dξ

for λ, x > 0 satisfying λx < π
2 − ϑλ. The upper bound holds when λx < 2.

Proof. Suppose that λ, x > 0 and write

Fλ(x) = (sin(λx+ ϑλ)− sin(ϑλ)) + (Gλ(0)−Gλ(x)). (4.1)

By Lemma 4.2, Gλ(0)−Gλ(x) is bounded below and above by a constant times (see (2.1))∫ ∞
2
x

FGλ(ξ)dξ = cosϑλ

∫ ∞
2
x

2

λ(ψλ)λ(ξ2)
dξ

= cosϑλ

∫ ∞
2
x

(
2λψ′(λ2)

ψ(ξ2)− ψ(λ2)
− 2λ

ξ2 − λ2

)
dξ

Observe that d
ds (log(1 + s)− log(1− s)) ≥ 2 for s ∈ (0, 1). Therefore, if λx < 2, then∫ ∞

2
x

2λ

ξ2 − λ2
dξ = log(1 + λx

2 )− log(1− λx
2 ) ≥ λx ≥ sin(λx+ ϑλ)− sin(ϑλ).

Hence,

Fλ(x) ≤
∫ ∞

2
x

2λ

ξ2 − λ2
dξ +

4 cosϑλ
π

∫ ∞
2
x

2

λ(ψλ)λ(ξ2)
dξ

≤ 4

π

∫ ∞
2
x

2λ

ξ2 − λ2
dξ +

4

π

∫ ∞
2
x

2

λ(ψλ)λ(ξ2)
dξ =

4

π

∫ ∞
2
x

2λψ′(λ2)

ψ(ξ2)− ψ(λ2)
dξ.

The lower bound is found in a similar manner. Observe that log(1 + s) − log(1 − s) is
convex on (0, 1). Hence, if λx

2 < π
4 , then∫ ∞

2
x

2λ

ξ2 − λ2
dξ = log(1 + λx

2 )− log(1− λx
2 )

≤ (log(1 + π
4 )− log(1− π

4 )) 4
π
λx
2 = 2

π (log 4+π
4−π )λx.
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Furthermore, by concavity, sin(s+ϑλ)− sinϑλ ≥ s(1− sinϑλ)/(π2 −ϑλ) for s ∈ (0, π2 −ϑλ).
It follows that if λx < π

2 − ϑλ, then∫ ∞
2
x

2λ

ξ2 − λ2
dξ ≤ 2

π (log 4+π
4−π )

π
2 − ϑλ

1− sinϑλ
(sin(λx+ ϑλ)− sin(ϑλ))

≤
4 log 4+π

4−π
π cosϑλ

(sin(λx+ ϑλ)− sin(ϑλ));

the last inequality follows from the inequality 1− cos s ≥ 1
2s sin s for s ∈ (0, π2 ) (which is

easily proved by differentiation) with s = π
2 − ϑλ. This gives the desired lower bound,

Fλ(x) ≥ π cosϑλ

4 log 4+π
4−π

∫ ∞
2
x

2λ

ξ2 − λ2
dξ +

cosϑλ
π

∫ ∞
2
x

2

λ(ψλ)λ(ξ2)
dξ

≥ cosϑλ
π

∫ ∞
2
x

2λ

ξ2 − λ2
dξ +

cosϑλ
π

∫ ∞
2
x

2

λ(ψλ)λ(ξ2)
dξ

=
cosϑλ
π

∫ ∞
2
x

2λψ′(λ2)

ψ(ξ2)− ψ(λ2)
dξ.

Lemma 4.4. If ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric Lévy process, λ > 0,
(ψλ)λ(ξ) and ξ/(ψλ)λ(ξ) are increasing in ξ > 0, and the scaling-type condition (1.11)
holds for some α, β ∈ (1, 2] and all ξ > 0, then

α− 1

π

λψ′(λ2)

xψ(1/x2)
≤ Fλ(x) ≤ 40

π(α− 1)

λψ′(λ2)

xψ(1/x2)
(4.2)

for λ, x > 0 satisfying λx < π − π
α . The upper bound holds when λx < 2. Furthermore,

|Fλ(x1)− Fλ(x2)| ≤ 3λ|x1 − x2|+
2λψ′(λ2)

π

∫ ∞
2λ

min(ξ|x1 − x2|, 2) min(ξ|x1 + x2|, 2)

ψ(ξ2)
dξ

(4.3)

for λ > 0 and x1, x2 ∈ R.

Note that the scaling-type condition (1.11) implies that 1/(1 +ψ(ξ2)) is integrable (by
Lemma 2.2) and that (ψλ)λ(ξ) is well-defined.

Proof. By Lemma 3.1, ϑλ ≤ π
α −

π
2 . Hence, by Lemma 4.3,

sin π
α

π

∫ ∞
2
x

2λψ′(λ2)

ψ(ξ2)− ψ(λ2)
dξ ≤ Fλ(x) ≤ 4

π

∫ ∞
2
x

2λψ′(λ2)

ψ(ξ2)− ψ(λ2)
dξ

for λ, x > 0 such that λx < π − π
α . In this case ξ > 2

x implies ξ > 2(π − π
α )−1λ > 4

πλ, and
hence, by Lemma 2.2, ψ(λ2) ≤ (π4 )αψ(ξ2). Therefore,∫ ∞

2
x

2λψ′(λ2)

ψ(ξ2)
dξ ≤

∫ ∞
2
x

2λψ′(λ2)

ψ(ξ2)− ψ(λ2)
dξ ≤ 1

1− (π4 )α

∫ ∞
2
x

2λψ′(λ2)

ψ(ξ2)
dξ.

Finally, again by Lemma 2.2,∫ ∞
2
x

1

ψ(ξ2)
dξ ≤ 1

ψ(1/x2)

∫ ∞
2
x

1

(ξx)α
dξ =

1

(α− 1)2α−1xψ(1/x2)
,

and a similar lower bound is valid with α replaced by β. By combining the above
estimates, one obtains

sin π
α

π

2λψ′(λ2)

(β − 1)2β−1xψ(1/x2)
≤ Fλ(x) ≤ 4

π

1

1− (π4 )α
2λψ′(λ2)

(α− 1)2α−1xψ(1/x2)
,
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and (4.2) follows by elementary estimates: sin π
α ≥ (α − 1), (β − 1)2β−1 ≤ 2, 2α−1 ≥ 1,

1− (π4 )α ≥ 1− π
4 ≥

1
5 .

Formula (4.3) is proved in a similar way. By Lemma 4.1 and (4.1), for λ > 0 and
x1, x2 ∈ R,

|Fλ(x1)− Fλ(x2)| ≤ λx+
1

2π

∫ ∞
0

2

λ(ψλ)λ(ξ2)
min(ξx, 2) min(ξy, 2)dξ

where for brevity x = |x1 − x2| and y = |x1 + x2|. Since (ψλ)λ(ξ) ≥ (ψλ)λ(0) = 1 for
ξ ∈ (0, 2λ), and 1/(ψλ)λ(ξ) ≤ λ2/(ψ(ξ2)− ψ(λ2)) for ξ > 2λ,

|Fλ(x1)− Fλ(x2)| ≤ λx+

∫ 2λ

0

2ξx

πλ
dξ +

1

π

∫ ∞
2λ

λψ′(λ2)

ψ(ξ2)− ψ(λ2)
min(ξx, 2) min(ξy, 2)dξ

≤ 3λx+
λψ′(λ2)

(1− ( 1
2 )α)π

∫ ∞
2λ

min(ξx, 2) min(ξy, 2)

ψ(ξ2)
dξ;

here the last inequality follows by Lemma 2.2.

Lemma 4.5. If ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric Lévy process,
λ > 0, (ψλ)λ(ξ) is well-defined, and ψ is regularly varying at infinity with index γ

2 for
some γ ∈ (1, 2], then

lim
x→0+

(xψ(1/x2)Fλ(x)) =
λψ′(λ2) cosϑλ
Γ(γ)|cos γπ2 |

.

Note that 1/(1 + ψ(ξ2)) is integrable, because it is regularly varying at infinity with
index −γ.

Proof. Recall that

FGλ(ξ) =
2 cosϑλ

λ

1

(ψλ)λ(ξ2)
=

2λψ′(λ2) cosϑλ
ψ(ξ2)− ψ(λ2)

− 2λ cosϑλ
ξ2 − λ2

,

and that Gλ = 1
2πF(FGλ). Let a = limξ→∞(ψ(ξ2)/ξ2); necessarily a ∈ [0,∞). Then

lim
ξ→∞

(ψ(ξ2)FGλ(ξ)) = 2λ(ψ′(λ2)− a) cosϑλ.

Therefore, FGλ(ξ) is regularly varying at infinity with index −γ, and by Lemma 2.6,

lim
x→0+

(xψ(1/x2)(Gλ(0)−Gλ(x)) = 2λ(ψ′(λ2)− a) cosϑλ lim
x→0+

x(Gλ(0)−Gλ(x))

FGλ(1/x)

=
λ(ψ′(λ2)− a) cosϑλ

Γ(γ)|cos γπ2 |
.

Furthermore,

lim
x→0+

(xψ(1/x2)(sin(λx+ ϑλ)− sinϑλ)) = λa cosϑλ,

and Fλ(x) = (sin(λx + ϑλ) − sinϑλ) + (Gλ(0) −Gλ(x)). The result clearly follows when
a = 0. If a > 0, then necessarily γ = 2, and hence Γ(γ)|cos γπ2 | = 1.

Recall that the compensated potential kernel v of X is defined by

v(x) =

∫ ∞
0

(pt(0)− pt(x))dt,
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where pt(x) is the density function of the distribution of Xt. Since Fpt(ξ) = e−tψ(ξ2), the
distributional Fourier transform of v satisfies

〈Fv, ϕ〉 =

∫ ∞
0

∫ ∞
−∞

e−tψ(ξ2)(ϕ(0)− ϕ(ξ))dξdt

=

∫ ∞
0

∫ ∞
0

e−tψ(ξ2)(2ϕ(0)− ϕ(ξ)− ϕ(−ξ))dξdt

=

∫ ∞
0

2ϕ(0)− ϕ(ξ)− ϕ(−ξ)
ψ(ξ2)

dξ

for ϕ in the Schwartz class (the Fubini theorem is used in the last equality).

Lemma 4.6. If ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric Lévy process, λ > 0,
(ψλ)λ(ξ) and ξ/(ψλ)λ(ξ) are increasing in ξ > 0, and the scaling-type condition (1.11)
holds for some α, β ∈ (1, 2] and all ξ > 0, then

lim
λ→0+

Fλ(x)

2λψ′(λ2) cosϑλ
= v(x)

locally uniformly in x ∈ R, where v(x) is the compensated potential kernel of X.

Noteworthy, convergence in the space of tempered distributions holds in full gen-
erality, that is, with the hypotheses of Theorem 1.9. Under the assumptions of the
lemma, one also has ϑλ → π

γ −
π
2 as λ→ 0+ by Lemma 3.2. As before, the scaling-type

condition (1.11) implies that 1/(1 +ψ(ξ2)) is integrable (by Lemma 2.2) and that (ψλ)λ(ξ)

is well-defined.

Proof. By Theorem 1.9, for ϕ in the Schwartz class,〈
FFλ

λψ′(λ2) cosϑλ
, ϕ

〉
= 2 pv

∫ ∞
−∞

ϕ(ξ)

ψ(λ2)− ψ(ξ2)
dξ +

π tanϑλ
λψ′(λ2)

(ϕ(λ) + ϕ(−λ))

= 2 pv

∫ ∞
−∞

ϕ(ξ)

ψ(λ2)− ψ(ξ2)
dξ − 2 pv

∫ ∞
0

ϕ(λ) + ϕ(−λ)

ψ(λ2)− ψ(ξ2)
dξ

= 2

∫ ∞
0

ϕ(ξ)− ϕ(λ) + ϕ(−ξ)− ϕ(−λ)

ψ(λ2)− ψ(ξ2)
dξ.

As λ→ 0+, the integrand converges pointwise to (2ϕ(0)−ϕ(ξ)−ϕ(−ξ))/ψ(ξ2). We claim
that the Dominated Convergence Theorem applies to the above limit. Indeed,

|ϕ(ξ)− ϕ(λ) + ϕ(−ξ)− ϕ(−λ)| ≤ |ξ − λ| sup{|ϕ′(s)− ϕ′(−s)| : 0 < s < ξ + λ}
≤ |ξ − λ|(ξ + λ)‖ϕ′′‖∞ = |ξ2 − λ2|‖ϕ′′‖∞,

for all λ, ξ > 0, and since ψ′ is decreasing,

|ψ(λ2)− ψ(ξ2)| ≥ |ξ2 − λ2|ψ′(2)

for all λ ∈ (0, 1) and ξ ∈ (0, 2). Hence,∣∣∣∣ϕ(ξ)− ϕ(λ) + ϕ(−ξ)− ϕ(−λ)

ψ(λ2)− ψ(ξ2)

∣∣∣∣ ≤ ‖ϕ′′‖∞ψ′(2)

for all λ ∈ (0, 1) and ξ ∈ (0, 2). On the other hand,∣∣∣∣ϕ(ξ)− ϕ(λ) + ϕ(−ξ)− ϕ(−λ)

ψ(λ2)− ψ(ξ2)

∣∣∣∣ ≤ 4‖ϕ‖∞
ψ(ξ2)− ψ(1)
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for all λ ∈ (0, 1) and ξ ≥ 2. The upper bound found above is integrable in ξ ∈ (0,∞), and
the claim is proved. It follows that

lim
λ→0+

〈
FFλ

λψ′(λ2) cosϑλ
, ϕ

〉
= 2 〈Fv, ϕ〉

for every ϕ in the Schwartz class. This proves the desired result, but with locally uniform
convergence replaced by convergence in the space of tempered distributions.

By Lemmas 4.4 and 3.1, for all λ > 0 and x1, x2 ∈ R,

|Fλ(x1)− Fλ(x2)|
λψ′(λ2) cosϑλ

≤ 3|x1 − x2|
ψ′(λ) sin π

α

+
2

π sin π
α

∫ ∞
2λ

min(ξ|x1 − x2|, 2) min(ξ|x1 + x2|, 2)

ψ(ξ2)
dξ.

Hence, if λ ∈ (0, λ0) and x1, x2 ∈ [−x0, x0], then

|Fλ(x1)− Fλ(x2)|
λψ′(λ2) cosϑλ

≤ 3|x1 − x2|
ψ′(λ0) sin π

α

+
2

π sin π
α

∫ ∞
0

min(ξ|x1 − x2|, 2) min(2ξx0, 2)

ψ(ξ2)
dξ.

The right-hand side is finite and converges to 0 as |x2 − x1| → 0+ by the Dominated
Convergence Theorem. Hence, the functions Fλ(x)/(λψ′(λ2) cosϑλ) are equicontinuous
in x ∈ [−x0, x0] for λ ∈ (0, λ0). It remains to note that on a bounded interval, distributional
convergence and equicontinuity imply uniform convergence.

5 Estimates of hitting times

We begin with two technical results.

Proposition 5.1. If X is a symmetric Lévy process with Lévy–Khintchine exponent Ψ,
and 1/(1 + Ψ(ξ)) is integrable, then P(t < τx < ∞) is jointly continuous in t > 0 and
x ∈ R.

Proof. By [23, Theorem 43.5 and Remark 43.6], Ee−λτx is a continuous function of x ∈ R
for every λ > 0. Therefore, the distributions of τx are continuous in x with respect to
vague convergence of measures. It follows that the function P(t < τx <∞) is continuous
in x at every point (t, x) at which it is continuous in t.

Since P(τx = t) ≤ P(Xt = x) = 0, the function P(t < τx < ∞) is continuous and
non-increasing in t > 0 for every x ∈ R. This implies that it is in fact jointly continuous
in t > 0 and x ∈ R.

Proposition 5.2. If ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric Lévy process,
1/(1 +ψ(ξ2)) is integrable, (ψλ)λ is well-defined and (ψλ)λ(ξ) and ξ/(ψλ)λ(ξ) are increas-
ing in ξ > 0 for all λ > 0, then equation (1.8) in Theorem 1.9 holds for all x ∈ R (and not
just for almost all x ∈ R).

Proof. It suffices to consider n = 0, the result for n > 0 follows then by differentiation,
see [13, Remark 1.2]. Let t > 0. By Proposition 5.1, the left-hand side of (1.8) is a
continuous function of x ∈ R \ {0}. For each t > 0, the integrand in the right-hand side
of (1.8) is continuous in x ∈ R \ {0}. Therefore, it remains to show that the Dominated
Convergence Theorem can be applied to prove continuity of the right-hand side of (1.8)
in x > 0 (equality for x = 0 is trivial, and the result for x < 0 follows by symmetry).

Fix [a, b] ⊆ (0,∞). By Lemma 4.3, for x ∈ [a, b] and λ ∈ (0, 1
b ),∣∣∣cosϑλe

−tψ(λ2)2λψ′(λ2)(ψ(λ2))−1Fλ(x)
∣∣∣ ≤ 4

π

(2λψ′(λ2))2

ψ(λ2)

∫ ∞
2
b

1

ψ(ξ2)− ψ(1/b2)
dξ,
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while for x ∈ [a, b] and λ ≥ 1
b ,∣∣∣cosϑλe

−tψ(λ2)2λψ′(λ2)(ψ(λ2))−1Fλ(x)
∣∣∣ ≤ 4λψ′(λ2)

ψ(λ2)
e−tψ(λ2),

because |Fλ(x)| ≤ 2 (indeed, |Fλ(x)| ≤ 1 + |Gλ(x)|; since FGλ(ξ) ≥ 0 for all ξ ∈ R, one
has |Gλ(x)| ≤ Gλ(0); finally, Gλ(0) = sinϑλ ≤ 1; see [13, Theorem 1.9(a)]). Clearly,∫ ∞

2
b

4λψ′(λ2)

ψ(λ2)
e−tψ(λ2)dλ =

∫ ∞
ψ(4/b2)

2e−ts

s
ds <∞.

Furthermore, λ2ψ′(λ2)/ψ(λ2) = 1/ψλ(λ2) ≤ 1/ψλ(0) = 1, and therefore∫ 2
b

0

(
4

π

(2λψ′(λ2))2

ψ(λ2)

∫ ∞
2
b

1

ψ(ξ2)− ψ(1/b2)
dξ

)
dλ

≤ 16

π

∫ 2
b

0

ψ′(λ2)dλ

∫ ∞
2
b

1

ψ(ξ2)− ψ(1/b2)
dξ <∞,

which completes the proof.

By Proposition 5.2, under appropriate assumptions, for n ≥ 0, t > 0 and x ∈ R \ {0},(
− d

dt

)n
P(t < τx <∞) =

2

π

∫ ∞
0

cosϑλe
−tψ(λ2)λψ′(λ2)(ψ(λ2))n−1Fλ(x)dλ.

Throughout this section we denote

In(t, x, a) =
2

π

∫ ∞
a

cosϑλe
−tψ(λ2)λψ′(λ2)(ψ(λ2))n−1Fλ(x)dλ,

Jn(t, x, a) =
2

π

∫ a

0

cosϑλe
−tψ(λ2)λψ′(λ2)(ψ(λ2))n−1Fλ(x)dλ.

(5.1)

In the remaining part of the article, γ(k; z) and Γ(k; z) denote the lower and the upper
incomplete gamma functions, respectively.

Lemma 5.3. If ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric Lévy process,
1/(1 + ψ(ξ2)) is integrable, (ψλ)λ(ξ) is well-defined and (ψλ)λ(ξ) and ξ/(ψλ)λ(ξ) are
increasing in ξ > 0 for all λ > 0, and the scaling-type condition (1.11) holds for some
α, β ∈ (1, 2] and all ξ > 0, then

|In(t, x, a)| ≤ 2
π t
−nΓ(n; (α− 1)βtψ(1/x2))

for all n ≥ 0, t, x > 0 and a ≥ (π − π
α )/x.

Proof. Fix t, x > 0 and let a0 = (π − π
α )/x and b0 = tψ(a2

0). Using |Fλ(x)| ≤ 2 (see the
proof of Proposition 5.2) and a substitution s = tψ(λ2), one finds that

|In(t, x, a)| ≤ 4

π

∫ ∞
a0

e−tψ(λ2)λψ′(λ2)(ψ(λ2))n−1dλ =
2

πtn

∫ ∞
b0

e−ssn−1ds =
2Γ(n; b0)

πtn
.

Furthermore, b0 = tψ(a2
0) ≥ tψ(1/x2) if α > π

π−1 , and b0 = tψ(a2
0) ≥ (π − π

α )βtψ(1/x2)

otherwise (by Lemma 2.2). In either case, b0 ≥ (α− 1)βtψ(1/x2).

Lemma 5.4. If ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric Lévy process,
(ψλ)λ(ξ) and ξ/(ψλ)λ(ξ) are increasing in ξ > 0 for all λ > 0, and the scaling-type
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condition (1.11) holds for some α, β ∈ (1, 2] and all ξ > 0, then there are constants
c1(α, β, n), c2(α, β, n) > 0 such that

c1(α, β, n)

tn+1xψ(1/x2)
√
ψ−1(1/t)

≤ Jn(t, x, (π − π
α )/x) ≤ c2(α, β, n)

tn+1xψ(1/x2)
√
ψ−1(1/t)

for n ≥ 0 and t, x > 0 such that tψ(1/x2) ≥ 1. Here

c1(α, β, n) =
(α− 1)2γ(n+ 1− 1

β ; (α− 1)β)

2π2
,

c2(α, β, n) =
40(γ(n+ 1− 1

α ; 1) + Γ(n+ 1− 1
β ; 1))

π2(α− 1)
.

(5.2)

As before, the scaling-type condition (1.11) implies that 1/(1 + ψ(ξ2)) is integrable
(by Lemma 2.2) and that (ψλ)λ(ξ) is well-defined.

Proof. Fix t, x > 0 and let a = (π − π
α )/x and b = tψ(a2). Denote J = Jn(t, x, a). Observe

that when λ < a, then λx < π − π
α and Lemma 4.4 applies. Hence,

J ≥ 2(α− 1)

π2

∫ a

0

cosϑλe
−tψ(λ2)λψ′(λ2)(ψ(λ2))n−1 λψ′(λ2)

xψ(1/x2)
dλ.

Using cosϑλ ≥ cos(πα−
π
2 ) ≥ (α−1), λ2ψ′(λ2) ≥ α

2ψ(λ2) (by Lemma 2.2) and a substitution
s = tψ(λ2),

J ≥ α(α− 1)2

π2xψ(1/x2)

∫ a

0

e−tψ(λ2)ψ′(λ2)(ψ(λ2))ndλ =
α(α− 1)2

π2tn+1xψ(1/x2)

∫ b

0

e−ssn

2
√
ψ−1(s/t)

ds.

By Lemma 2.2 and (2.6),

J ≥ α(α− 1)2

2π2tn+1xψ(1/x2)

∫ b

0

e−ssn√
max(s2/β , s2/α)ψ−1(1/t)

ds

≥
α(α− 1)2γ(n+ 1− 1

β ; min(b, 1))

2π2tn+1xψ(1/x2)
√
ψ−1(1/t)

.

Finally, as in the proof of Lemma 5.3, b ≥ (α− 1)βtψ(1/x2). This proves the desired lower
bound. The upper bound is shown in a similar manner,

J ≤ 80

π2(α− 1)

∫ a

0

cosϑλe
−tψ(λ2)λψ′(λ2)(ψ(λ2))n−1 λψ′(λ2)

xψ(1/x2)
dλ

≤ 40β

π2(α− 1)xψ(1/x2)

∫ a

0

e−tψ(λ2)ψ′(λ2)(ψ(λ2))ndλ

=
40β

π2(α− 1)tn+1xψ(1/x2)

∫ b

0

e−ssn

2
√
ψ−1(s/t)

ds

≤ 20β

π2(α− 1)tn+1xψ(1/x2)

∫ b

0

e−ssn√
min(s2/β , s2/α)ψ−1(1/t)

ds

≤
20β(γ(n+ 1− 1

α ; 1) + Γ(n+ 1− 1
β ; 1))

π2(α− 1)tn+1xψ(1/x2)
√
ψ−1(1/t)

.

As observed in the introduction, with the hypotheses of Theorems 1.1 and 1.3,
ψ(ξ) = Ψ(

√
ξ) is a complete Bernstein function (see [24]), and hence ψλ and (ψλ)λ are

complete Bernstein functions (see [13]). In particular, (ψλ)λ is well-defined and (ψλ)λ(ξ)
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and ξ/(ψλ)λ(ξ) are increasing in ξ > 0 for all λ > 0. Furthermore, if ψ is regularly
varying at zero or at infinity with index α

2 , then ψ′ is regularly varying at the same point
with index α

2 − 1. The scaling-type condition (1.3) implies the upper bound of (1.11), and
the lower bound is automatically satisfied with β = 2. Finally, Ψ−1(t) = (ψ−1(t))1/2, and
the relation between the derivatives of ψ and Ψ is given in (1.10).

Observe that the distributions of τx and τ−x are equal, and Fλ are even functions.
Hence, only x > 0 needs to be considered in the proofs of main theorems.

Proof of Theorem 1.1. Let β = 2. Choose c > 1 large enough, so that for s ≥ c,
2
π sΓ(n; (α− 1)βs) ≤ 1

2c1(α, β, n),

where c1(α, β, n) is defined in (5.2) in Lemma 5.4 (this is possible, because Γ(n; (α−1)βs)

decays exponentially fast with s at infinity). Fix t, x > 0 such that tψ(1/x2) ≥ c, and let
a = (π − π

α )/x. Observe that

x2ψ−1( 1
t ) =

ψ−1(1/t)

ψ−1(ψ(1/x2))
≤ ψ−1(1/t)

ψ−1(c/t)
≤ 1.

Hence, by Lemmas 5.3 and 5.4, if tψ(1/x2) ≥ c, then

tn|In(t, x, a)| ≤ 2
πΓ(n; (α− 1)βtψ(1/x2)) ≤ c1(α, β, n)

2tψ(1/x2)
,

tnJn(t, x, a) ≥ c1(α, β, n)

txψ(1/x2)
√
ψ−1(1/t)

≥ c1(α, β, n)

tψ(1/x2)
,

so that |In(t, x, a)| ≤ 1
2Jn(t, x, a). It follows that

1
2Jn(t, x, a) ≤

(
− d

dt

)n
P(t < τx <∞) ≤ 3

2Jn(t, x, a),

and the theorem follows now directly from Lemma 5.4, with C1(α, n) = 1
2c1(α, β, n),

C2(α, n) = 3
2c2(α, β, n) (see (5.2) in Lemma 5.4) and C3(α, n) = c.

Proof of Corollary 1.2. For brevity, denote the constants of Theorem 1.1 by Cj = Cj(α, 0)

for j = 1, 2, 3; recall that C3 ≥ 1. Suppose first that tψ(1/x2) ≥ C3. By (2.6),

txψ(1/x2)
√
ψ−1(1/t) = tψ(1/x2)

√
ψ−1(1/t)

ψ−1(ψ(1/x2))
≥ tψ(1/x2)

(tψ(1/x2))1/α
≥ C1−1/α

3 ≥ 1.

Hence, estimate (1.6) follows from (1.5) with arbitrary C̃1(α) ≤ C1 and C̃2(α) ≥ 2C2.
Consider now the case tψ(1/x2) ≤ C3. Again by (2.6),

txψ(1/x2)
√
ψ−1(1/t) ≤ tψ(1/x2)

√
ψ−1(C3/t)

ψ−1(ψ(1/x2))
≤ tψ(1/x2)

(tψ(1/x2)/C3)1/α
≤ C3.

Hence,

P(τx > t) ≤ 1 ≤ 2C3

1 + txψ(1/x2)
√
ψ−1(1/t)

.

Finally, by (1.5),

P(τx > t) ≥ P(τx > C3/ψ(1/x2)) ≥ C1

C3x
√
ψ−1(ψ(1/x2)/C3)

=
C1

C3

√
ψ−1(1/x2)

ψ−1(ψ(1/x2)/C3)
≥ C1

C3
≥ C1

C3

1

1 + txψ(1/x2)
√
ψ−1(1/t)

.

Therefore, (1.5) holds with arbitrary C̃1(α) ≤ C1/C3 and C̃2(α) ≥ 2C3.
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Remark 5.5. From the proof of Theorem 1.1 it follows that the constants in this result
are given by

C1(α, n) =
(α− 1)2γ(n+ 1

2 ; (α− 1)2)

4π2
,

C2(α, n) =
60(γ(n+ 1− 1

α ; 1) + Γ(n+ 1
2 ; 1))

π2(α− 1)
,

and C3(α, n) > 1 is large enough, so that for s ≥ C3(α, n),

2
π sΓ(n; (α− 1)2s) ≤ C1(α, n).

In a similar way, in Corollary 1.2,

C̃1(α) =
C1(α, 0)

C3(α, 0)
, C̃2(α) = 2C2(α, 0) + 2C3(α, 0).

Proof of Theorem 1.3. Part (a). As before, let β = 2. We claim that by the Dominated
Convergence Theorem,

lim
x→0+

(xψ(1/x2)Jn(t, x, 2
x ))

=
2

πΓ(γ)|cos γπ2 |

∫ ∞
0

(cosϑλ)2e−tψ(λ2)λ2(ψ′(λ2))2(ψ(λ2))n−1dλ

for all n ≥ 0 and t > 0. Indeed, the left-hand side is the limit of integrals (see (5.1)), with
integrands convergent pointwise to the integrand in the right-hand side by Lemma 4.5.
Furthermore, by Lemma 4.4, the integrands in the left-hand side are bounded by

80

π(α− 1)
cosϑλe

−tψ(λ2)λ2(ψ′(λ2))2(ψ(λ2))n−1,

which is easily shown to be integrable in λ ∈ (0,∞), because λ2ψ′(λ2) ≤ β
2ψ(λ2). The

claim is proved.
On the other hand, by Lemma 5.3, for x ∈ (0, 1),

xψ(1/x2)|In(t, x, 2
x )| ≤ 2xψ(1/x2)Γ(n; (α− 1)βtψ(1/x2))

πtn
≤ c(α, β, n, t)x.

Part (b). Again let β = 2. Fix x > 0 and a = 2
x . Observe that

tn+1
√
ψ−1(1/t)Jn(t, x, a)

=
4

π
tn+1

√
ψ−1(1/t)

∫ a

0

e−tψ(λ2)ψ′(λ2)(ψ(λ2))n
Fλ(x)

2λψ′(λ2) cosϑλ
(cosϑλ)2 λ

2ψ′(λ2)

ψ(λ2)
dλ

for all n ≥ 0 and t > 0. By Lemmas 4.6 and 3.2, and Karamata’s theorem [1, Theo-
rem 1.5.11],

lim
λ→0+

Fλ(x)

2λψ′(λ2) cosϑλ
= v(x), lim

λ→0+
ϑλ =

π

δ
− π

2
, lim

λ→0+

λ2ψ′(λ2)

ψ(λ2)
=
δ

2
.

We claim that

lim
t→∞

(
4

π
tn+1

√
ψ−1(1/t)e−tψ(λ2)ψ′(λ2)(ψ(λ2))n1(0,a)(λ)dλ

)
=

2Γ(n+ 1− 1
δ )

π
δ0(dλ),
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with the vague limit of measures in the left-hand side. Indeed, the density function
converges to 0 uniformly on [ε, a) for every ε > 0. Furthermore, by a substitution
s = tψ(λ2),

lim
t→∞

(
4

π
tn+1

√
ψ−1(1/t)

∫ a

0

e−tψ(λ2)ψ′(λ2)(ψ(λ2))ndλ

)
= lim
t→∞

(
2

π

∫ tψ(a2)

0

√
ψ−1(1/t)

ψ−1(s/t)
e−ssnds

)
=

2

π

∫ ∞
0

e−ssn−1/δds =
2Γ(n+ 1− 1

δ )

π
;

the second equality follows by the Dominated Convergence Theorem, because ψ−1 is
regularly varying at zero with index 2

δ , and ψ−1(1/t)/ψ−1(s/t) ≤ max(s−2/α, s−2/β) for
s, t > 0 by Lemma 2.2 and (2.6). The claim is proved.

It follows that

lim
t→∞

(
tn+1

√
ψ−1(1/t)Jn(t, x, a)

)
= 2

πΓ(n+ 1− 1
δ )v(x)(cos(πδ −

π
2 ))2 δ

2 .

Finally, by Lemma 5.3,

tn+1
√
ψ−1(1/t)|In(t, x, a)| ≤ 2

π t
√
ψ−1(1/t) Γ(n; (α− 1)βtψ(1/x2)),

and the right-hand side converges to 0 as t→∞.

Remark 5.6. From the proof Theorem 1.3 it follows that in part (a),

lim
x→0

(
|x|Ψ( 1

|x| )(−
d
dt )

nP(τx > t)
)

=
1

2πΓ(γ)|cos γπ2 |

∫ ∞
0

(cosϑλ)2e−tΨ(λ)(Ψ′(λ))2(Ψ(λ))n−1dλ,

with ϑλ given by (1.9). Also, in part (b),

lim
t→∞

(
tn+1Ψ−1( 1

t )(−
d
dt )

nP(τx > t)
)

=
δΓ(n+ 1− 1

δ )(sin π
δ )2

π
v(x),

for all n ≥ 0 and x ∈ R \ {0}, where v(x) is the compensated potential kernel of X.

Remark 5.7. The proofs clearly indicate that the hypotheses of Theorem 1.1 can be
slightly relaxed to the following: ψ(ξ2) is the Lévy–Khintchine exponent of a symmetric
Lévy process; 1/(1 + ψ(ξ2)) is integrable; (ψλ)λ(ξ) is well-defined and (ψλ)λ(ξ) and
ξ/(ψλ)λ(ξ) are increasing in ξ > 0 for all λ > 0; scaling-type condition (1.3) holds for
some α ∈ (1, 2] and all ξ > 0, and a similar upper bound ξΨ′′(ξ)/Ψ′(ξ) ≤ β − 1 holds
for some β ∈ (1, 2] and all ξ > 0 (the upper bound is now non-trivial also for β = 2).
Apparently, these conditions can be further weakened at the price of more technical
arguments. Since many important examples already belong to the class considered in
this article, we decided to focus on simplicity rather than complete generality.
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Abstract We prove the existence of boundary limits of ratios of positive harmonic functions
for a wide class of Markov processes with jumps and irregular (possibly disconnected)
domains of harmonicity, in the context of general metric measure spaces. As a corollary,
we prove the uniqueness of the Martin kernel at each boundary point, that is, we identify
the Martin boundary with the topological boundary. We also prove a Martin representation
theorem for harmonic functions. Examples covered by our results include: strictly stable
Lévy processes in Rd with positive continuous density of the Lévy measure; stable-like
processes in Rd and in domains; and stable-like subordinate diffusions in metric measure
spaces.

Keywords Markov process · Jump process · Killed process · Boundary Harnack
inequality · Boundary limit · Martin kernel · Martin boundary · Martin representation
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1 Introduction

The purpose of this article is to study boundary limits of ratios of positive functions which
are harmonic in an arbitrary open set with respect to a Markov process with jumps. The
proof of our main result, Theorem 2, relies on the boundary Harnack inequality for Markov
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processes with jumps, proved recently in [12], and the oscillation reduction argument,
developed in [6] and [11]. As an application, we obtain Martin representation of harmonic
functions in Theorem 3.

To explain the motivation for our research, we begin with a discussion of the classical
case, where harmonicity has its usual meaning: f is harmonic in an open set D if Δf = 0
in D. The boundary Harnack inequality is a statement about positive harmonic functions in
an open set, which are equal to zero on a part of the boundary. The result states that if D is
regular enough (for example, a Lipschitz domain), x0 is a boundary point of D, f and g are
positive and harmonic in D ∩ B(x0, R), and both f and g converge to 0 on ∂D ∩ B(x0, R),
then for every r ∈ (0, R) the ratio f/g has bounded relative oscillation in D ∩ B(x0, r):

sup
x∈D∩B(x0,r)

f (x)

g(x)
≤ c inf

x∈D∩B(x0,r)

f (x)

g(x)
. (1)

Here c = c(D, x0, r, R)−1 is a constant that depends only on the local geometric properties
of D near x0, and B(x0, r) denotes the ball of radius r , centred at x0. The boundary Harnack
inequality was first proved independently by A. Ancona ([5]), B. Dahlberg ([17]) and J.-
M. Wu ([35]) for Lipschitz domains, and then extended by numerous authors to a wider
class of domains and elliptic operators. We refer to [1–4, 31] for further discussion and
references.

Under appropriate assumptions on the regularity of D, the estimate (1) turns out to be
self-improving as r → 0+, in the sense that the constant c in Eq. 1 converges to 1 as
r → 0+. Equivalently, the boundary limit

lim
x→x0
x∈D

f (x)

g(x)
(2)

exists. When D is a Lipschitz domain, then in fact c(D, x0, r, R) is of order rβ as r → 0+
for some β > 0, which means that f/g extends to a Hölder continuous function at x0.

A closely related concept of Martin representation of positive harmonic functions was
introduced by R. S. Martin in his beautiful article [32], more than three decades before
the boundary Harnack inequality became available. Given the existence of limits (2) (for
example, if D is a Lipschitz domain), Martin’s result asserts that there is a one-to-one cor-
respondence between positive harmonic functions f in D and finite positive measures μ on
the boundary of D. The two objects are linked by the formula

f (x) =
∫

∂D

MD(x, z)μ(dz),

where the Martin kernel is defined as the boundary limit of the ratio of Green functions:

MD(x, z) = lim
y→z
x∈D

GD(x, y)

GD(x̃, y)
. (3)

Here x̃ ∈ D is an arbitrarily fixed reference point.
One of numerous equivalent definitions of harmonicity links harmonic functions with

the Brownian motion: f is harmonic in D if and only if f has the mean-value property with
respect to the distributions of the Brownian motion Xt at first exit times:

f (x) = Exf (X(τU )) (4)
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for all bounded open sets U such that the closure of U is contained in D. Here Ex denotes
the expectation (and Px will denote the probability) corresponding to the Brownian motion
process Xt that starts at x, and τU is the time of first exit from U :

τU = inf{t ≥ 0 : Xt /∈ U}.
This probabilistic definition has a number of advantages: it extends immediately to general
Markov processes Xt , and it captures easily boundary conditions imposed on harmonic
functions. More precisely, in the general statement of the boundary Harnack inequality one
requires that positive harmonic functions f and g converge to zero at each boundary point in
∂D∩B(x0, R) that is regular for the Dirichlet problem. This condition translates to requiring
that Eq. 4 holds for all bounded open sets U such that U ⊆ D ∪ (∂D ∩ B(x0, R)), with no
reference to the notion of regular boundary points. Here we understand that f = g = 0 in
∂D ∩ B(x0, R).

In this article we are interested in Markov processes with jumps, and from now on by
saying that a function is harmonic we understand that it has the mean-value property (4)
with respect to a Markov process Xt with jumps. In this case in order to evaluate f (X(τU ))

in Eq. 4 the function f needs to be defined everywhere, not just in D. For this reason one
needs to replace the boundary condition f = g = 0 in ∂D ∩ B(x0, R) in the statement of
the boundary Harnack inequality with the exterior condition f = g = 0 in Dc ∩ B(x0, R).

The history of the boundary Harnack inequality for Markov processes with jumps starts
with the article by K. Bogdan ([6]), where he proved the result for the isotropic stable
Lévy process (equivalently: for the fractional Laplace operator −(−Δ)α/2) and Lipschitz
domains. Later this was extended to more general sets ([11, 34]) and processes ([8, 13, 21–
26]). Recently, a rather general result for Markov processes with jumps was proved in [12],
and this is our starting point in the study of boundary limits (2).

The existence of the boundary limit (2) in this context was first proved independently
by K. Bogdan ([7]) and by Z.-Q. Chen and R. Song ([14]) for the isotropic stable Lévy
process and Lipschitz domains. This required an appropriate modification of the classical
reasoning due to the presence of jumps. Since then essentially every time the boundary
Harnack inequality was established for a given Markov process with jumps in a given class
of domains, the existence of boundary limits (2) followed; see [27] for the most recent result
of this kind. With two exceptions, however, the class of open sets under consideration was
always limited to certain disconnected analogues of non-tangentially accessible domains,
typically called fat sets. The first more general result is proved in [11] for the isotropic
stable Lévy process, where completely arbitrary open sets are allowed. An extension to
more general Markov processes with jumps, which in fact further extends the results of the
present article, was obtained independently by P. Kim, R. Song and Z. Vondraček ([28–30])
soon after the present article has been submitted.

For the existence of boundary limits, we follow the approach of [11] using the boundary
Harnack inequality of [12], and prove in our main results, Theorems 2 and 3, the exis-
tence of boundary limits of ratios of harmonic functions for arbitrary open sets and rather
general Markov processes with jumps, as well as Martin representation of such functions.
The application of the method developed in [11] in the present setting requires significant
modifications. Further changes are introduced in order to make the description of the proof
more accessible; for example, we first give a simpler argument which does not assert uni-
form convergence with respect to the domain of harmonicity, and only then explain how one
improves it to get a domain-uniform version.

The proof of the Martin representation theorem for the isotropic stable Lévy processes
in [11] is self-contained. It is possible to extend the method of [11] to our general setting, but
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that would require rather lengthy and technical arguments. For this reason, unlike in [11],
we refer to the general theory of Martin boundary. Our argument still requires extension of
some elements of [11] for more general Markov processes, but the most involved part of the
proof is avoided. For an excellent exposition of the general theory of Martin boundary, we
refer to Chapter 14 of [16].

We conclude the introduction with a description of the structure of this article. The
assumptions for the boundary Harnack inequality of [12] are briefly recalled in Section 2.
We omit a detailed discussion of these conditions and refer the interested reader to the origi-
nal paper. Instead, we present a number of examples right after the statement of Theorems 2
and 3 in Section 3. We also provide a counter-example, which shows that the boundary
limits (2) typically fail to exist in irregular domains when the process Xt has a non-trivial
diffusion part. Finally, in Section 4 we prove Theorems 2 and 3.

2 Fundamental Assumptions for the Boundary Harnack Inequality

The formal statement of the assumptions for Theorem 2 requires some effort. We assume
that (X, d,m) is a locally compact metric measure space in which all bounded closed sets
are compact and m has full support, and that R0 > 0 (possibly R0 = ∞) is a localisation
radius such that X \ B(x, r) 
= ∅ if x ∈ X and 0 < r < 2R0.

In [12] the following four conditions are introduced. A detailed discussion of these
assumptions is beyond the scope of the present article, we refer the reader to [12] for more
information. Here we only state the conditions, without explaining in a formal way the
notions of semi-polar and polar sets, processes in duality Xt and X̂t , their generators A
and Â, densities ν(x, y) and ν̂(x, y) (with respect to the measure m) of the Lévy kernels of
Xt and X̂t , as well as their Green functions GD(x, y) = ĜD(y, x). We note that ν(x, y)

describes the intensity of jumps from x to y and it is commonly used throughout the article.
The Green function GD(x, y) is required for Theorem 3 only; informally, GD(x, y) is the
average amount of time spent near y by the process Xt , started at x, until τD .

Assumption 1 The Hunt processes Xt and X̂t are dual with respect to the measure m. The
transition semigroups of Xt and X̂t are both Feller and strong Feller. Every semi-polar set
of Xt is polar.

Assumption 2 There is a linear subspace D of D(A) ∩ D(Â) satisfying the following
condition. If K is compact, D is open, and K ⊆ D ⊆ X, then there is f ∈ D such that
f (x) = 1 for x ∈ K , f (x) = 0 for x ∈ X \ D, 0 ≤ f (x) ≤ 1 for x ∈ X, and the boundary
of the set {x : f (x) > 0} has measure m zero.

Assumption 3 We have ν(x, y) = ν̂(y, x) > 0 for all x, y ∈ X, x 
= y. If x0 ∈ X,
0 < r < R < R0, x ∈ B(x0, r) and y ∈ X \ B(x0, R), then

C−1
Lévyν(x0, y) ≤ ν(x, y) ≤ CLévyν(x0, y), C−1

Lévyν̂(x0, y) ≤ ν̂(x, y) ≤ CLévyν̂(x0, y), (5)

with CLévy = CLévy(x0, r, R).

Assumption 4 If x0 ∈ X, 0 < r < s < R < R0 and B = B(x0, R), then

CGreen = CGreen(x0, r, s, R) = sup
x∈B(x0,r)

sup
y∈X\B(x0,s)

max(GB(x, y), ĜB(x, y)) < ∞. (6)
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We denote

ρ(K,D) = inf
f

sup
x∈X

max(Af (x), Âf (x)), (7)

where the infimum is taken over all functions f described by the Assumption 2. If x0 ∈ X

and 0 < r < R < R0, then we denote

CLévy-inf(x0, r, R) = inf
y∈B(x0,R)\B(x0,r)

min(ν(x0, y), ν̂(x0, y)),

and

Cexit(x0, r) = sup
x∈B(x0,r)

max(ExτB(x0,r), Êx τ̂B(x0,r)).

Note that by Proposition 2.1 in [12], under Assumptions 1 through 3, Cexit(x0, r) is finite.
Following [6], we say that f is a regular harmonic function in an open set D if the mean-

value property (4) holds with U = D. By the strong Markov property, this implies that Eq. 4
holds for arbitrary open U ⊆ D, so in particular f is harmonic in D.

We use the short-hand notation f ≈ cg for the two inequalities c−1g ≤ f ≤ cg, where
c > 0 is a positive constant. The following theorem is a reformulation of the main result
of [12].

Theorem 1 (Lemma 3.2 and Theorems 3.4 and 3.5 in [12]) Suppose that x0 ∈ X, 0 <

r1 < r2 < r3 < r6 < R0 and a non-negative function f is a regular harmonic function in
D ∩ B(x0, r6), which is equal to zero in B(x0, r6) \ D. Then

f (x) ≈ CBHIExτD∩B(x0,r2)

∫
X\B(x0,r3)

f (y)ν(x0, y)m(dy)

for x ∈ D ∩ B(x0, r1), where CBHI = CBHI(x0, r1, r2, r3, r6) is defined as

CBHI = CLévy(x0, r2, r3) + 2ρ(B(x0, r3) \ B(x0, r2), B(x0, r8) \ B(x0, r1))

×
(

CGreen(x0, r3, r4, r6) + Cexit(x0, r6)(CLévy(x0, r4, r5))
2

m(B(x0, r4))

)

×
(

ρ(B(x0, r5), B(x0, r6))

CLévy-inf(x0, r5, r7)
+ CLévy(x0, r6, r7)m(B(x0, r6))

)

for some r4, r5, r7, r8 such that 0 < r1 < r2 < r3 < r4 < r5 < r6 < r7 < r8.

Note that it is important that f is non-negative everywhere, not just in D. Theorem 1
implies the more classical statement of the boundary Harnack inequality (Theorem 3.5
in [12]): if f and g satisfy the assumptions of Theorem 1, then

sup
x∈D∩B(x0,r1)

f (x)

g(x)
≤ C4

BHI inf
x∈D∩B(x0,r1)

f (x)

g(x)
, (8)

as in Eq. 1. We remark that although the original statement allows for an arbitrary sequence
of radii, it will be sufficient for us to consider r1 = r , r2 = 2r , r3 = 3r and r6 = 4r , and
we will commonly write CBHI = CBHI(x0, r) = CBHI(x0, r, 2r, 3r, 4r) in this case.
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3 Main Results and Examples

For the existence of limits, we introduce one more definition. If x0 ∈ X and 0 < r < R <

R0, we let

CLévy-int = CLévy-int(x0, r, R) =
∫
X\B(x0,r)

ν(x0, y)m(dy)∫
X\B(x0,R)

ν(x0, y)m(dy)
. (9)

Theorem 2 Let D ⊆ X be open, x0 ∈ ∂D and R > 0. Suppose that:

(i) Xt satisfies Assumptions 1 through 4;
(ii) lim

r→0+ CLévy(x0, r, R) = 1;

(iii) the constant CLévy(x0, r, 2r) is bounded in r , 0 < 2r < R0;
(iv) the constant CLévy-int(x0, r, 2r) is bounded in r , 0 < 2r < R0;
(v) the constant CBHI(x0, r, 2r, 3r, 4r) is bounded in r , 0 < 4r < R0.

Suppose furthermore that non-negative functions f and g are regular harmonic functions
in D ∩ B(x0, R) and are equal to zero in B(x0, R) \ D. Then either one of f and g is
zero everywhere in D, or the finite, positive boundary limit of f (x)/g(x) exists as x → x0,
x ∈ D. Furthermore,

lim
x→x0
x∈D

f (x)

g(x)
= lim

r→0+

∫
X\B(x0,r)

ν(x0, y)f (y)m(dy)∫
X\B(x0,r)

ν(x0, y)g(y)m(dy)
. (10)

Remark 1 Condition (ii) is required only for inaccessible boundary points x0, characterised
by the property

∫
D∩B(x0,R)

EyτD∩B(x0,R)m(dy) < ∞. The result for accessible boundary
points x0, for which the integral is infinite, holds under conditions (i) and (iii) through (v).

Remark 2 Theorem 2 also holds with g(x) = ExτD∩B(x0,R). This is formally shown in
Section 4.4, but the informal explanation is rather straightforward: g is essentially a regular
harmonic function in D ∩ B(x0, R) (in sharp contrast with the case of continuous Markov
processes).

Indeed, suppose that X is unbounded, D is a bounded open set and that CLévy(x0, r, R)

converges to 1 as R → ∞. By Dynkin’s formula (see Lemma 2 and estimate (14) below),

ExτD = lim
R→∞

Px(X(τD) ∈ X \ B(x0, R))∫
X\B(x0,R)

ν(x0, y)m(dy)

is the limit of regular harmonic functions in D. Since the estimates in Theorem 2 are uniform
in f and g, we obtain the desired result. (Note that the formal argument is completely
different and requires no further assumptions on X and Xt .)

Remark 3 As remarked in the introduction, the limit in Eq. 10 exists if and only if the
relative oscillation of f and g converges to one, that is,

lim
r→0+

supx∈D∩B(x0,r)
(f (x)/g(x))

infx∈D∩B(x0,r)(f (x)/g(x))
= 1.

By inspecting the proof of Theorem 2, one immediately sees that, given D and x0, the
boundary limits exist uniformly in f and g, in the sense that

lim
r→0+ sup

f,g

supx∈D∩B(x0,r)
(f (x)/g(x))

infx∈D∩B(x0,r)(f (x)/g(x))
= 1,
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with the supremum taken over all f and g satisfying the assumptions of the theorem. We
remark that in fact one can prove uniformity also in D, just as in [11], by appropriately
modifying the final part of the proof. More formally,

lim
r→0+ sup

D,f,g

supx∈D∩B(x0,r)
(f (x)/g(x))

infx∈D∩B(x0,r)(f (x)/g(x))
= 1, (11)

where the supremum is taken over all open sets D and f and g satisfying the assumptions
of the theorem (here we let the ratio sup / inf be equal to 1 if D ∩ B(x0, r) is empty). The
proof of this result is sketched in Section 4.4.

Remark 4 It is not necessary to assume that x0 ∈ ∂D in Theorem 2. For x0 /∈ D the state-
ment is void, but for x0 ∈ D we obtain relative continuity of positive harmonic functions: if
f and g are positive harmonic functions in D, then f/g is continuous in D. By Remark 3,
the family of functions f/g is in fact relatively equicontinuous at x0, in the sense that the
functions log(f/g) are equicontinuous at x0.

If the process is conservative, then the constant g(x) = 1 is harmonic. In the general case,
Px(X(τD) = ∂) is continuous (this is proved as in [15]; with the notation of that article,
Px(X(τD) = ∂) = Px(TX\D = ∞)), and so the harmonic function g(x) = Px(X(τD) ∈
X) = 1 − Px(X(τD) = ∂) is positive, continuous and harmonic in D.

Consequently, positive harmonic functions are relatively equicontinuous at x0. If in addi-
tion the characteristics of the process (that is, the constants in conditions (ii) through (v))
do not depend on x0, then positive functions harmonic in D are in fact uniformly relatively
equicontinuous in every compact subset of D.

Before we discuss examples, we provide one application. Recall that the Green function
GD(x, y) is the density of the mean occupation measure of Xt up to τD , that is,∫

A

GD(x, y)m(dy) = Ex

∫ τD

0
1A(Xs)ds.

Under Assumptions 1 and 4, there is a version of GD(x, y) which is a harmonic function
of x ∈ D \ {y}, and a co-harmonic (that is, harmonic for the dual process) function of y ∈
D \{x}. Hence, Theorem 2 (or, more precisely, its version for the dual process) immediately
implies the existence of the Martin kernel

MD(x, z) = lim
y→z
x∈D

GD(x, y)

GD(x̃, y)
.

for z = x0 (this is exactly the same as the classical definition (3)). Informally, the Martin
boundary ∂MD of a set D is the set of all possible ways a point y ∈ D approaches the
boundary in such a way that the ratio GD(x, y)/GD(x̃, y) converges for every x ∈ D

(with arbitrarily fixed x̃ ∈ D). More formally, D ∪ ∂MD is the Constantinescu–Cornea
compactification of D with respect to the family of functions {GD(x, ·)/GD(x̃, ·) : x ∈ D}:
the smallest compact space which contains D and on which these functions have continuous
extensions.

Theorem 3 Let D ⊆ X be bounded and open, and if X is compact, then assume in addition
that ExτD and Êx τ̂D are finite and bounded in x ∈ D. Suppose that the assumptions of
Theorem 2 are satisfied uniformly for all x0 ∈ D. Then the following assertions hold.

(a) The Martin boundary ∂MD coincides with the topological boundary ∂D.
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(b) The Martin kernel MD(x, z) is a harmonic function in D with respect to x if and only
if z is an accessible boundary point:

∫
D∩B(x0,R)

EyτD∩B(x0,R)m(dy) = ∞.
(c) If z is an accessible boundary point, then MD(x, z) is a minimal harmonic function: if

f is a harmonic function in D and 0 ≤ f (x) ≤ MD(x, z) for all x ∈ X, then f (x) is
a multiple of MD(x, z).

(d) Every non-negative function f which is a harmonic function in D has a unique
representation

f (x) =
∫
X\(D∪∂mD)

(∫
D

GD(x, y)ν(y, z)m(dy)

)
f (z)m(dz)

+
∫

∂mD

MD(x, z)μ(dz), (12)

where μ is a measure on ∂mD, the set of accessible boundary points of D.
(e) Conversely, given any non-negative function f and any measure μ on ∂mD, the right-

hand side of Eq. 12 is either a harmonic function in D or infinity everywhere in D.

Remark 5 The terms accessible and inaccessible correspond to the probabilistic theory of
Martin boundary. To be specific, the process Xt killed at the time of first exit from D and
conditioned in the sense of Doob by the Martin kernel MD(·, z) converges at its lifetime to
z when z is accessible, and dies out in D when z is inaccessible. We refer to [16] for more
information.

Remark 6 Unlike in the case of isotropic stable Lévy processes in [11], description of the
infinite part of the Martin boundary of D for unbounded open sets is a completely different
problem. This issue is addressed in a recent work of P. Kim, R. Song and Z. Vondraček ([28,
30]).

Remark 7 In order to apply the results of [16] about general theory of Martin representation,
one requires the dual of the Green operator ĜD to map bounded functions into bounded
continuous ones (a strong Feller property for the Green operator, Hypothesis 13.42 in [16]).
In particular, Êx τ̂D = ĜD1(x) needs to be bounded in D. If X is unbounded, then Êx τ̂D

is bounded (this follows, for example, by the argument used in the proof of Proposition 2.1
in [12]). If, however, X is bounded (and hence compact), then one needs to assume bounded-
ness of Êx τ̂D explicitly (indeed, when Xt is conservative and D = X, then clearly τ̂D = ∞
with probability one).

Boundedness of ExτD is assumed in order to keep perfect symmetry between Xt and X̂t

(which makes the proof easier to follow). Note, however, that this is a rather mild assump-
tion. Indeed, it is rather easy to see that if X is compact and X \ D is not a polar set, then
there is ε > 0 such that Px(τD < 1) > ε and P̂x(τ̂D < 1) > ε for all x ∈ X, and therefore
ExτD and Êx τ̂D are bounded.

The boundary Harnack inequality stated in Theorem 1 was applied to a variety of Markov
processes in Section 5 of [12]. The scale-invariant version of Theorem 1 under α-stable-like
scaling discussed therein already asserts conditions (i), (iii) and (v) in Theorem 2. Verifi-
cation of the remaining conditions (ii) and (iv) is typically straightforward, and we obtain
several classes of processes for which Theorems 2 and 3 apply.

In our first example, we use the result of Example 5.5 in [12], where the boundary Har-
nack inequality for Lévy processes is considered. In the asymmetric case, equality of the
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notions of semi-polar and polar sets (in Assumption 1) is not trivial, and this was appar-
ently overlooked in [12]. Fortunately, for all asymmetric Lévy processes listed therein, this
condition is satisfied by Theorem 2 in [33].

Example 1 (Strictly stable Lévy processes) Let m be the Lebesgue measure in Rd , R0 = ∞.
Suppose that Xt is a strictly α-stable Lévy process in Rd , where d ≥ 1 and 0 < α < 2.
Suppose, furthermore, that the Lévy measure of Xt has a density function of the form ν(z) =
ϕ(z/|z|)|z|−d−α , with ϕ continuous and positive on the unit sphere (for Lévy processes,
ν(x, y) = ν(y −x)). It is easy to see that CLévy(x0, r, R) converges to 1 as r → 0+ and that
CLévy-int(x0, r, R) = (R/r)α . By Example 5.5 in [12], Xt satisfies the other assumptions of
Theorem 2, and so we may use Theorems 2 and 3.

We remark that the above example can be extended to more general Lévy processes,
including many subordinate Brownian motions and, more generally, unimodal isotropic
Lévy processes. This is based on estimates obtained recently in [9, 10, 18, 20] and will be
studied in detail in [19]. Other extensions can be obtained by allowing the Lévy kernel to
depend on x or restricting it to a domain, as described in the following two examples.

Example 2 (Stable-like processes) Let m be the Lebesgue measure in Rd , R0 = ∞.
Suppose that 0 < α < 2 and

ν(x, y) = ϕ(x, y)|x − y|−d−α,

where ϕ is symmetric (that is, ϕ(x, y) = ϕ(y, x)), bounded by positive constants, smooth,
and has bounded partial derivatives of all orders. As in Example 5.6 in [12], in this case
there is a pure-jump process Xt with the Lévy kernel ν(x, y)m(dy), and the assumptions of
Theorem 2 are satisfied.

Example 3 (Reflected stable processes) Let 0 < α < 2. Let X be the closure of either a
Lipschitz domain in Rd if α < 1 or a C1,α+ε domain in Rd if α ≥ 1 (with some ε > 0). Let
m be the Lebesgue measure on X, and ν(x, y) = c|x − y|−d−α for some c > 0. Again as in
Example 5.6 in [12], there is a pure-jump process Xt with the Lévy kernel ν(x, y)m(dy),
and the assumptions of Theorem 2 are satisfied for some R0 > 0.

The state space X need not be Euclidean.

Example 4 (Stable-like subordinate diffusions) Let X be a sufficiently regular metric mea-
sure space in which there exists a diffusion process. For a rigorous definition, we refer to
Example 5.7 in [12]; examples include Riemannian manifolds, Sierpiński gaskets or the
Sierpiński carpet. Suppose that 0 < α < dw, where dw is the walk dimension of X (that
is, an approximate scaling exponent for the diffusion process). Finally, let Xt be a process
subordinate to the diffusion process, corresponding to the (α/dw)-stable subordinator. In
Example 5.7 in [12] it is shown that Xt satisfies conditions (i), (iii) and (v) of Theorem 2,
and one easily proves that CLévy-int(x0, r, R) ≤ c(R/r)α for some c > 0. Verification of (ii)
requires some work, especially when X is unbounded. For this reason, we only sketch the
argument for compact X. For some c > 0 we have

ν(x, y) = c

∫ ∞

0
t−1−α/dwqt (x, y)dt,
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where qt (x, y) is the transition density of the diffusion process. Since for each t > 0, qt

is Hölder continuous, it is easy to see that ν(x, y) is positive and uniformly continuous
in x ∈ B(x0, r), y ∈ X \ B(x0, R), which clearly implies condition (ii). It follows that
Theorems 2 and 3 apply to stable-like subordinate diffusions in compact metric measure
spaces.

Surprisingly, Theorem 2 is not influenced by killing.

Example 5 (Processes with a multiplicative functional) Let Mt be a strong continuous mul-
tiplicative functional such that M0 = 1 with probability one for all starting points x ∈ X.
Such a functional describes gradual killing of the process Xt , and is typically obtained as
the Feynman–Kac functional Mt = exp(−∫ t

0 V (Xs)ds) for some non-negative function V .
A function f is said to be harmonic with respect to the pair (Xt , Mt ) if it has the mean-value
property

f (x) = Ex(f (X(τU ))M(τU ))

instead of Eq. 4. As in Theorem 5.10 in [12], if the assumptions of Theorem 2 are satisfied
by the process Xt , then the conclusion also holds for functions harmonic with respect to the
pair (Xt ,Mt ).

Our final example shows that when Xt has non-vanishing diffusion part, one cannot
expect the existence of boundary limits (2) unless some geometric restrictions on D are
imposed. For corresponding positive results in smooth domains, see [24].

Example 6 (Mixture of Brownian motion and stable process) Let X = R and let m be the
Lebesgue measure. Let Xt be a one-dimensional Lévy process which is the sum of two
independent Lévy processes: the Brownian motion and the symmetric α-stable Lévy process
for some α ∈ (1, 2). That is, the characteristic exponent of Xt is given by c1ξ

2 + c2|ξ |α for
some c1, c2 > 0. Denote D = (−1, 1) \ {0}. Let pt (y − x) be the continuous version of the
transition density of Xt . Then the three functions

u(x) = x, v(x) =
∫ ∞

0
(pt (0) − pt (x))dt, w(x) = Ex |X(τD)|

are regular harmonic in D: for u this is just the martingale property of Xt , for v (the com-
pensated potential kernel of Xt ) this is proved, for example, in [36], while for w it follows
directly from the definition. Furthermore, u(0) = v(0) = w(0) = 0 and v(x) = v(−x),
w(x) = w(−x). It is known that

v(x) ≈ c3 min(|x|, |x|α−1)

for x ∈ R, with c3 = c3(c1, c2, α) (see, for example, Lemma 2.14 in [20]). In particular,
v(x) ≈ c3|x| for x ∈ D. Finally, by the boundary Harnack inequality given in Theorem 1
(see Examples 5.5 and 5.13 in [12] for a detailed discussion), we have

w(x) ≈ c4v(x) ≈ c3c4|x|
for x ∈

(
− 1

2 , 1
2

)
, with c4 = c4(c1, c2, α). Let us define

f (x) = w(x) + u(x) = 2Ex(|X(τD)|1[1,∞)(X(τD))),

g(x) = w(x) − u(x) = 2Ex(|X(τD)|1(−∞,−1](X(τD))).



Martin Kernels for Markov Processes with Jumps 323

Then f and g are non-negative, regular harmonic in D and equal to zero in (−1, 1) \ D =
{0}, so that they satisfy the assumptions of Theorem 2. On the other hand,

f (x)

g(x)
− f (−x)

g(−x)
= w(x) + x

w(x) − x
− w(x) − x

w(x) + x
= 4xw(x)

(w(x))2 − x2

for x ∈ D. Since t/(t2 − x2) is decreasing in t ∈ (x,∞), and w(x) ≤ c3c4x for x ∈ (0, 1
2 ),

we obtain
f (x)

g(x)
− f (−x)

g(−x)
≥ 4c3c4

(c3c4)2 − 1

for x ∈
(

0, 1
2

)
. In particular, the limit of f (x)/g(x) as x → 0 does not exist.

4 Proofs of Main Results

In this section we prove Theorem 2. We will always assume that x0, R and D are fixed,
where x0 ∈ X, 0 < 2R < R0 and D ⊆ B(x0, R) is an open set. It is also understood that
x0 ∈ ∂D, although, at least formally, the argument extends also to x0 ∈ D and x0 /∈ D.
Recall that the notation f ≈ cg stands for c−1g ≤ f ≤ cg with c > 0.

We denote Br = B(x0, r), Br,s = Bs \ Br , Dr = D ∩ Br and Dr,s = Ds \ Dr when
0 ≤ r ≤ s ≤ R. We furthermore define Dr,∞ = Dr,R ∪ (X \ BR). For a non-negative
function f we let

Mr,∞(f ) =
∫
X\Br

f (y)ν(x0, y)m(dy),Mr,s(f ) =
∫

Br,s

f (y)ν(x0, y)m(dy).

Finally, we let sD(x) = ExτD .
To simplify the notation, we drop D from the notation in subscripts whenever possible,

and we write τr = τDr , τr,s = τDr,s , sr (x) = sDr (x), 1r,s(x) = 1Dr,s (x) etc.
Our argument is based on the boundary Harnack inequality of [12], stated in Theorem 1.

Under the assumptions of Theorem 2, the constant CBHI(x0, r, 2r, 3r, 4r) can be chosen so
that it does not depend on r , as long as 0 < 4r ≤ R, and it will be denoted simply by
CBHI (recall that x0 and R are fixed). In a similar way, we denote CLévy = CLévy(x0, r, 2r)

(with 0 < 2r < R0) and CLévy-int = CLévy-int(x0, r, 2r) (with 0 < 2r < R0), chosen
independently of r . With one exception, we will only use constants CBHI, CLévy and CLévy-int
with these parameters.

We prove Theorem 2 by considering separately two types of boundary points, which
are called accessible and inaccessible in [11]. First, however, we introduce some further
notation and prove preliminary estimates.

4.1 Decomposition of Harmonic Functions

From now on f and g are functions satisfying the assumptions of Theorem 2, and we assume
that neither f nor g is equal to zero almost everywhere. Note that this implies that f and g

are strictly positive in D. Whenever 0 < r < s ≤ R, we decompose f into the sum of two
functions, fr,s and f̃r,s , which correspond to the process Xt exiting Dr near its boundary
(into Dr,s) and away of its boundary (into Ds,∞):

fr,s(x) = Ex((f 1r,s)(X(τr ))), f̃r,s(x) = Ex((f 1s,∞)(X(τr ))).
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Not unexpectedly, a similar notation is used for the function g. Clearly, f = fr,s + f̃r,s , and
both fr,s and f̃r,s are non-negative regular harmonic functions in Dr which are equal to zero
in Br \Dr . Therefore, we can apply Theorem 1 to f4r,s and f̃4r,s whenever 0 < 4r < s ≤ R.

Note that by Theorem 1
(
with r = R

4

)
, we have

f (x) ≈ CBHIM3R/4,∞(f )Exτ2R/4

for x ∈ DR/4. Therefore,

Mr,s(f ) ≈ CBHIM3R/4,∞(f )Mr,s(sR/2) (13)

whenever 0 ≤ r ≤ s ≤ R
4 . The next result states, in particular, that there is little difference

whether we write sR/2 or sR in the above estimate.

Lemma 1 If 0 < 8r ≤ R, then

Exτ4r ≤ Exτ8r ≤ (1 + CBHICLévyC
3
Lévy-int)Exτ4r

for x ∈ Dr .

Proof The first inequality is clear. For the other one, we use the strong Markov property
and Theorem 1:

Exτ8r − Exτ4r = Exs8r (X(τ4r ))

≤ CBHIExτ2r

∫
X\B3r

Eys8r (X(τ4r ))ν(x0, y)m(dy)

≤ CBHIExτ4r

∫
X\B2r

Eyτ8rν(x0, y)m(dy).

Furthermore, by Proposition 2.1 in [12] (combined with the last displayed formula in the
proof of this result),

∫
X\B2r

Eyτ8rν(x0, y)m(dy) ≤
(

sup
x∈X

ExτB8r

)∫
X\B2r

ν(x0, y)m(dy)

≤ CLévy

∫
X\B2r

ν(x0, y)m(dy)∫
X\B16r

ν(x0, y)m(dy)
.

It remains to use (9).

For convenience, we denote

Cτ = 1 + CBHICLévyC
3
Lévy-int,

so that s4r (x) ≈ Cτ s8r (x) if 0 < 8r ≤ R and x ∈ Dr .
Our next result compares f8r,s with f̃8r,s . For f8r,s , we will use Theorem 1, which states

that in D2r we have f8r,s ≈ CBHIM6r,∞(f8r,s)Exτ4r . The same estimate can be writ-
ten down for f̃8r,s . However, M6r,∞(f̃8r,s) involves an integral of f̃8r,s over D6r,8r , which
is often problematic. A much better estimate for f̃8r,s can be easily obtained from the
following corollary of Dynkin’s formula for Xt .
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Lemma 2 (formula (2.12) in [12]) Let D ⊆ X be open and bounded, and let f be a
non-negative function equal to zero in D. Then

Exf (X(τD)) = Ex

∫ τD

0

∫
X\D

ν(Xt , y)f (y)m(dy)dt (14)

for x ∈ D.

Using the definition of f̃8r,s and Eq. 5 to substitute ν(x0, y) for ν(Xt , y) in Eq. 14, we
have

f̃8r,s(x) ≈ CLévy(x0, 8r, s)Ms,∞(f )Exτ8r . (15)

Note that not only we have Ms,∞(f ) instead of M6r,∞(f̃8r,s), but also the constant
CLévy(x0, 8r, s) tends to 1 as r → 0+.

Lemma 3 If 0 < 8r ≤ s ≤ R
4 , then

f8r,s(x)

f̃8r,s(x)
≤ C4

BHI
M6r,s(sR/2)

1 + Ms,R/4(sR/2)

for x ∈ D2r . If 0 < 16r ≤ s ≤ R
24 , then

f8r,s(x)

f̃8r,s(x)
≥ C−3

BHIC
−1
LévyC

−3
τ

M8r,s(sR/2)

1 + Ms,R/4(sR/2)

for x ∈ Dr .

Proof By Theorem 1,

f8r,s(x) ≤ CBHIM6r,∞(f8r,s)Exτ4r ,

f̃8r,s(x) ≥ C−1
BHIM6r,∞(f̃8r,s)Exτ4r .

Furthermore,

M6r,∞(f8r,s) = M6r,s(f8r,s) ≤ M6r,s(f ),

M6r,∞(f̃8r,s) ≥ Ms,∞(f̃8r,s) = Ms,∞(f ) ≥ M3R/4,∞(f ) + Ms,R/4(f ).

Finally, by Eq. 13,

M6r,s(f ) ≤ CBHIM3R/4,∞(f )M6r,s(sR/2),

Ms,R/4(f ) ≥ C−1
BHIM3R/4,∞(f )Ms,R/4(sR/2).

We conclude that
f8r,s(x)

f̃8r,s(x)
≤ C4

BHI
M6r,s(sR/2)

1 + Ms,R/4(sR/2)
,

which is the desired upper bound. The lower bound is proved in a somewhat more
complicated way. By Theorem 1 and estimate (15),

f8r,s(x) ≥ C−1
BHIM6r,∞(f8r,s)Exτ4r ,

f̃8r,s(x) ≤ CLévyMs,∞(f )Exτ8r
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(we can write CLévy = CLévy(x0, 8r, 16r) in the second inequality because s ≥ 16r). By
Lemma 1, Exτ8r ≤ CτExτ4r . Furthermore, by Theorem 1 (as in Eq. 13, but with R replaced
by R/3) and again Lemma 1,

M6r,∞(f8r,s) = M6r,s(f8r,s) ≥ M8r,s(f8r,s) = M8r,s(f )

≥ C−1
BHIMR/4,∞(f )M8r,s(sR/6)

≥ C−1
BHIC

−2
τ MR/4,∞(f )M8r,s(s2R/3).

On the other hand, by Eq. 13,

Ms,∞(f ) = Ms,R/4(f ) + MR/4,∞(f )

≤ CBHIM3R/4,∞(f )Ms,R/4(sR/2) + MR/4,∞(f )

≤ MR/4,∞(f )(1 + CBHIMs,R/4(sR/2)).

We conclude that

f8r,s(x)

f̃8r,s(x)
≥ C−3

BHIC
−1
LévyC

−3
τ

M8r,s(sR/2)

1 + Ms,R/4(sR/2)
,

as desired.

4.2 Inaccessible Boundary Points

Throughout this part we assume that x0 is inaccessible, that is,

M0,∞(sR) =
∫

DR

EyτR ν(x0, y)m(dy) < ∞.

In this case f8r,s and g8r,s turn out to be negligible compared to f̃8r,s and g̃8r,s for
sufficiently small r and s.

Clearly, M0,∞(sR/2) ≤ M0,∞(sR) < ∞. We remark that by Eq. 13,

M0,∞(f ) = M0,R/4(f ) + MR/4,∞(f )

≤ CBHIM3R/4,∞(f )M0,R/4(sR/2) + MR/4,∞(f ) < ∞,

and M0,∞(g) < ∞ by the same argument, and hence one can pass to the limit separately in
the numerator and the denominator of Eq. 10.

Let 0 < ε < 1. By the upper bound in Lemma 3, there is s = s(ε) ≤ εR such that if
0 < 8r ≤ s, then

f8r,s(x) ≤ εf̃8r,s(x), g8r,s(x) ≤ εg̃8r,s(x) (16)

for x ∈ D2r . Furthermore, estimate (15) and the assumption lim
r→0+ CLévy(x0, r, R) = 1

imply that there is r = r(ε) ≤ s/8 such that

f̃8r,s(x) ≈ (1 + ε)Exτ8rMs,∞(f ), g̃8r,s(x) ≈ (1 + ε)Exτ8rMs,∞(g) (17)

for x ∈ D8r . It follows that

f (x)

g(x)
≤ (1 + ε)f̃8r,s(x)

g̃8r,s(x)
≤ (1 + ε)3 Ms,∞(f )

Ms,∞(g)

for x ∈ D2r . The lower bound is proved in a similar manner, and we obtain

(1 + ε)−3 Ms,∞(f )

Ms,∞(g)
≤ f (x)

g(x)
≤ (1 + ε)3 Ms,∞(f )

Ms,∞(g)
(18)
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for x ∈ D2r . Since ε was arbitrary and s converges to 0 as ε → 0+, we have

lim
x→x0
x∈D

f (x)

g(x)
= lim

s→0+
Ms,∞(f )

Ms,∞(g)
,

and Theorem 2 for inaccessible boundary points is proved.

4.3 Accessible Boundary Points

In the second part of the proof we assume that x0 is accessible, that is,

M0,∞(sR) =
∫

DR

EyτRν(x0, y)m(dy) = ∞.

In this case f8r,s and g8r,s dominate f̃8r,s and g̃8r,s for all sufficiently small r .
We remark that by Eq. 13 and Lemma 1,

M0,∞(f ) ≥ M0,R/4(f ) ≥ C−1
BHIM3R/4,∞(f )M0,R/4(sR/2) = ∞,

and M0,∞(g) = ∞ by the same argument. In other words, the numerator and the denom-
inator of the right-hand side of Eq. 10 diverge to infinity as r → 0+. In particular, if the
limit of f (x)/g(x) in Eq. 10 exists, then it is automatically equal to the right-hand side.

Our argument is based on the following standard oscillation reduction lemma.

Lemma 4 If 0 < 8r < s < R0, then(
sup

y∈D2r

− inf
y∈D2r

)
f8r,s(y)

g8r,s(y)
≤ C4

BHI − 1

C4
BHI + 1

(
sup
y∈Ds

− inf
y∈Ds

)
f (y)

g(y)
.

Proof For simplicity, we denote

A = sup
y∈Ds

f (y)

g(y)
, B = sup

y∈D2r

f8r,s(y)

g8r,s(y)
,

a = inf
y∈Ds

f (y)

g(y)
, b = inf

y∈D2r

f8r,s(y)

g8r,s(y)
.

Since

ag18r,s ≤ f 18r,s ≤ Ag18r,s ,

we clearly have

ag8r,s ≤ f8r,s ≤ Ag8r,s . (19)

In particular, a ≤ b ≤ B ≤ A, and Theorem 1 applies to everywhere non-negative functions
f8r,s − ag8r,s , Ag8r,s − f8r,s and g8r,s (note that f − ag and Ag − f typically fail to be
non-negative everywhere). By Eq. 8,

sup
y∈D2r

f8r,s(y) − ag8r,s(y)

g8r,s(y)
≤ C4

BHI inf
y∈D2r

f8r,s(y) − ag8r,s(y)

g8r,s(y)
,

sup
y∈D2r

Ag8r,s(y) − f8r,s(y)

g8r,s(y)
≤ C4

BHI inf
y∈D2r

Ag8r,s(y) − f8r,s(y)

g8r,s(y)
.
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This translates to B − a ≤ C4
BHI(b − a) and A − b ≤ C4

BHI(A − B), and adding the sides
of these inequalities leads to the desired inequality(

C4
BHI + 1

)
(B − b) ≤

(
C4

BHI − 1
)

(A − a).

For continuous processes (in sufficiently regular domains), the above lemma easily yields
the assertion of Theorem 2. For processes with jumps one needs to incorporate the non-
local parts f̃8r,s and g̃8r,s using Lemma 3. As it was remarked in the introduction, this
modification was developed in [7], and extended in [11].

Let 0 < ε < 1 and 0 < s < R
24 . By the lower bound in Lemma 3, there is r = r(ε, s) ≤ s

8
such that

f̃8r,s(x) ≤ εf8r,s(x), g̃8r,s(x) ≤ εg8r,s(x) (20)

for x ∈ Dr . It follows that(
sup
x∈Dr

− inf
x∈Dr

)
f (x)

g(x)
≤ (1 + ε) sup

x∈Dr

f8r,s(x)

g8r,s(x)
− 1

1 + ε
inf

x∈Dr

f8r,s(x)

g8r,s(x)
.

By Lemma 4 and the inequality 1 − (1 + ε)−1 ≤ ε,(
sup
x∈Dr

− inf
x∈Dr

)
f (x)

g(x)
≤ C4

BHI − 1

C4
BHI + 1

(
sup
x∈Ds

− inf
x∈Ds

)
f (x)

g(x)
+ ε

(
sup
x∈Dr

+ inf
x∈Dr

)
f8r,s(x)

g8r,s(x)
.

(21)
Denote by Q the upper limit of the expression in the left-hand side as r → 0+. Using Eq. 19
and taking the upper limit of both sides as s → 0+ leads to

Q ≤ C4
BHI − 1

C4
BHI + 1

Q + 2ε sup
x∈DR/4

f (x)

g(x)
,

that is,

Q ≤ ε
(

1 + C4
BHI

)
sup

x∈DR/4

f (x)

g(x)

Since ε is arbitrary, we conclude that Q = 0, and the proof of Theorem 2 is complete.

4.4 Extensions

We first prove the statement contained in Remark 2. Denote g(x) = ExτR . Then g is not a
regular harmonic function in DR , but for every open U ⊆ DR ,

g(x) = ExτU + Exg(X(τU )).

We interpret ExτU as if it originated from a jump to a distant point (a point at infinity), and
we define

Mr,∞(g) = 1 +
∫
X\Br

g(y)ν(x0, y)m(dy), g̃r,s(x) = Exτr + Ex((g1s,∞)(X(τr )));

the definitions of Mr,s(g) and gr,s(x) for finite s remain unaltered. One can then follow
carefully the proof of Theorem 2 and see that no changes are required. This shows validity
of Remark 2.

In the remaining part of this section we argue that an extension stated in Remark 3 is
true: the limit in Theorem 2 converges uniformly in f and g, and also in D, in the sense of
Eq. 11.
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We claim that if 0 < q < R0 and η > 0, then there is p, which depends only on q, η and
the characteristics of the process Xt , such that 0 < p < q and

supx∈Dp
(f (x)/g(x))

infx∈Dp(f (x)/g(x))
− 1 ≤ η + C4

BHI − 1

C4
BHI + 1

(
supx∈Dq

(f (x)/g(x))

infx∈Dq (f (x)/g(x))
− 1

)
(22)

for all open sets D and all functions f and g as in Theorem 2 (this estimate is very similar
to Eq. 21). By considering the supremum of both sides of Eq. 22 over all f , g and D, and
then taking the upper limit as q → 0+, we obtain the desired result:

lim sup
r→0+

sup
D,f,g

(
supx∈Dr

(f (x)/g(x))

infx∈Dr (f (x)/g(x))
− 1

)
≤ η

(
1 + C4

BHI

)
2

for arbitrary η > 0. Therefore, it remains to prove (22).
Let 0 < q < 1

24R0 and η > 0. We consider two additional parameters δ, N > 0; the
actual values of δ (small real) and N (large integer) are to be specified at the end of the
argument. By the assumption limr→0+ CLévy(x0, r, R) = 1 one can construct a decreas-
ing sequence of radii a0, a1, . . . , aN so that a0 is the input radius q, 1

8aN will be the
output radius p, and we have 16an+1 < an and CLévy(x0, 8an+1, an) ≤ 1 + δ for all
n = 0, 1, . . . , N − 1.

Following [11], we consider two scenarios. Suppose first that for some n we have

Man+1,an(sR/2) ≤ δ(1 + Man,R/4(sR/2)). (23)

Then the argument is fairly simple: as in Section 4.2, by Lemma 3 we have the inequal-
ity (16) with r = an+1, s = an and ε = C4

BHIδ. Since CLévy(x0, 8an+1, an) ≤ 1 + δ, the
estimate (17) holds with r = an+1, s = an and ε = δ. This implies (18) (with s = an,
x ∈ D2an+1 and ε = C4

BHIδ), and in particular the left-hand side of Eq. 22 does not exceed
(1+C4

BHIδ)
6 −1. Estimate (22) follows with p = an+1, provided that (1+C4

BHIδ)
6 −1 ≤ η.

We choose δ small enough, so that this inequality is satisfied.
In the other scenario, for each n the converse of Eq. 23 holds. Summing up these

inequalities for n = 0, 1, . . . , N − 1 we obtain

MaN,a0(sR/2) ≥ Nδ(1 + Ma0,R/4(sR/2)),

and we argue as in Section 4.3. Again by Lemma 3, we have Eq. 20 with r = 1
8aN , s =

a0 and ε = C3
BHICLévyC

3
τ (Nδ)−1. Inequality (21) follows. Dividing both sides of it by

infx∈Dr (f (x)/g(x)) and using monotonicity of this expression in r , we obtain (22) for p =
1
8aN , provided that ε(CBHI + 1) ≤ η. Since δ is now fixed, we may choose N large enough,
so that this condition is satisfied. This completes the proof of the extension described in
Remark 3.

4.5 Martin Representation

In this section we prove Theorem 3. We assume that the assumptions of Theorem 2 are
satisfied in a uniform way for all x0 ∈ D.

We note one important property of the Green function: if U is an open subset of D and
y /∈ ∂U , then

GD(x, y) = ExGD(X(τU ), y) + GU(x, y) (24)

(where, as usual, we assume that GU(x, y) = 0 whenever x /∈ U or y /∈ U ). In particular,
GD(x, y) is a regular harmonic function in D \ B(y, r) for every r > 0. By a duality
argument, GD(x, y) is a regular co-harmonic function in D \ B(x, r) for every r > 0.
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Furthermore, by the strong Markov property,∫
D

GD(x, y)f (y)m(dy)=Ex

∫ τD

0
f (Xs)ds

=Ex

∫ τD−τU

0
f (XτU +s)ds + Ex

∫ τU

0
f (Xs)ds

=Ex

∫
D

GD(X(τU), y)f(y)m(dy)y+
∫

U

GU(x, y)f (y)m(dy) (25)

for any nonnegative function f . Note that if m(∂U) = 0, then Eq. 25 follows from Eq. 24
and Fubini.

Proof of Theorem 3(a) The assumptions are completely symmetric under duality, and hence
we may apply Theorem 2 to both harmonic and co-harmonic functions. In particular, as
already remarked before the statement of Theorem 3, the Martin kernel, defined as the
boundary limit of co-harmonic functions

MD(x, z) = lim
y→z
x∈D

GD(x, y)

GD(x̃, y)
,

exists for all boundary points z ∈ D (here and below x̃ ∈ D is a fixed reference point). In
other words, the Martin boundary coincides with the Euclidean boundary.

The representation given in part (d) essentially follows now from the general theory
of Martin boundary, together with some ideas developed in [11]. For simplicity, in the
remaining part of the proof we simply write that a function is harmonic when we refer to
harmonicity in D.

Proof of Theorem 3(b) Following the proof of Theorem 2 in [11], we find that MD(x, x0)

is a harmonic function with respect to x if and only if x0 is accessible. Indeed, for an
inaccessible boundary point x0 we have, by Eq. 10 in Theorem 2,

MD(x, x0) = C

∫
D

ν(y, x0)GD(x, y)m(dy)

for C = (
∫
D

ν(y, x0)GD(x̃, y)m(dy))−1 > 0, and so the Martin kernel is not harmonic (to
see this, simply use (25)). On the other hand, if x0 is accessible and R > 0, then

ExMD(X(τD\B(x0,R)), x0) = Ex lim
y→x0
y∈D

GD(X(τD\B(x0,R)), y)

GD(x̃, y)
. (26)

Recall that GD(x, y) is a regular harmonic function of x ∈ D \ B(x0, R) when y ∈
B(x0, R). By Fatou’s lemma,

ExMD(X(τD\B(x0,R)), x0) ≤ MD(x, x0), (27)

and we claim that in fact equality holds, that is, we can exchange the limit with the expec-
tation in Eq. 26. By Vitali’s convergence theorem, it suffices to prove that that the ratio
in the right-hand side of Eq. 26 is a uniformly integrable family of random variables for
y ∈ D ∩ B(x0, r) for some r > 0. The argument is exactly the same as in the proof of
formula (77) in [11]; for the convenience of the reader, we repeat it below.
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Assume that 0 < 8r < R and that x, x̃ /∈ D ∩ B(x0, R). We will first prove that

sup
y∈D∩B(x0,r)
z∈D\B(x0,4r)

GD(z, y)

GD(x̃, y)
< ∞. (28)

By the boundary Harnack inequality (Theorem 1) applied to GD(z, ·) and GD(x̃, ·), it suf-
fices to consider a fixed y ∈ D ∩ B(x0, r), that is, to show that GD(·, y) is bounded in
D\B(x0, 4r). This is relatively simple, but somewhat technical. Denote D1 = D∩B(x0, r),
D2 = D ∩ B(x0, 2r), D4 = D ∩ B(x0, 4r) and D′ = D \ B(x0, 4r). By Dynkin’s
formula (14),

Ez

(
GD(X(τD′), y)1D2(X(τD′))

)

≤
(

sup
v∈D′
w∈D2

ν(v, w)

)∫
D′

GD′(z, v)m(dv)

∫
D2

GD(w, y)m(dw).

The supremum is finite by Assumption 3 and boundedness of D, and the integrals in the
right-hand side are bounded by supu∈D EuτD and supu∈D Êuτ̂D , respectively. Furthermore,

Ez

(
GD(X(τD′), y)1D4\D2(X(τD′))

) ≤ sup
v∈D4\D2

w∈D1

GD(v,w),

and the right-hand side is finite by Assumption 4. By adding the sides of these two bounds
and using harmonicity of the Green function, we complete the proof of Eq. 28.

On the other hand, if we denote D′′ = D \ B(x0, 8r) and D′′′ = D \ B(x0, R), then,
again by Lemma 2,

Ex

(
GD(X(τD′′′), y)1D4(X(τD′′′))

)

≤ CLévy

(∫
D′′′

ν(x0, v)GD′′′(x, v)m(dv)

)(∫
D4

GD(w, y)m(dw)

)
,

and, in a similar way,

GD(x̃, y) ≥ Ex̃

(
GD(X(τD′′), y)1D4(X(τD′′))

)

≥ C−1
Lévy

(∫
D′′

ν(x0, v)GD′′(x̃, v)m(dv)

) (∫
D4

GD(w, y)m(dw)

)
.

It follows that

Ex

(
GD(X(τD\B(x0,R)), y)

GD(x̃, y)
1D∩B(x0,4r)(X(τD\B(x0,R)))

)

≤ C

(∫
D\B(x0,8r)

ν(x0, v)GD\B(x0,8r)(x̃, v)m(dv)

)−1

,

where C does not depend on (sufficiently small) r > 0 and y ∈ D ∩ B(x0, r). Recall that
GD\B(x0,8r)(x̃, v) increases to GD(x̃, v) (because the corresponding exit times τD\B(x0,8r)

increase to τD). By monotone convergence, the right-hand side converges to zero as r →
0+. Together with Eq. 28, this completes the proof of uniform integrability of the right-hand
side of Eq. 26.

Part (b) follows, and in addition we see that for accessible boundary points z, the Martin
kernel MD(x, z) is a regular harmonic function in D \ B(z, r) for every r > 0.

In order to apply the general theory of Martin boundary, we need to prove that the Green
operator, which maps a measurable function f (x) to GDf (x) = ∫

D
GD(x, y)f (y)m(dy),
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takes bounded functions into continuous ones. Let f be a bounded function on D, x0 ∈ D

and ε > 0. Clearly, |GDf (x)| ≤ ‖f ‖ExτD for x ∈ D, so that GDf is bounded. Let r > 0
be small enough, so that ExτB(x0,r) < ε for x ∈ B(x0, r). By Eq. 25,

GDf (x) = ExGDf (X(τB(x0,r))) + GB(x0,r)f (x).

The first term is continuous in B(x0, r) by Theorem 2 (see Remark 4). The other one is
bounded by ε‖f ‖, an arbitrarily small number. Therefore, GDf is continuous at x0.

The general theory of Martin boundary tells us now that if f satisfies the assumptions of
Theorem 3 and f is equal to zero in the complement of D, then

f (x) =
∫

∂mD

MD(x, z)μ(dz) (29)

for some measure μ on the set of accessible boundary points ∂mD, see Theorem 14.8 in [16].
Furthermore, if we show that for every z ∈ ∂mD, MD(x, z) is a minimal harmonic function
with respect to x, then the measure μ in the above representation is unique. Minimality of
MD(x, z) is proved as in the final part of the proof of Lemma 14 in [11].

Proof of Theorem 3(c) Suppose that f is harmonic, 0 ≤ f (x) ≤ MD(x, x0) for all x ∈ X

(in particular, f (x) = 0 for x ∈ X\D) and that the measure μ in representation (29) is zero
on ∂mD ∩ B(x0, 4r) for some r > 0. Our goal is to prove that f is identically zero. This
will imply that if f is harmonic and 0 ≤ f (x) ≤ MD(x, x0) for all x ∈ X, then the measure
μ in representation (29) is concentrated in {x0}, and thus MD(x, x0) is a minimal harmonic
function.

For every z ∈ ∂mD\B(x0, 4r), MD(x, z) is a regular harmonic function in D∩B(x0, 3r).
Hence, by Fubini, f also has this property. Furthermore, by the boundary Harnack
inequality (Theorem 1), f is bounded on D ∩ B(x0, 2r).

On the other hand, since f (x) ≤ MD(x, x0), one easily finds that f is also a regular har-
monic function in D\B(x0, r). This is exactly the same argument as in Lemma 9 in [11]; for
the convenience of the reader, we provide the details at the end of this section. In particular,
since f is bounded in D ∩ B(x0, 2r), it is bounded on D.

A sweeping argument, which is a simplified version of Lemma 10 in [11], proves then
that f is a regular harmonic function in D: Let σn be the sequence of consecutive exit times
from alternately D ∩B(x0, 4r) and D \B(x0, r). That is, σ0 = 0 and σn+1 = σn + τV ◦ϑσn ,
where V = D ∩ B(x0, 4r) when n is even and V = D \ B(x0, r) when n is odd (and ϑτ is
the shift operator).

Clearly, σn ≤ τD < ∞. Since σn is increasing, by quasi-left continuity, X(σn) has a
limit as n → ∞. Therefore, it is impossible that σn < τD for infinitely many n. It follows
that with probability one, eventually σn = τD .

Since f (x) = Exf (X(σn)) and f is bounded, by dominated convergence we have
f (x) = Exf (X(τD)) = 0, as desired.

We have thus proved the representation (29) for harmonic functions f which are zero in
the complement of D. The general case is handled as in Lemma 13 in [11].

Proof of Theorem 3(d) Let Dn be an ascending sequence of open sets such that Dn ⊆ D

and
⋃∞

n=1 Dn = D. Then, by Lemma 2,

f (x) = Exf (X(τDn)) ≥
∫
X\D

(∫
Dn

GDn(x, y)ν(y, z)m(dy)

)
f (z)m(dz).
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The integrand in the right-hand side increases as n → ∞, and therefore by monotone
convergence,

f (x) ≥
∫
X\D

(∫
D

GD(x, y)ν(y, z)m(dy)

)
f (z)m(dz). (30)

Let g(x) be equal to the right-hand side of Eq. 30 for x ∈ D, and to f (x) for x ∈ X\D. From
Lemma 2 and the property (25) of the Green function it follows easily that g is harmonic: if
U is open and U ⊆ D, then

Exg(X(τU )) = Ex(f 1X\D)(X(τU ))

+Ex

∫
X\D

(∫
D

GD(X(τU ), y)ν(y, z)m(dy)

)
f (z)m(dz)

=
∫
X\D

(∫
D

(
GU(x, y) + ExGD(X(τU ), y)

)
ν(y, z)m(dy)

)
f (z)m(dz)

= g(x).

Therefore, f − g is a non-negative harmonic function which is equal to zero in X \ D, and
so it has a unique representation (29).

Finally, the outer integral in Eq. 30 is finite, and so points at which the inner integral is
infinite cannot contribute to the integral. It follows that we can change the outer integral to
an integral over X \ (D ∪ ∂mD). The proof of Eq. 12 is complete.

Proof of Theorem 3(e) By the boundary Harnack inequality, if the right-hand side of Eq. 12
is finite at some x ∈ D, it is finite everywhere in D. Indeed, let f be given by Eq. 12. If
f (x) = ∞ for some x ∈ D, by Theorem 1 f is infinite at every point of a ball B(x, r)

contained in D. If y ∈ D, then again using Theorem 1 (for a ball centred at y), f is infinite
at y.

Finally, harmonicity of the right-hand side of Eq. 12, whenever it is finite, follows from
property (25) of the Green function, harmonicity of the Martin kernel and Fubini.

At the end of this section, we present the proof of Lemma 9 in [11], adapted to our
setting. This result was used in the proof of Theorem 3(c).

Lemma 5 (Lemma 9 in [11]) Let U and D be open subsets of X such that U ⊆ D. If
0 ≤ f (x) ≤ g(x) for all x ∈ X, f and g are harmonic in D, g is a regular harmonic
function in U and g(x) = 0 for x ∈ X \ D, then f is a regular harmonic function in U .

Proof Let Dn be an ascending sequence of open sets such that Dn ⊆ D and
⋃∞

n=1 Dn = D,
and let Un = U ∩ Dn. Then τUn increases to τU , and, by quasi-left continuity, X(τUn)

converges to X(τU ) with probability one. It follows that if X(τU ) ∈ D \ U , then eventually
τUn = τU for n large enough up to an event of probability zero. Hence,

lim
n→∞Ex(g1D\U)(X(τUn)) = Ex(g1D\U)(X(τU )) = g(x).

Therefore,

Ex(f 1U\Un)(X(τUn)) ≤ Ex(g1U\Un)(X(τUn)) = g(x) − Ex(g1D\U)X(τUn))
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converges to zero as n → ∞. It follows that

f (x) = lim
n→∞Exf (X(τUn)) = lim

n→∞Ex(f 1D\U)(X(τUn))

= Ex(f 1D\U)(X(τU )) = Exf (X(τU )),

as desired.
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Decay rate of harmonic functions for
non-symmetric strictly α-stable Lévy processes

by

Tomasz Juszczyszyn (Wrocław)

Abstract. We investigate functions that are harmonic with respect to the non-
symmetric strictly α-stable Lévy processes on an open set D ⊂ Rd. We obtain an explicit
formula for their boundary decay rate at parts of the boundary of D outside of which they
vanish.

1. Introduction. With rare exceptions, explicit boundary decay rates of
harmonic functions for jump Markov type processes, or non-local operators,
have been studied under the symmetry assumption. The only results for non-
symmetric processes or operators known to the author are [13, 8, 11]. Here
we provide the boundary decay rate for functions harmonic with respect to
general stable Lévy processes, an important class of Markov processes with
numerous applications. Our result requires relatively mild assumptions on
the jump kernel, and works for sufficiently smooth sets.

An important tool in investigating the behaviour of harmonic functions
near the boundary or existence of their limits is the boundary Harnack in-
equality. It is a statement about positive harmonic functions in an open
set D, which are equal to zero on a part of the boundary. It states that if D
is regular enough (for example, a Lipschitz domain), z is a boundary point
of D, f and g are positive and harmonic in D, and both f and g converge to 0
on ∂D ∩B(z,R), then for every r ∈ (0, R),

sup
x∈D∩B(z,r)

f(x)

g(x)
≤ cBHI inf

x∈D∩B(z,r)

f(x)

g(x)
,(1.1)

where the constant cBHI does not depend on f and g.
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BHI for harmonic functions of the Laplacian ∆ in Lipschitz domains was
proved in 1977–78 by B. Dahlberg [9], A. Ancona [1] and J.-M. Wu [23]. In
1989, R. Bass and K. Burdzy [2] proposed an alternative probabilistic proof
based on elementary properties of the Brownian motion.

It is possible to define harmonicity in more probabilistic terms. Let X be
the Brownian motion and let Pt be its transition semigroup defined by

Ptf(x) = Exf(Xt).

Then the generator of Pt is the Laplacian ∆. Moreover, every function f is
harmonic in an open set D if and only if for any x ∈ B where B ⊂ D we
have

f(x) = Exf(XτB1{τB<∞}), x ∈ D,

where τB is first exit time of X from B.
It is possible to extend the definition of Laplacian and corresponding har-

monic functions to non-local operators by changing the underlying stochastic
process.

In 1997, K. Bogdan [4] proved BHI for the fractional Laplacian ∆α/2

(and isotropic α-stable Lévy processes) for 0 < α < 2 and Lipschitz sets.
In 1999, R. Song and J.-M. Wu [22] extended the result to all open sets
with cBHI depending on d,D, z, r, and in 2007, K. Bogdan, T. Kulczycki
and M. Kwaśnicki [5] extended that result by showing that cBHI in fact
only depends on α and d. In 2008, P. Kim, R. Song and Z. Vondraček [15]
proved BHI for subordinate Brownian motions in “fat” sets and in 2011 they
extended it to a more general class of isotropic Lévy processes and arbitrary
domains [16]. In 2014, K. Bogdan, T. Kumagai and M. Kwaśnicki [6] proved
BHI for a wide class of non-symmetric processes in duality. In 2016, a similar
result was obtained by Z.-Q. Chen, Y.-X. Ren and T. Yang [7] for κ-fat sets
and some processes without dual process. Finally, in 2016, X. Ros-Oton and
J. Serra [21] proved BHI for arbitrary open sets and operators with kernels
which are comparable with stable kernels.

In most of the cases mentioned above the constant cBHI in (1.1) converges
to 1 as r → 0 giving the existence of boundary limits of ratios of harmonic
functions. Methods used in those proofs involve the so-called reduction of os-
cillation. For jump-type processes this requires additional assumptions (scale
invariance of BHI or uniformity of BHI). One of the results, which we will
refer to in this paper, was found independently by M. Kwaśnicki and the
author [20], and by P. Kim, R. Song and Z. Vondraček [18], where the exis-
tence of the limits is proven for a wide class of non-symmetric processes and
arbitrary open sets.

A natural consequence of the existence of limits of ratios of harmonic
functions is the question about explicit decay rate of such functions near
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the boundary of D. The answer is known for a wide class of symmetric
processes. For example, P. Kim, R. Song and Z. Vondraček [17] proved in
2014 a result for subordinate Brownian motions where the Laplace exponent
φ of the subordinator satisfies mild scaling conditions. It states that if X is a
subordinate Brownian motion then for every C1,1 setD, every r > 0, z ∈ ∂D,
and every non-negative function u in Rd which is harmonic in D ∩ B(z, r)
with respect to X and vanishing continuously on Dc the limit

lim
x→z

u(x)√
φ(δD(x)−2)

exists. Another result is the work of T. Grzywny, K.-Y. Kim and P. Kim [14]
from 2015, who obtained the decay rates for a large class of symmetric pure
jump Markov processes dominated by isotropic unimodal Lévy processes
with weak scaling conditions for sets of class C1,% for % ∈ (α/2, 1].

To our knowledge not much is known about decay rates in the non-
symmetric case. Here we would like to mention the work of X. Fernández-
Real and X. Ros-Oton [13] for symmetric α-stable processes with drift, an
ongoing work of Z.-Q. Chen and L. Wang [8], and another work in progress
by S. Dipierro, X. Ros-Oton, J. Serra and E. Valdinoci [11].

The goal of this article is to obtain the explicit decay rate of harmonic
functions in sufficiently regular sets for non-symmetric, strictly α-stable pro-
cesses. The following is our main result.

Theorem 1.1. Let X be a (possibly non-symmetric) Rd-valued strictly
α-stable process with α ∈ (0, 2) and with the Lévy measure given by

ν(A) =
�

A

1

|x|d+α
ϑ

(
x

|x|

)
dx,

where ϑ is strictly positive and Cε on the unit sphere for some ε > 0. Let D be
a bounded, open C1,1 set if α < 1, and C2,α−1+ε if α ≥ 1. Let z ∈ ∂D. Then
for every non-negative function f , harmonic in D ∩B(z,R0) with respect to
the process X and vanishing continuously on Dc ∩B(z,R0), the limit

lim
x→z
x∈D

f(x)

|x− xD|β(x)

exists, where xD ∈ ∂D is the boundary point nearest to x and the exponent β
is given by

β(x) = αP0(〈Xt, x− xD〉 > 0).

2. Preliminaries

2.1. Notation, definitions and technical lemmas. Throughout this
paper, d ≥ 2. We denote by 〈·, ·〉 the usual dot product in Rd. We denote
the Euclidean distance between x and y by |x − y| and the Euclidean dis-
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tance between x and Dc by δD(x). Each constant, unless otherwise stated,
is positive. By c and ci, i ∈ N, we denote constants that are less important,
and may vary even within one lemma or theorem. By c(a) we denote that
the constant c depends on a.

We denote by B(x, r) the (open) ball of radius r with centre at x and
by Sd the unit sphere in Rd. We also define Dr = D ∩ B(0, r) and D∗r =
{x ∈ D : δD(x) < r}. For x = (x1, . . . , xd) ∈ Rd we write x = (x̃, xd), where
x̃ = (x1, . . . , xd−1).

Let C0 denote the class of continuous functions on Rd converging to 0 as
x→∞, and let Cc be the class of compactly supported continuous functions.

By changing the coordinate system in Rd we mean applying an isometrical
transformation of Rd. Similarly, scaling means an application of a dilation
of Rd. For example, by an appropriate change of the coordinate system, every
open half-space with a distinguished boundary point z can be transformed
into H = {x ∈ Rd : xd > 0} in such a way that z is mapped to the origin 0.
Similarly, by an appropriate change of the coordinate system and scaling, ev-
ery open half-space with a distinguished interior point x can be transformed
into H in such a way that the image of x is (0, 0, . . . , 0, 1).

Definition 2.1. For a compact set K, we write f ∈ Cn,γ(K) if the nth
order partial derivatives of f are Hölder continuous on K with exponent γ
(0 < γ ≤ 1). Such functions form a Banach space with norm

‖f‖Cn,γ(K) =

{
‖f‖L∞(K) + sup

{ |f(y)−f(x)|
|y−x|γ : x, y ∈ K

}
if n = 0,∑

|ν|<n‖Dνf‖C0,γ(K) if n 6= 0.

For simplicity we write Cκ := Cn,γ , where n = bκc, γ = κ−bκc, when κ > 0
is not an integer.

Definition 2.2. For an open setD, we write f ∈ Cn,γ(D) if f ∈ Cn,γ(K)
for every compact subset K of D.

Definition 2.3. An open set D in Rd is of class Cn,γ if there exists a
radius r > 0 and a constant C such that for every z ∈ ∂D there exist an
isometry φ : Rd → Rd and a function f ∈ Cn,γ(Rd−1) such that φ(z) = 0,
‖f‖Cn,γ(Rd−1) ≤ C and φ(D) ∩B(0, r) = {x ∈ Rd : xd > f(x̃)} ∩B(0, r).

Recall that a random variable X has a strictly stable distribution if for
every a, b > 0 there exist c > 0 such that aX1 + bX2 and cX have the same
distribution whenever X1, X2 are independent copies of X. In this case there
exists α ∈ (0, 2] such that aα+bα = cα. We say that α is the index of stability
of X.

Recall also that X = {Xt}t∈[0,∞) is a Lévy process if it is an Rd-valued
stochastic process with X0 = 0, stationary and independent increments and
càdlàg paths.
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A Lévy process is described by the characteristic exponent Ψ , which is
given by the Lévy–Khinchin formula:

Ψ(ξ) = log(Eei〈ξ,X1〉) = −〈Aξ, ξ〉+ i〈γ, ξ〉(2.1)

−
�

Rd\{0}

(1− ei〈ξ,z〉 + i〈ξ, z〉1B(0,1)(z)) ν(dz)

for ξ ∈ Rd, where A is the (non-negative definite) covariance matrix of the
Gaussian part, γ ∈ Rd is the linear term related to the drift of Xt and ν
is a non-negative measure such that

	
Rd\{0}min(1, |z|2) ν(dz) < ∞, called

the Lévy measure. We denote by Ex the expectation corresponding to the
process Xt with the condition X0 = 0 a.s. replaced by X0 = x a.s. We denote
by τD the first time the process X exits an open set D, that is,

τD = inf {t > 0 : Xt /∈ D}.
We say that X = {Xt}t∈(0,∞) is a strictly α-stable Lévy process when it

is a Lévy process such that Xt has a strictly α-stable distribution for every
t > 0.

Definition 2.4. We define the transition operator pt of the process X
by the formula

ptf(x) = Exf(Xt)

and the generator L of the process X applied to a function f by the formula

Lf(x) = lim
t→0+

ptf(x)− f(x)
t

(2.2)

for every f ∈ C0 such that the above limit exists uniformly on Rd.
Definition 2.5. We define the Dynkin generator LD of the process X

applied to a function f at a point x by the formula

LDf(x) = lim
r→0+

Exf(XτB(x,r)
)− f(x)

ExτB(x,r)
(2.3)

for every f ∈ C0 and x ∈ Rd such that the above limit exists.

It is known that if f is in the domain of the generator L, then LDf(x)
is well-defined for every x and LDf(x) = Lf(x). Conversely, if f ∈ C0 and
LDf(x) is well-defined for every x, and LDf ∈ C0, then f is in the domain
of L. We refer to [12, Chapter V] for a proof and further discussion.

For every open set D there exists a Green function GD(x, y) such that
GD(x, y) ≥ 0 for x, y ∈ D and GD(x, y) = 0 for x ∈ Dc or y ∈ Dc such that
GD(x, y) is a continuous map from D ×D into [0,∞], and

�

D

GD(x, y)f(y) dy = Ex
τD�

0

f(Xt) dt
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for every non-negative function f . In particular,�

D

GD(x, y) dy = ExτD

for every x, y ∈ D.
We will use the Ikeda–Watanabe formula, which states that for every open

set D, x ∈ D and a Lévy process X with Lévy measure ν we have

Ex(f(XτD)) =
�

D

GD(x, y)
�

Dc

ν(z − y)f(z) dz dy

for every non-negative function f such that f = 0 in D.

Definition 2.6. We say that a function f is harmonic for X in an open
set D if for every bounded open set B such that B ⊂ D and x ∈ B we have

Exf(XτB ) = f(x).

We say that a function is regular harmonic when the above equality holds
also for B = D. If a function is regular harmonic in an open set D, then it
is regular harmonic in any open subset of D.

Remark 2.7. If a function f is harmonic in an open set D, then for
every x in D we have LDf(x) = 0.

We need two elementary, technical results.

Lemma 2.8. For p, q ∈ (0, 1), x, y > 0 and η ∈ (0, 1] there exists c =
c(q, η) such that

|xq − yq| ≤ cmax(x, y)q−η|x− y|η,(2.4)
|xp − xq| ≤ |ln(x)|max(xp, xq)|p− q|.(2.5)

Proof. Without loss of generality we assume that x > y. We have

|xq − yq| = |x
q − yq|
|x− y|η

|x− y|η

=
|1− (y/x)q|
|1− y/x|η

xq−η|x− y|η = |1− s
q|

|1− s|η
xq−η|x− y|η

for s = y/x ∈ [0, 1). Since 0 < η ≤ 1, by l’Hospital’s rule the limit

lim
s→1

1− sq

(1− s)η
= lim

s→1

qsq−1

η(1− s)η−1

is equal to 0 for η < 1 and q for η = 1. Since the function 1−sq
(1−s)η is continuous

on [0, 1) and has a limit as s→ 1, it is bounded on [0, 1] by some constant c.
It follows that

|xq − yq| ≤ cmax(x, y)q−η|x− y|η.



Decay rate of harmonic functions 147

For the second inequality we write

|xp − xq| =
∣∣∣q�
p

ln(x)xt dt
∣∣∣ ≤ |ln(x)|max(xp, xq)|p− q|.

Lemma 2.9. For any closed, convex set K and any f ∈ Cγ(K) with 1 <
γ < 2, we have

|f(x)− f(y)− 〈x− y,∇f(y)〉| ≤ ‖f‖Cγ(K)|x− y|γ

for every x, y ∈ K.

Proof. By the mean value theorem,

f(x)− f(y)− 〈x− y,∇f(y)〉 = 〈x− y,∇f(x1)〉 − 〈x− y,∇f(y)〉
= 〈x− y,∇f(x1)−∇f(y)〉

for some x1 = (1− s)x+ sy, s ∈ [0, 1]. Thus we get

|f(x)− f(y)− 〈x− y,∇f(y)〉| ≤ ‖f‖Cγ(K)|x− y||x1 − y|γ−1

≤ ‖f‖Cγ(K)|x− y|γ .

2.2. Assumptions and properties of the process X

Assumption A. X is a strictly α-stable d-dimensional Lévy process with
d ≥ 2 and α ∈ (0, 2). The Lévy measure of X is absolutely continuous with
respect to the Lebesgue measure and it is given by

ν(A) =
�

A

1

|x|d+α
ϑ

(
z

|z|

)
dz,

where ϑ ∈ Cε(S) for some ε > 0 and ϑ(z) > 0 for all z ∈ S.

Assumption A implies that if α 6= 1 the Lévy–Khinchin exponent of the
process X has coefficients a and γ equal to 0. If α = 1, the coefficient a is
0 and the function ϑ is symmetric. Moreover, strictly α-stable processes are
scaling invariant.

Definition 2.10. We define the pointwise generator A of a process X
at a point x by

Af(x) =



�

Rd
(f(y)− f(x))ν(y − x) dy if α < 1,

〈γ,∇f(x)〉+
�

Rd
(f(y)− f(x)

−〈∇f(x), y − x〉1B(x,r)(y))ν(y − x) dy if α = 1,�

Rd
(f(y)− f(x)− 〈∇f(x), y − x〉)ν(y − x) dy if α > 1,

(2.6)
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for every function f for which the integral is finite at x. In particular, this is
the case for any bounded function f which is Cα+ε in some neighbourhood
of x for some ε > 0; see [19]. Note that in case α = 1, since the Lévy measure
of the process is symmetric, the definition of A does not depend on r > 0.

Definition 2.11. For any unit vector u ∈ Sd, we define the one-
dimensional Lévy process Xu = {〈Xt, u〉}t∈R+ which is the orthogonal pro-
jection of X onto the line {xu : x ∈ R}. We denote by νu its Lévy measure.
Also, for z ∈ Rd we denote by Hu,z the half-space {x : 〈x− z, u〉 > 0}.

Lemma 2.12. The process Xu is a one-dimensional strictly α-stable Lévy
process. Its Lévy measure νu is absolutely continuous with respect to the
Lebesgue measure and its density νu(z) is given by

νu(z) =

{
1

zα+1

	
Su
ϑ(w)〈u,w〉α dw if z > 0,

ν−u(−z) if z < 0,
(2.7)

where Su = Sd ∩Hu,0 and dw is the surface measure on the unit sphere.

Proof. We begin by calculating the tail of the measure νu. Let x ∈ Rd
and z0 > 0. We have

∞�

z0

νu(dz) =
�

Hu,z0u

|x|−d−αϑ
(
x

|x|

)
dx.

We use spherical coordinates:
∞�

z0

νu(dz) =
�

Su

∞�

z0/〈u,w〉

r−1−αϑ(w) dr dw =
1

α

1

zα0

�

Su

ϑ(z)〈u,w〉α dw.

By differentiation, we get (2.7). The case of z0 < 0 is very similar.

Since Xu is a one-dimensional α-stable Lévy process, below we recall
some facts about harmonic functions for those processes.

Theorem 2.13 (see [3, Lemma VII.11]). Let Y be a one-dimensional
α-stable Lévy process. Let β = αP(Y1 > 0). Then the function

h(x) = xβ1(0,∞)(x)

is regular harmonic for Y in (0, a) for every a > 0.

Recall that for a one-dimensional strictly α-stable Lévy process, the Lévy
measure µ is absolutely continuous with respect to the Lebesgue measure and
its density is given by

µ(z) = C−
1

|z|α+1
1(−∞,0)(z) + C+ 1

|z|α+1
(z)1(0,∞),(2.8)
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where C−, C+ ≥ 0, C−+C+ > 0 and if α = 1 then necessarily C− = C+. In
that case the parameter β can be given explicitly by the formula (see [24])

β =
α

2
+

1

π
arctan

(
C+ − C−

C+ + C−
tan

απ

2

)
(2.9)

if α 6= 1, while for α = 1 we have C+ = C− > 0 and

β = P(X1 > 0) =

∞�

0

1

π

C+

(C+)2 + (x− b)2
dx =

1

2
+

1

π
arctan

b

C+
,(2.10)

where b is the the drift of the process.
In the remaining part of this article we use the objects defined in Theo-

rem 2.13 for the projections Xu. In this case we denote the dependence on u
by writing C+(u), C−(u) and β(u).

Lemma 2.14. There are constants βmin = βmin(X) > max{0, α− 1} and
βmax = βmax(X) < min(α, 1) such that βmin + βmax = α and

βmin ≤ β(u) ≤ βmax for every u ∈ Sd.

Proof. There exists a constant c = c(X) ∈ (0, 1) such that

−1 + c ≤ C+(u)− C−(u)
C+(u) + C−(u)

≤ 1− c

for any u ∈ S. By (2.9) we have

α

2
− 1

π

∣∣∣∣arctan(tan απ2
)∣∣∣∣ < β(u) <

α

2
+

1

π

∣∣∣∣arctan(tan απ2
)∣∣∣∣

for α ∈ (0, 2) \ {1}. Since

arctan

(
tan

απ

2

)
=

{
απ/2 if α < 1,

(α− 2)π/2 if α > 1,

and since β(u) is a continuous function on a compact set, we have

max(0, α− 1) < β(u) < min(α, 1)

for α ∈ (0, 2) \ {1}. When α = 1, the desired result follows from (2.10).

Note that the constants βmin and βmax, even though depending on X, are
invariant under the orthogonal changes of the coordinate system and scaling.
We keep the notation βmin and βmax till the end of this article.

Remark 2.15. By (2.8) and (2.7), the function C+(u) is a spherical
convolution of a Cα(Sd) “zonal” function w 7→ max(〈u,w〉, 0)α and a Cε(Sd)
function θ. Thus, C+(u) and C−(u) = C+(−u) belong to Cα+ε(Sd). By (2.9)
for α 6= 1, and by (2.10) for α = 1, the function β(u) is in Cα+ε(Sd).
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Lemma 2.16. Let X be a d-dimensional strictly α-stable Lévy process.
Let u ∈ Sd. Then the function

hu,z(x) = (δHu,z(x))
β(u)

is a regular harmonic function for X in D ∩ Hu,z for every bounded open
set D.

Proof. By an appropriate change of the coordinate system and scaling,
we may assume that z = 0 and u = (0, . . . , 0, 1). Let D be a bounded
open set. Let h(xd) be defined as in Theorem 2.13 for Y = Xu. We define
Ut = {z ∈ Rd : 0 < xd < t} and we choose t such that D ∩ Hu,z ⊂ Ut. We
have

Exhu,z(XτUt
) = Exdh(Xu

τ(0,t)
) = h(xd) = hu,z(x),(2.11)

where Ex and Exd are the expectations for the d-dimensional process X and
its orthogonal projection Xu, respectively. By (2.11), the function hu,z is
regular harmonic in Ut. Since D ∩ Hu,z ⊂ Ut, hu,z is also regular harmonic
in D ∩Hu,z.

Corollary 2.17. The functionAhu,z(x) is well-defined for every x∈Hu,z

and

Ahu,z(x) = 0 for x ∈ Hu,z.

Proof. Let x ∈ Hu,z and let r be a radius such that B(x, r) ⊂ Hu,z. Then
hu,z ∈ C∞(B(x, r)). Since it is harmonic in Hu,z, by Remark 2.7 it belongs
to the domain of the Dynkin generator LD at the point x and LDhu,z(x) = 0.
We define

h∗u,z(y) = hu,z(y) for y ∈ B(x, r)

and extend it to a smooth and compactly supported function. The func-
tion h∗u,z also belongs to the domain of the Dynkin generator LD, as well as
to the domain of the pointwise generator A, and

LDh∗u,z(x) = Ah∗u,z(x).(2.12)

The difference hu,z(x)−h∗u,z(x) is equal to 0 on B(x, r), thus, by the Ikeda–
Watanabe formula, we have

LD(hu,z − h∗u,z)(x)

= lim
s→0+

	
B(x,s)GB(x,s)(x, y)

	
B(x,r)c ν(v − y)(hu,z − h

∗
u,z)(v) dv dy	

B(x,s)GB(x,s)(x, y) dy
.

where GB(x,s)(x, z) is the Green function of B(x, s). Observe that if
y ∈ B(x, r/2) and v ∈ B(x, r)c, then |v−y| > r/2, and so ν(v−y)(hu,z−h∗u,z)
is a continuous function of y ∈ B(x, r/2) and v ∈ B(x, r)c, bounded by an
integrable function of v ∈ B(x, r)c uniformly in y ∈ B(x, r/2). It follows that
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B(x,r)c ν(z − y)(hu,z − h

∗
u,z)(z) dz is a continuous function of y ∈ B(x, r/2).

As s → 0, the measures GB(x,s)(x,y) dy	
B(x,s)GB(x,s)(x,y) dy

converge vaguely to the Dirac
measure at x, and thus

LD(hu,z − h∗u,z)(x) =
�

B(x,r)c

ν(z − x)(hu,z − h∗u,z)(z) dz(2.13)

= A(hu,z − h∗u,z)(x).
By combining (2.12) with (2.13) we get the desired result.

2.3. Regularity of the domain D

Assumption B. If α ∈ (0, 1), then D is a bounded C1,1 open set. If
α ∈ [1, 2), then D is a bounded C2,α+ε−1 set for some ε > 0.

Remark 2.18. If D is a C1,1 open set, it satisfies the uniform exterior
and the uniform interior ball conditions: for some r(D)> 0, for every z ∈ ∂D
there are points x1, x2 such that B(x1, r) ⊂ D, B(x2, r) ⊂ Dc and z ∈
B(x1, r) ∩B(x2, r).

Recall that D∗r = {x ∈ D : δD(x) < r}.
Definition 2.19. Let r be as in Remark 2.18. For x ∈ D∗r , we let z(x)

be the unique point on ∂D such that δD(x) = |x−z(x)|. If x ∈ ∂D we define
z(x) = x. We define n(x) to be the inward-pointing normal vector to the
boundary of D at z(x).

Lemma 2.20. Let D satisfy Assumption B. There exists R(D) > 0 such
that the functions z(x) and n(x) are Lipschitz continuous on D∗R for α < 1,
and are Cα+ε(D∗R) functions for some ε > 0 if α ≥ 1.

Proof. By [10, Theorem 3.1] the distance function δD(x) is in C1,1(D∗R)
for some R. Note that ∇δD(x) = n(x), thus n(x) is a Lipschitz function
on D∗R. Since z(x) = x−δD(x)∇δD(x), it is also a Lipschitz function on D∗R.
If α ≥ 1 and D is a C2,α−1+ε set for some ε > 0 then, again by [10, Theo-
rem 3.1], δD(x) is in C2,α−1+ε(D∗R), thus ∇δD and z are in Cα+ε(D∗R).

Remark 2.21. Since harmonic functions for the process X are scale-
invariant, the constants βmax, βmin and the function hu,z that will be used
later in this article do not change if we scale the process X or (equivalently)
scale the coordinate system. To simplify the notation, till the end of the
article we choose a coordinate system, together with its scale, in such a way
that 0 ∈ ∂D,

ed := n(0) = (0, . . . , 0, 1),

the radius r defined in Remark 2.18 is not less than 2, and the radius R
defined in Lemma 2.20 is greater than or equal to 1.
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Corollary 2.22. Let D satisfy Assumption B. The function β(n(x))
is in Cα+ε(D∗1) for some ε > 0 and ‖β(n(·))‖Cα+ε(D∗1) ≤ C(X,D) for some
C(X,D) > 0.

Proof. If α < 1, by Remark 2.15 and Lemma 2.20 we have β ∈ Cα+ε(Sd)
for some ε > 0 and n(x) is a Lipschitz continuous function, thus the compo-
sition β(n(·)) belongs to Cα+ε(D∗1) for some ε > 0. If α ≥ 1, by Remark 2.15
and Lemma 2.20 we have β ∈ Cα+ε(Sd) and n ∈ Cα+ε(D∗1), thus the com-
position belongs to Cα+ε(D∗1).

To simplify the notation, we write β(x) instead of β(n(x)) if x ∈ D∗1.
Recall that Dr = D ∩B(0, r).

Lemma 2.23. Let D satisfy Assumption B. For every x = (x̃, xd) ∈ D1,
we have

|δD(x)− xd| ≤ 1
2 |x̃|

2.(2.14)

Proof. Let f be a function such that ∂D ∪ B(0, 2) is contained in the
graph of f (see Definition 2.3). By the uniform exterior ball condition with
radius 2, we have

f(x̃) ≥ −2 +
√

4− |x̃|2 ≥ −1
2 |x̃|

2

for |x̃| ≤ 2. Thus, for x ∈ D2,

δD(x) ≤ d(x, (x̃, f(x̃))) = |xd − f(x̃)| = xd − f(x̃) ≤ xd + 1
2 |x̃|

2.(2.15)

On the other hand, since for |x| ≤ 1 we have 2−xd+ 1
2 |x̃|

2 ≥
√
|x̃|2+(2−xd)2

(which follows by squaring both sides), and by the uniform interior ball
condition, it follows that

δD(x) ≥ δB(2ed,2)(x) = 2−
√
|x̃|2 + (2− xd)2 ≥ xd − 1

2 |x̃|
2.(2.16)

By combining (2.15) and (2.16), we get (2.14).

3. Proof of the main theorem. The main goal of this section is to
provide explicit decay rates of harmonic functions at a boundary point z of
the set D. In the remainder of the article we will always assume that the
process X satisfies Assumption A and the set D satisfies Assumption B.
We choose the coordinate system (and scaling) as in Remark 2.21 and we
fix x0 = (0, 0, . . . , x0d) = x0ded such that δD(x0) ≤ 1/2. Finally, we define
H(x) = Hed,0(x) and h(x) = hed,0(x).

Definition 3.1. We define

g(x) = (δD(x))
β(x)1D∗1

(x),

where the function β is given in Corollary 2.22; see Figure 1.
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Fig. 1. The function g is of power type with different exponents for different directions.

Remark 3.2. By Lemma 2.20 and Corollary 2.22, g ∈ Cα+ε(D∗1) for
some ε > 0. Moreover, g is bounded by 1.

Remark 3.3. By Lemma 2.14, the interval (βmax,min(α, 1)) is non-
empty. In the remainder of this article we fix

η ∈ (βmax,min(α, 1)),(3.1)

so that, since βmin + βmax = α, we have

2η−α−2<−1, βmin+η−α> 0, −1<βmin−η < 0, 2η−α−1>−1,
(3.2)

which we will use later.

Definition 3.4. We define

f1(x) = ((δH(x))
β(x) − (δH(x))

β(x0))1D1∩H(x),

f2(x) = ((δD(x))
β(x) − (δH(x))

β(x))1D1∩H(x),

f3(x) = (g(x)− h(x))1(Rd\(D1∩H))(x).

(3.3)

Since for x ∈ D1 ∩H we have

g(x)− h(x) = (δD(x))
β(x) − (δH(x))

β(x0)

= (δD(x))
β(x) − (δH(x))

β(x) + (δH(x))
β(x) − (δH(x))

β(x0),

by (3.3),

g(x)− h(x) = f1(x) + f2(x) + f3(x).(3.4)

Lemma 3.5. There exist ε = ε(X,D) > 0 and a constant c = c(X,D)
such that

|f1(x)| ≤ c|x− x0|α+ε if α < 1,

|f1(x)− 〈∇f1(x0), x− x0〉| ≤ c|x− x0|α+ε if α ≥ 1,

for x ∈ D1 ∩H.
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Proof. Let x ∈ D1 ∩H. When α < 1, by (3.3) and (2.5) we have

|f1(x)| ≤ |ln(δH(x))|max(δH(x)
β(x), δH(x)

β(x0))|β(x)− β(x0)|.
Since β(x), β(x0) ∈ [βmin, βmax], it follows that there exists c(X,D) such
that

|f1(x)| ≤ c|β(x)− β(x0)|1D1∩H(x).

By Corollary 2.22, β is in Cα+ε(D∗1) for some ε > 0. Thus,

|f1(x)| ≤ c|x− x0|α+ε1D1∩H(x)

for some ε > 0, as desired.
We now consider α ≥ 1. For the notational convenience, till the end of

this proof we write β0 := β(x0), β1 := β(x), δ0 := δH(x0), δ1 := δH(x)
and v := ∇β(x0). By Corollary 2.22, β is in Cα+ε(D∗1) for some ε > 0. In
particular, ∇β exists and is bounded by a constant c(X,D). By a simple
calculation,

∇f1(x0) = (ln δ0)δ
β0
0 v.

For later use, we record that as a consequence, for every ε > 0 there exists a
constant c = c(X,D, ε) such that

|∇f1(x0)| = |ln(δ0)δβ00 v| ≤ cδ
β0−ε
0 = cδH(x0)

β(x0)−ε.(3.5)

We come back to the proof of the lemma. Observe that by the triangle and
Cauchy–Schwarz inequalities,

|f1(x)− 〈∇f1(x0), x− x0〉| = |δβ11 − δ
β0
1 − 〈δ

β0
0 ln(δ0)v, x− x0〉|

(3.6)

≤ |δβ11 − δ
β0
1 − δ

β0
1 ln(δ1)(β1 − β0)|

+ |δβ01 ln(δ1)(β1 − β0)− 〈δβ01 ln(δ1)v, x− x0〉|

+ |〈δβ01 ln(δ1)v, x− x0〉 − 〈δβ00 ln(δ0)v, x− x0〉|

≤ |δβ11 − δ
β0
1 − δ

β0
1 ln(δ1)(β1 − β0)|

+ |β1 − β0 − 〈v, x− x0〉|δβ01 |ln(δ1)|

+ |δβ01 ln(δ1)− δβ00 ln(δ0)| |v| |x− x0|.
Recall that β1, β0 ∈ [βmin, βmax]. By Taylor expansion, there exist β2 ∈
(βmin, βmax) lying between β0 and β1, and c(βmin), such that

|δβ11 − δ
β0
1 − δ

β0
1 ln(δ1)(β1 − β0)| = 1

2 |δ
β2
1 ln2(δ1)(β1 − β0)2| ≤ c|β1 − β0|2.

Since β is a Lipschitz continuous function on D∗1, there exists a constant
c = c(X,D) such that

|δβ11 − δ
β0
1 − δ

β0
1 ln(δ1)(β1 − β0)| ≤ c|x− x0|2.(3.7)
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By Corollary 2.22, β is in Cα+ε(D∗1) for some ε > 0. Thus, by Lemma 2.9,
there exists a constant c = c(X,D) such that for some ε = ε(X,D) > 0 we
have

|β1 − β0 − 〈v, x− x0〉|δβ01 |ln(δ1)| ≤ c|x− x0|
α+ε.(3.8)

As β0 > α − 1, for some ε = ε(X,D) > 0 we have δH(·)β0 ln(δH(·)) ∈
Cα−1+ε(D∗1). Since |∇β| is bounded, there exists a constant c = c(X,D)
such that

|δβ01 ln(δ1)− δβ00 ln(δ0)| |v| |x− x0| ≤ c|x− x0|α+ε(3.9)

for some ε > 0. By combining (3.6)–(3.9) we get the desired result for
α ≥ 1.

Recall that η was chosen in Remark 3.3 so that it satisfies (3.2).

Lemma 3.6. There exists a constant c = c(X,D) > 0 such that

|f2(x)| ≤ cmax(δD(x), δH(x))
βmin−η|x̃|2η1D1∩H(x).

Proof. Let x ∈ D1 ∩ H. By Lemma 2.23, (2.4) and (3.3) there exists a
constant c = c(X,D) such that

|f2(x)| ≤ cmax(δD(x), δH(x))
β(x)−η|δD(x)− δH(x)|η

≤ cmax(δD(x), δH(x))
β(x)−η|x̃|2η.

Since max(δD(x), δH(x)) ≤ 1 for x ∈ D1 ∩H, we have

max(δD(x), δH(x))
β(x)−η ≤ max(δD(x), δH(x))

βmin−η.

Thus

|f2(x)| ≤ cmax(δD(x), δH(x))
βmin−η|x̃|2η.

Remark 3.7. By Remark 3.3 and the fact that

βmax ≥ max(β(u), β(−u)) ≥ 1
2β(u) +

1
2β(−u) = α/2,

we have 2η > 2βmax ≥ α. Thus, in the case α ≥ 1, ∇f2(x0) exists and it is
equal to 0.

Remark 3.8. We have

|f3(x)| ≤ g(x)1D∗1\(D1∩H) + h(x)1H\D1
(x).

Lemma 3.9. There exists a constant cgen = cgen(X,D) > 0 such that for
x ∈ D∗1/2,

|Ag(x)| ≤ cgen.
Proof. It is enough to show that |Ag(x0)| ≤ cgen for some constant cgen =

cgen(X,D) > 0. The result in the general case follows then by an appropriate
change of coordinates; see Remark 2.21. To estimateAg(x0), we will compare
the functions g and h. Recall that, by Lemma 2.16, h is harmonic on H.
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By (3.4) we have

|A(g − h)(x0)| ≤ |Af1(x0)|+ |Af2(x0)|+ |Af3(x0)|.

We claim that each summand on the right-hand side is bounded by some
c(X,D) > 0. Once this is proved, it follows that A(g−h)(x0) is well-defined
and |A(g− h)(x0)| ≤ c(X,D). By Lemma 2.16, we have Ah(x0) = 0, and so
Ag(x0) is well defined and |Ag(x0)| ≤ c(X,D), as desired.

To estimate |Af1(x0)| we use Lemma 3.5 and the fact that f1(x0) = 0.
If α < 1, there exists ε = ε(X,D) > 0 and constants c = c(X,D) > 0 such
that

|Af1(x0)| ≤
�

Rd
|f1(x)− f1(x0)|ν(x− x0) dx

≤ c
�

B(x0,2)

|x− x0|α+εν(x− x0) dx ≤ c.

If α > 1, we have

|Af1(x0)| ≤
�

Rd
|f1(x)− f1(x0)− 〈∇f1(x0), x− x0〉|ν(x− x0) dx

≤
�

B(x0,1/2)

|x− x0|α+εν(x− x0) dx

+ |∇f1(x0)|
�

B(x0,δD(x0))c

|x− x0|ν(x− x0) dx.

Using additionally (3.5) with ε = βmin+1−α (recall that βmin > α− 1), we
find that there exist constants c = c(X,D) > 0 such that

|Af1(x0)| ≤ c+ cδH(x0)
β(x0)−βmin−1+α

�

B(x0,δD(x0))c

|x− x0|1−d−α dx

≤ c+ cδD(x0)
β(x0)−βmin ≤ c,

where in the last step we have used the fact that β(x0) ≥ βmin.
Finally, for α = 1, we have

|Af1(x0)| ≤ 〈∇f1(x0), b〉+
�

Rd

∣∣f1(x)− f1(x0)
− 〈∇f1(x0), x− x0〉1B(x0,r)(x)

∣∣ν(x− x0) dx,
where b is the drift of the process X and r is any radius as in (2.6). We set
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r = 2. As in the case α > 1, there exist constants c = c(X,D) > 0 such that

|Af1(x0)| ≤ c+
�

Rd

∣∣f1(x)− f1(x0)
− 〈∇f1(x0), x− x0〉1B(x0,2)(x)

∣∣ν(x− x0) dx
≤ c+ c

�

D1∩H
|x− x0|α+εν(x− x0) dx

+
�

(D1∩H)c∩B(x0,2)

|〈∇f1(x0), x− x0〉|ν(x− x0) dx

≤ c+ |∇f1(x0)|
�

B(x0,δD(x0))c∩B(x0,2)

|x− x0|ν(x− x0) dx.

Again using (3.5) with ε = βmin/2, we obtain

|Af1(x0)| ≤ c+ cδH(x0)
β(x0)−βmin/2(ln(2)− ln(δH(x0))) ≤ c,

because β(x0)− βmin/2 ≥ βmin/2.
By (3.3) we have f2(x0) = f3(x0) = 0 and ∇f3(x0) = 0. By Remark 3.7

for α ≥ 1 we have ∇f2(x0) = 0, thus for every α ∈ (0, 2),

Af2(x0) =
�

Rd
f2(x)ν(x− x0) dx, Af3(x0) =

�

Rd
f3(x)ν(x− x0) dx.

Recall that f2(x) = ((δD(x))
β(x) − (δH(x))

β(x))1D1∩H(x). To estimate
|Af2(x0)| we use Lemma 3.6:

|Af2(x0)| ≤
�

Rd
|f2(x)|ν(x− x0) dx

≤ c
�

D1∩H
max(δD(x), δH(x))

βmin−η|x̃|2ην(x− x0) dx;

here and below the symbols c denote constants c = c(X,D) > 0. By Re-
mark 3.3, βmin − η < 0, and therefore

|Af2(x0)| ≤ c
�

B(0,1)∩H

δH(x)
βmin−η|x̃|2η|x− x0|−d−α dx.

Noticing that B(0, 1) ∩ H is contained in B(d−1)(0, 1) × (0, 1), and writing
x = (x̃, t), we find that

|Af2(x0)| ≤ c
1�

0

�

B(d−1)(0,1)

tβmin−η|x̃|2η(|x̃|2 + |t− x0d|2)−(d+α)/2 dx̃ dt

= c

1�

0

tβmin−η
1�

0

rd−2+2η(r2 + |t− x0d|2)−(d+α)/2 dr dt.
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Now we investigate the integral over r. For b > 0 we have

1�

0

rd−2+2η(r2 + b2)−(d+α)/2 dr = b2η−α−1
1/b�

0

sd−2+2η(1 + s2)−(d+α)/2 ds

≤ b2η−α−1
1/b�

0

(1 + s2)(2η−α−2)/2 ds ≤ cb2η−α−1

(the final integral is bounded because, by Remark 3.3, 2η − α − 2 < −1).
Next we take b = |t− x0d| and we find that

c

1�

0

tβmin−η
1�

0

rd−2+2η(r2 + |t− x0d|2)−(d+α)/2 dr dt

≤ c
1�

0

tβmin−η|t− x0d|2η−α−1 dt

= cxβmin+η−α
0d

1/x0d�

0

uβmin−η|u− 1|2η−α−1 du

= cxβmin+η−α
0d

( 2�

0

uβmin−η|u− 1|2η−α−1 du+ c

1/x0d�

2

uβmin+η−α−1 du
)
.

The first integral on the right-hand side is bounded, because, by Remark 3.3,
βmin − η > −1 and 2η − α − 1 > −1. The other integral does not exceed
x−(βmin+η−α). Finally, again by Remark 3.3, we have βmin + η − α > 0, and
we conclude that the right-hand side is bounded by a constant c(X,D).

To estimate |Af3(x0)| we denote A := {x ∈ Rd : |x̃| ≤ 1, |xd| < 1
2 |x̃|

2}.
By Lemma 2.23, ((D \H) ∪ (H \D)) ∩B(x0, 1) ⊂ A. We write

|Af3(x0)| ≤
�

Rd
|f3(x)|ν(x− x0) dx

≤ c
�

A

(g(x) + h(x))ν(x− x0) dx

+
�

B(x0,1)c

(g(x) + h(x))ν(x− x0) dx

:= J1 + J2.

For x ∈ A we have |xd|/|x̃| ≤ 1
2 |x̃| < 1, and hence

|x− x0|
|x|

=

√
|x̃|2 + |x0d − xd|2√
|x̃|2 + x2d

=

√
1 + |x0d − xd|2/|x̃|2√

1 + x2d/|x̃|2
≥ 1√

2
,
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and thus by Assumption A we have

ν(x− x0) ≤ cν(x).

Moreover, for x ∈ A we have δH(x), δD(x) ≤ c|x̃|2 and hence

g(x) + h(x) ≤ c|x̃|2βmin .

Thus

J1 ≤ c
�

Bd−1(0,1)

|x̃2βmin |
|x̃|2�

−|x̃|2

1

(|xd|2 + |x̃|2)(d+α)/2
dxd dx̃

≤ c
�

Bd−1(0,1)

|x̃|−d−α+2βmin+2 dx̃ ≤ c,

because βmin > α− 1. By Remark 3.2 we have

J2 ≤
�

B(x0,1)c

ν(x− x0) dx+
�

B(x0,1)c∩H

x
β(x0)
d ν(x− x0) dx

≤ c+
�

B(x0,1)c∩H

x
β(x0)
d ν(x− x0) dx.

Since for x such that |x−x0| ≥ 1 we have xd ≤ |x0|+|x−x0| ≤ 1/2+|x−x0| ≤
2|x− x0|, it follows that

J2 ≤ c+ c
�

B(x0,1)c

|x− x0|βmaxν(x− x0) dx = c.

We have thus proved that all three summands |Af1(x0)|, |Af2(x0)| and
|Af3(x0)| are bounded by a constant c(X,D). This completes the proof.

We keep the notation cgen till the end of the article.
We recall the following fundamental result on existence of boundary lim-

its of ratios of harmonic functions.

Theorem 3.10 ([20, Theorem 2 and Example 1]). Let D be an open
set, and z ∈ ∂D. Suppose that f1, f2 ≥ 0 are regular harmonic functions in
D ∩ B(z, r) and are zero in B(z, r) \ D for r < R. Then either one of f1
and f2 is zero everywhere in D ∩ B(z, r), or the finite, positive boundary
limit of f1(x)/f2(x) exists as x→ z, x ∈ D.

Following, for example, [5], we introduce the following notation.

Definition 3.11. The relative oscillation of a function f on the set Dr

is given by the formula

ROr(f) =
supx∈Dr f(x)

infx∈Dr f(x)
.



160 T. Juszczyszyn

Note that if f1 and f2 are positive in Dr for some r, then the existence
of a finite, positive limit of f1/f2 as x → 0 is equivalent to the condition
ROr(f1/f2)→ 1 as r → 0+.

Definition 3.12. We define the harmonic reduction gr of the function g
by

gr(x) = Ex(g(XτDr )).

Lemma 3.13. For every ε > 0 there exists a radius r0 = r0(X,D, ε) > 0
such that

ROr

(
gr
g

)
≤ 1 + ε

1− ε
(3.10)

for every 0 < r ≤ r0.

Proof. Let φ be a non-negative smooth function such that φ(y) = 0 for
|y| > 1/2 and

	
Rd φ(y) dy = 1. For k ≥ 1 we define φk(y) = kdφ(ky) and

gk(x) := (φk ∗ g)(x) :=
�

Rd
φk(y)g(x− y) dy.

For r ≤ 1/4 letDk
r := {y ∈ Dr : δD(y) ≥ 1/k}. Since gk is a smooth function,

Agk is well-defined everywhere.
Let x ∈ Dk

r and z ∈ B(0, 1/(2k)). By Lemma 3.9 we have −cgen ≤
Ag(x− z) ≤ cgen. We claim that Agk(x) = φk ∗ Ag(x) and consequently, by
Lemma 3.9,

−cgen ≤ Agk(x) ≤ cgen.(3.11)

By Remark 3.2, g ∈ Cα+ε(D∗1) for some ε > 0. Hence, by (2.6), for α < 1,
�

Rd

�

Rd
φk(z)|(g(y − z)− g(x− z))|ν(y − x) dy dz ≤

�

Rd

�

Rd
φk(z)

×
(
c|y − x|α+ε1B(x,1/(4k))(y) + 2× 1B(x,1/(4k))c(y)

)
ν(y − x) dy dz <∞.

Now, by the Fubini theorem, we have

Agk(x) =
�

Rd
(gk(y)− gk(x))ν(y − x) dy

=
�

Rd

( �

Rd
φk(z)(g(y − z)− g(x− z)) dz

)
ν(y − x) dy

=
�

|z|<1/(2k)

φk(z)
( �

Rd
(g(y − z)− g(x− z))ν(y − x) dy

)
dz

=
�

|z|<1/(2k)

φk(z)Ag(x− z) dz = φk ∗ Ag(x).
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In case α > 1, by Remark 3.2 and Lemma 2.9 we write
�

Rd

�

Rd
φk(z)

∣∣(g(y − z)− g(x− z)− 〈∇g(x− z), y − x〉)∣∣ν(y − x) dy dz
≤

�

Rd

�

Rd
φk(z)

(
c|y − x|α+ε1B(x,1/(4k))(y)

+ c(2 + |y|)1B(x,1/(4k))c(y)
)
ν(y − x) dy dz <∞.

Furthermore, ∇gk = (∇g) ∗ φk in Dk
r . Now, similarly to the case α < 1, we

write

Agk(x) =
�

Rd
(gk(y)− gk(x)− 〈∇gk(x), y − x〉))ν(y − x) dy

=
�

Rd

( �

Rd
φk(z)(g(y − z)− g(x− z)

− 〈∇g(x− z), y − x〉) dz
)
ν(y − x) dy

=
�

|z|<1/(2k)

φk(z)
( �

Rd
(g(y − z)− g(x− z)

− 〈∇g(x), y − x〉)ν(y − x) dy
)
dz

=
�

|z|<1/(2k)

φk(z)Ag(x− z) dz = φk ∗ Ag(x).

Finally, in case α = 1 we write similarly
�

Rd

�

Rd
φk(z)

∣∣(g(y − z)− g(x− z)
− 〈∇g(x− z), y − x〉1B(x,1/(4k))(y − z))

∣∣ν(y − x) dy dz
≤

�

Rd

�

Rd
φk(z)

(
c|y − x|α+ε1B(x,1/(4k))(y) + 2× 1B(x,1/(4k))c(y)

)
× ν(y − x) dy dz <∞.

Since g ∈ Cα+ε(D∗1), ∇g is a continuous function in D∗1, and ∇gk = (∇g)∗ϕk
is in Dk

r . Thus,

Agk(x) = 〈γ,∇gk(x)〉

+
�

Rd
(gk(y)− gk(x)− 〈∇gk(x), y − x〉1B(x,1/(4k))(y)))ν(y − x) dy

=
�

Rd
〈γ,∇g(x− z)〉φk(z) dz +

�

Rd

( �

Rd
φk(z)(g(y − z)− g(x− z)

− 〈∇g(x− z), y − x〉1B(x,1/(4k))(y − z)) dz
)
ν(y − x) dy
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=
�

|z|<1/(2k)

φk(z)
(
〈γ,∇g(x− z)〉+

�

Rd

(
g(y − z)− g(x− z)

− 〈∇g(x− z), y − x〉1B(x,1/(4k))(y)
)
ν(y − x) dy

)
dz

=
�

|z|<1/(2k)

φk(z)Ag(x− z) dz = φk ∗ Ag(x).

This completes the proof of our claim (3.11).
Recall that gk is in C∞c (Rd) and A restricted to C∞c coincides with the

infinitesimal generator L of the process X. Denote σ(r, k) = τDkr . For k ≥ l,
by Dynkin’s formula, for x ∈ Dl

r we have

Ex
σ(r,l)�

0

Agk(Xt) dt = Ex(gk(Xσ(r,l)))− gk(x).

Using (3.11), we get

−cgenExσ(r, l) ≤ Ex(gk(Xσ(r,l)))− gk(x) ≤ cgenExσ(r, l).
As k →∞, gk remains bounded by 1 and it converges pointwise to g. Thus,

−cgenExσ(r, l) ≤ Ex(g(Xσ(r,l)))− g(x) ≤ cgenExσ(r, l).
Now we pass to the limit as l→∞. Since σ(r, l) is an increasing function of l,
and since g is bounded and g(Xσ(r,l)) converges almost surely to g(XτDr ),
we infer that for all x ∈ Dr,

−cgenEx(τDr) ≤ Ex(g(XτDr ))− g(x) ≤ cgenE
x(τDr).(3.12)

In order to proceed we need a technical result comparing gr(x) with
Ex(τDr). Since ν(y − z) ≥ c|y|−d−α for every z ∈ Dr and y ∈ B(0, r)c (here
and below c = c(X,D) > 0), we have

gr(x) =
�

D∗1\Dr

( �

Dr

GDr(x, z)ν(z − y) dz
)
g(y) dy(3.13)

≥ cEx(τDr)
�

D∗1\Dr

c|y|−d−αg(y) dy,

where GDr(x, z) is the Green function of the set Dr.
For y ∈ B(0, 1) with 2|ỹ| < yd we have

|y| =
√
y2d + |ỹ| ≤

√
y2d +

1
4y

2
d ≤ cyd.

By (2.16) we have

δD(y) ≥ yd − |ỹ|2 ≥ yd − |ỹ| ≥ yd/2 ≥ c|y|,
so that

g(y) ≥ c|y|βmax .
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Thus, by using polar coordinates, we have�

D∗1\Dr

|y|−d−αg(y) dy ≥
�

D1\Dr

|y|−d−αg(y) dy

≥ c
�

{(ỹ,yd): 2|ỹ|<yd, r<|y|<1}

|y|−d−α|y|βmax dy

≥ c
1�

r

u−d−αuβmaxud−1 du = c(rβmax−α − 1).

By combining this and (3.13) we get

gr(x) ≥ c(rβmax−α − 1)Ex(τDr)(3.14)

for x ∈ Dr.
Now suppose that ε > 0. By (3.14) there exists r0 = r0(X,D, ε) > 0 such

that

cgenEx(τDr) ≤ εgr(x)(3.15)

for x ∈ B(0, r) and r ≤ r0. By combining (3.15) with (3.12), we find that
−εgr(x) ≤ gr(x)− g(x) ≤ εgr(x), and hence

1− ε ≤ g(x)

gr(x)
≤ 1 + ε(3.16)

for x ∈ Dr and r ≤ r0. This implies (3.10).

Theorem 3.14. Let f be a non-negative function which is regular har-
monic in D1 and which vanishes on Dc ∩ B(0, 1). Then either f is zero
everywhere in D, or

lim
f(x)

δD(x)β(x)
> 0 exists as x→ 0, x ∈ D.

Proof. Let ε > 0 and let r0 be chosen according to Lemma 3.13. By
Theorem 3.10 and the fact that gr0 and f are harmonic in Dr0 , there exists
a radius r ≤ r0 such that

ROr(f/gr0) ≤ 1 + ε.

For any positive functions f1, f2, f3 we have

ROr

(
f1
f2

)
=

supx∈Dr
f1(x)
f2(x)

infx∈Dr
f1(x)
f2(x)

≤
supx∈Dr

f1(x)
f3(x)

supx∈Dr
f3(x)
f2(x)

infx∈Dr
f1(x)
f3(x)

infx∈Dr
f3(x)
f2(x)

= ROr

(
f1
f3

)
ROr

(
f3
f2

)
.
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Thus, by Lemma 3.13,

ROr

(
f

g

)
≤ ROr

(
f

gr0

)
ROr

(
gr0
g

)
≤ (1 + ε)2

1− ε
.

Since ε was chosen arbitrarily, we have ROr(f/g)→ 1 as r → 0.

Remark 3.15. Note that, in contrast to the 2015 work of T. Grzywny,
K.-Y. Kim and P. Kim [14], with our methods we cannot relax the assump-
tion D ∈ C1,1. If D ∈ C1,β for β < 1, then the function n(x) (and so β(x)
and gz(x)) is not even a continuous function.
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