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Introduction

Bessel processes appear naturally in the study of the norm of multidimensional Brownian motion. However,
the spectrum of applications of Bessel processes and squared Bessel processes is much wider. A systematic
study of Bessel processes was initiated by H.P. McKean in the paper [55], but even before, various so-
called Bessel distributions occurred, for example in the study of the random walks (see [26], vol. II).
The first surprising result in the theory of Bessel processes was the pioneer Ciesielski-Taylor theorem
proved-in 1962 in [14]. It states that the total time spend by (d + 2)-dimensional Brownian motion in
the unit ball is identical distributed as the first hitting time of a unit ball by d-dimensional Brownian
motion. This theorem was generalized for Bessel processes of general (positive) index and in many other
directions. There are also many interpretation of the result, for example, in terms of Brownian motion
local times. Finally, the Ciesielski-Taylor theorem has been an inspiration for various research to many
excellent mathematicians. Another deep and important result appeared in 1963 proved independently
by D.B. Ray [62] and F.B. Knight [45]. The so-called Ray-Knight theorems identify Brownian motion
local times, considered as functions of the starting points, stopped at appropriate times, as squared Bessel
processes of dimension 2 or 0. These theorems are crucial for studying various delicate properties of local
times. Moreover, there are deep relations between Bessel processes and the geometric Brownian motion
and its integrals functionals, described by the Lamperti theorem. Note also that Bessel processes appear
in a natural way in the study of the Brownian motion excursion theory, Brownian bridges and Brownian
meanders as well as in the Williams decomposition of Brownian motion paths (see [67]), in the description
of a Brownian motion reflected at its supremum and in potential theory of hyperbolic Brownian motion.
Since the general inverse to the Bessel process local times of zero are a-stable subordinators, the Bessel
processes can be applied to study jump processes. Finally, there are various practical applications, where
Bessel process plays the crucial role. For example, recall the relations with Cox-Ingersoll-Ross processes
being very common models in financial mathematics. It is impossible to describe all the important results



in the theory of Bessel processes, so let u just mention that despite the above-mentioned researchers, such
mathematicians as P: Biane, R.K. Getoor, J.T. Kent, J.W. Lamperti, H. Matsumoto, S.A. Molchanov, »
J. Pitman and M. Yor had their great contribution in the further development of the theory.

In the presented series of publications we continue research on Bessel processes, focusing on processes
killed at the first exit time from the half-lines. More precisely, the aim of the habilitation thesis, consisting
of the series of the four articles, was describing basic objects of potential theory of Bessel processes killed
upon leaving the half-line (a,00) for fixed a > 0, such as first hitting times, hitting distributions and
transition probability densities. By providing a description we mean here a derivation of explicit formulas
or providing sharp two-sided estimates for the full range of considered parameters.

e In [H1] we examined the joint distributions of the first hitting time and hitting place of some sets
of codimension 1 for the Bessel-Brown diffusions. We derived an explicit formula for the densities of
these distributions in terms of the modified Bessel functions. The results were applied to describe
hitting distributions related to some class of jumping processes.

e The paper [H2] relates to derive sharp two-sided estimates of the first hitting time of point a > 0,
when the process starts from z > a.

¢ Finally, in the articles [H3] and [H4| we proved sharp two-sided estimates on transition probability
densities of Bessel processes killed upon leaving the half-line (a,00). The estimates obtained in [H2],
[H3] and [H4] explicitly describe the exponential behaviour of the objects.

Before we move on to detailed description of the results, we will present basic definitions, formulas and
properties of Bessel processes that were used in the articles. We relate the Reader to [63] and [53), [54]
for much more complete and detailed description. We also recommend very useful compendium of Bessel
processes given in [6].

Bessel processes

There are several equivalent definitions of Bessel processes, which, depending on the nature of the studied
problem and the required proof methods, turn out to be more or less useful. We will begin our discussion
with the approach based on stochastic differential equations. It allows to pass naturally from norms of
multidimensional Brownian motion to Bessel processes with general dimensions. Moreover, methods of
stochastic analysis are crucial from the point of view of the results obtained in the first article [H1]. Note

that defining the process
Zy=B2(t) +...+ B(t), t>0,

where B™ = (By,...,B,) is Wiener process in R™, we obtain one-dimensional diffusion on a half-line
[0, 00). Applying the It6 formula together with the Lévy characterisation of Wiener process we can show
that Z; is a solution to the following stochastic differential equation

dZ; = 2/]Z,]dB; + ndt, Zo = ||B(0)||?,

where f; is a Brownian motion in R. However, there are no reason to be limited to the natural values of
the constant appearing in the drift term. Consequently, we introduce the following definition.

DEFINITION 1. For z > 0 the unique strong solution of the equation
dZ; = 24/ IZtld,Bt +édt, Zp=ux, (1)

is called squared Bessel process of dimension 6 starting from z and we denote it by BESQ‘S(:U).
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The strong uniqueness of solutions of (1) follows from the Yamada-Watanabe theorem originally proved
in [68]. It is worth noting that classical uniqueness theorems for equations with Lipschitz coefficients can
not be applied to (1), since a square root appears in the martingale part. It is easy to check that for § = 0
and z = 0 the process Z; = 0 is a solution and the comparison theorem (Chapter XI, Theorem 3.7 in
[63]) implies that for § > 0 and « > 0 the process BESQ®(z) is non-negative. However, for § < 0 the
trajectories of squared Bessel process become negative with probability 1 and after the first hitting time
of zero the process behaves like minus squared Bessel process of positive dimension starting from zero.
ie. —BESQ™%(0) (see Section 3 in [31]). Although we still deal with diffusion processes, squared Bessel
processes with negative dimensions are much more delicate and complex objects (for example formulas for
the transition probability densities are much more complicated). Since the paths become negative, the
definition of a Bessel process as a square root of BESQ?(z) requires killing of the process at the first
hitting time of zero. '

DEFINITION 2. We define Bessel process BES‘S(:U) of dimension § € R starting from > 0 as a squared
root of BESQ®(x?), where for § < 0 we kill the process BESQ%(z?) at the first hitting time of zero. By
PS we denote the distribution of Bessel process (on C(R4,R)).

The number § is called the dimension of BES®(x). Moreover, we introduce the so-called index of Bessel
process (squared Bessel process) by putting v = §/2 — 1. We will write BESQ®™)(z) and BES®) (), P,
when we will relate to index of the processes instead of their dimensions.

Distributions of Bessel processes are absolutely continuous with respect to Lebesgue measure and the
corresponding densities are given in terms of the modified Bessel functions in the following way. For v > —1

we have
1 v x% + 9?2 z
Mty = ;(g) Y exp (— 2ty I, (Ty) z,y >0, t>0,

(V). y2u+1 y2
£,0,y) = ——o —2), y>0, t>0
p(¢,0,9) 2T 1 1) exp< 2t> y >

and for v < —1

1 v 2 2
Pzy) = - (%) yexp (—%) Iy, (Etﬂ) z,y>0, t>0.

The above-given densities become symmetric functions of the space variables  and y if we consider the
speed measure m® (dy) = 2y?*1dy as the reference measure. The absolute continuity of the distributions
of Bessel processes with different indices is the key property, frequently used in our series of publications.
Let us clarify that we work on the canonical space of continuous trajectories C([0, c0), R) and by J; we
denote the o-algebras generated by the paths up to time ¢. Moreover, we define the first hitting time of a

given level by
T,=inf{t >0: R(t)=a}, a>0,

defined for every R € Q = C([0,00), R). We will sometimes write R} = (REV))tZO to underline the index
of the considered Bessel process. However, when we use different distributions on the canonical space, the
notation of the corresponding indices will obviously appear only in the notation of the distributions and

expected values, i.e. Pg') , Eg;”). For every 1 > 0 and v € R we have

P’ | (R(t))“"’exp (_uQ—VZ /t ds ) 2)
dPg’) 7 x 2 0 R2(S) ’
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where x > 0. The above-given relation holds Pg(cy)—a.s. on the set {TO(”) > t}, i.e. up to the first hitting time
of zero. This condition can be omitted in the case of non-negative indices since then Pg’) (Tp = 00) = 1.
For v < 0 (6 < 2) the process hits zero almost surely. Additionally, for 0 < § < 2 zero is instantaneously
reflecting and for § = 0 the point 0 is absorbing (see Chapter IX, Theorem 1.5 in [63]). Moreover, Bessel
process is transitive for v > 0 (§ > 2) and recurrent in other cases. Note that these properties correspond
to the well-known properties of multi-dimensional Brownian motion.
We can look at Bessel process from the point of view of one-dimensional diffusions. We define Bessel
process with index v € R as a diffusion on [0, 00) or (0, c0), with %L(”) as its infinitesimal generator, where
2
L(”>=%+$%, z >0, (3)
is the Bessel operator. Uniqueness of this definition requires indication of the domain of the generator or,
equivalently, the boundary condition at zero for v € (—1,0). Imposing reflecting condition at 0 coincides
with the definition of Bessel processes based on SDE.

Distribution of the first hitting time and hitting place of Bessel-Brownian diffusions
(paper [H1])

We begin investigations of Bessel processes killed upon reaching a level with the most natural situation,
i.e. when a process hits zero. Taking into consideration the above-given properties of the Bessel paths, the
problem is worth attention only in the case, where v < 0, since for v > 0 the first hitting time Tp is infinite

gj)—a.s. However, the distribution of the first hitting time as well as the transition probability densities
are very well-known. Indeed, for » < 0 and & > 0 we have [44, 30]

2v z?
PO (Tyedt) = ——— ~——)dt, t>o0. 4
z ( 0€ ) xQUI“(_I/)tl—-V exp< 2t> ’ > ( )
From the other side, using the absolute continuity property (formula (2) for 4 = —v) we can easily

express the transition probability density of Bessel process with negative index v killed at Tp in terms
of function p(=¥) (t,z,y). The situation becomes much more complicated if we attach an independent
n-dimensional Wiener process B® = (B, ..., By,) to the original Bessel process R®). Then, we obtain
(n+ 1)-dimensional process with independent coordinates Y(t) = (R®)(t), B"(t)), which is called Bessel-
Brownian diffusion. Moreover, let us define, for an open set D c R"

mp =inf{t > 0: R-M(t) =0, B"(t)¢ D}, (5)

Le. the first exit time of Y from D = ({0} x D) or equivalently, the first hitting time of {0} x D¢ by Y.
In this case we will be interested in distributions of the first stopping time 7p and Y(7p). Due to the paths
continuity and the definition of 7p, the problem reduce to find the distribution of (7, B"(rp)). Note also
that the problem is interesting (non-trivial) only when v € (—1,0) and Zero is reflecting for R®). In the
opposite case the question is trivial since the coordinates of Y are independent.

Although the above-given problem may seem to be apparently artificial, the motivation to take up this
subject is explained by Lemma 1 (Proposition 3.1 in [H1]) establishing a relationship between joint distri-
butions of first hitting time and place of Bessel-Brownian diffusions and harmonic measures of relativistic
a-stable process with parameter m > 0, i.e. the Lévy process X™ on R™ with characteristic function given

by
O X™(t) — emte—t(|£|2+m2/°‘)°‘/z, £ R™



The infinitesimal generator of the relativistic process is then given by
Hy =ml — (m¥°I — A)*/2,

In particular, for m = 0, we get isotropic a-stable process. The basic object of our research in this context
is a A-harmonic measure of a set D C R™ defined by :

PY™(z, A) = E° [’TD < oo;e_)‘TﬁlA(Xm(TD))J , z€D, A€ Borel(R"),

where 75 = inf{t > 0: X™(t) ¢ D} is the first exit time of X™(¢) from D. In the case A = m we will use
a shorten notation Pf'(z, A) instead of PZ"™(z, A). We have

Lemma 1 (Proposition 3.1 in [H1]). Let D c R" be open having exterior cone property at every point
and let z = (0,%) € {0} x D. Moreover, let P*(1p < 00), where 7p is defined in (5) the first hitting time
for Y= (Rt—a/z,B"(t)), a € (0,2), of D = {0} x D®. Then m-harmonic measure for relativistic a-stable
process with parameter m > 0 is given by

m2/a
PE(%,A) =E"[e” 2 "2, B"(7p) € A], AC Borel(R"). (6)

The conclusion is valid also for m = 0, that is for the harmonic measure for the standard isotropic a-stable
process.
The exterior cone property is a technical assumption that guarantees regularity of the boundary points,

i.e. PY(rp = 0) = 1 for every y € {0} x D. The main idea of the proof is to show that the right-hand side
of the desired equality satisfies the integral equation called the sweeping out formula

/_ Uz — y)PD(z,dz) = Ul(z ~y), w€D, ye b,
be '
that uniquely characterize the m-harmonic measure, i.e. the left-hand side of (6). Here UJ*(z) is the

A-resolvent kernel, which in the special case A = m is given explicitly by the formula

ol-(d+a)/2 K(a—ays2(lz = yl)

T(o/2)nd |z —yl@arz (7)

Ur(z,y) =

where K, (2) is the modified Bessel function of the second kind. The general approach to look at jump
Markov processes as traces of appropriate diffusions was introduced by Molchanov and Ostrowski in [56]
and was used in different aspects among others by DeBlaisse, Baiiuelos and Kulczycki, Kwasnicki and
Isozaki. Analogous techniques in analysis are widely known as Caffarelli-Silvestre extensions, since they
were reinvented in paper [12]. Despite the fact that we do not use any known results of that kind, our
research generally fits to this trend. Anyway, Lemma 1 implies that the knowledge of a distribution of
(tp, B™(7p)) (more precisely, the Laplace transform of time 7p and distribution of hitting place B"(rp))
gives the formula for m-harmonic measure of relativistic a-stable process with parameter m. It is worth
mentioning that explicit formulas for harmonic measures for jump processes are vary rare. From the
other side, such knowledge usually helps in developing the potential theory related to the process. The
interest in relativistic processes, which were intensively studied in resent years, comes from its applications
in relativistic quantuum mechanics. More precisely, quasi-relativistic Hamiltonian (known also as Klein-

Gordon square root operator)

H = (—5202A +m2c4)1/2, (8)
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describing the motion of a quasi-relativistic particle with mass m (here c is the speed of light, / is the
Planck constant) can be easily described by the infinitesimal generator of the relativistic 1-stable process.
The other basic motivation comes from the very simple observation: a measure Pm(x A) is a harmonic
measure of the set D for the operator —(m®/2J — A)®/2, This operator appears in the context of Bessel
potentials Jo = (I —A)~ /2 the formal inverse to (I- A)O‘/ 2. Such operators have convolution representa-
tion with the (Bessel) convolution kernel (7). The significance of Bessel potentials is that the Sobolev space
L5(R%) can be defined in terms of J, as a subspace of LP(R%) consisting of all functions, which can be
written in the form Jog, where g € LP(R?) (see. [66] chap. V). The wide range of applications of Sobolev
spaces in harmonic analysis and partial differential equations is very well-known. Surprisingly, the explicit
formulas for harmonic measures and Green functions for half-lines (half-spaces) are known only recently.
Such formulas for half-lines and half-spaces were provided in [D1] from my Ph.D. Thesis. Unfortunately,
the proof was not constructive and consequently it can not be applied to find the formulas for different
-sets such as an interval. The results of [H1] are based on the different approach (rewriting the problem in
the context of Bessel-Brownian diffusions), which in particular enable us to solve the problem for intervals

and strips.
Half-line. We begin our considerations with the problem of two-dimensional Bessel-Brownian diffusion

(R_a/ ? B(t)) hitting one-dimensional half-line D = (—00,0) C R, i.e. we define
D1 = {(y1,%2) € R*: 31 = 0,52 > 0}° = ({0} x D)°
and the first exit time of Y from the set D) by _
=inf{t>0:Y ¢ D1} =inf{t > 0: R;*’*=0AB(t) > 0}.
We prove the following theorem.

Theorem 3 (Theorem 4.4 w [H1]). For (R(_aﬂ) B(0)) = (21,292) € Dl, 21 >0, A > 0 the measure
e

s absolutely continuous with respect to the Lebesgue measure on o half-line r > 0 with the density function
given by

& _ o0
(2] + 22) T (|2] — 2) 3 / e~(stis(2 _ \2yaltr_, (@m m) ds
A

(
2ET(L)ra/s

For z; =0 and 29 = u < 0 we have

sin(ra/2) <—u (©)

™

) /2 e—Mr—u)

EC) [ ¥y, ; B(rp,) € dr} = .
r—u

"

The main idea of the proof is to adopt the very well-known conformal invariance property of Wiener
process on a plane to our setting. More precisely, the image of complex Brownian motion B; + iBs by
a holomorphic function f : C — C is a time-changed complex Brownian motion. The change of time is
described by the integral functional fot |f'(B(s))?ds. Surprisingly, a similar phenomenon appears also in
the context of Bessel-Brownian diffusions. Since its proof depends on stochastic analysis methods, it is



convenient to consider squared Bessel processes instead of Bessel processes. Let us denote by Y = (V1, Y2)
a process described by

{ dY1 = 2/V1dB1 + (2 — a)dt , (10)
dYs = dpy ’

where ;1 and By are independent Brownian motions.Consequently, Y is just Bessel-Brownian diffusion Y
with the first coordinate squared (changing from Bessel process to corresponding squared Bessel process).
Moreover, we consider two independent squared Bessel processes

dX; =2/ X1dB1 + (2 — a)dt
dXo = 24/ XodBs + (2 - Ot)dt ’

and define Z = (7, Zp) = f(X1, Xs), where f(z,y) = (4zy,y? —22). We prove (see Section 2 in [H1]) that
the function f transform two independent squared Bessel processes (X1, X2) into Y with time changed,
i.e. Y = Z ooy, where oy = inf{t > 0: A;(t) > s} is generalized inverse to the integral functional

Ar(t) =4 /0 (X2(5) + Xa(8))ds.

This fact follows from the It6 formula and the Lévy characterization. Choosing the form of the function f we
took pattern from the holomorphic function z — —42? = 28232 +i((32)? — (R2)?). The appearance of the
coefficient —i is technical. Since we work with squared Bessel processes we have to take square root of the
coordinates and then we take the second power of the first coordinate, i.e. f(z1,22) = ((2y/Z1v/72)% /Z2 —
\/55—12). Moreover, the function f transforms

H = {(z1,z2) € [0,00) x [0,00) : z1 > 0}

into Dp and the first exit time of (X3, X3) from H, i.e. 7 = inf{t > 0: X;(t) = 0}, corresponds to the
first hitting time of a half-line {0} x [0,00) by Z = (Z1, Z2) (see Fig. 1). More precisely, we have

Lemma 2 (Lemma 4.1 w [H1]). The distribution of (7p,,Y (p,)) with respect to PW1¥2) is the same as
the distribution of (A1(7w), f(X (Tg))) with respect to PEL22)  where f(z1,22) = (y1,12).

This result translates the problem of finding the distributions of hitting times and hitting places for
Bessel-Brownian diffusion (here the hitting time depends on both coordinates) to the similar one, but for
two independent squared Bessel processes (X1, X2), where the first hitting time depends only on the first
of them. The cost of this transformation is an appearance of more complicated object A;(7y) in a place
of 7p,. However, using the fact that A4;(¢) is a sum of two integrals depending on X; and X5 respectively,
we can reduce the problem to one dimension. Indeed, independence of X; and X implies that

(21,02) | =20 Ar(rar) *
E\@L®2) e T ANTH) Xo (1) € dr | = w(dt, z1)Y(t, ze,dr),
0
where
/\2 TH
w(t, zg) = E™ [exp <—?/ Xl(s)ds> \TH € dt] ,
0
and

Y(t, zg, dr) = E*? l:exp <——)\2—2 /t XQ(S)dS) 1 Xa(t) € d’r‘:l .
0
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Figure 1: Trace of the trajectory of (X1, X2) stopped at the first exit time from H and its image by the
function f.

The above-given expressions are indeed one-dimensional (75 depends only on X;) and well-known in the
theory of Bessel processes. The explicit formulas for these distributions in terms of the Whittaker functions
. and the modified Bessel functions are also obtained in Lemmas 4.2 and 4.3 in [H1] and they lead directly
to the expressions given in Theorem 3.

Two half-lines. Next, we consider two-dimensional Bessel-Brownian diffusion Y = (R~%/2, B(t))
hitting two distinct half-lines and this part relates to m-harmonic measure of an interval for relativistic
process. Let us define

Cr = {(y1,%2) € [0,00) x R:y1 =0, |gs| > 1}°
and let 7o, time be the first exit of Y from Cf, i.e.
e, = inf{t > 0: RCY? =0 A |B(t)| > 1}

We provide the following description of the Laplace transform of the first exit time and the distribution of
the hitting place.

Theorem 4 (Theorem 4.6 in [H1]). For (Ro—a/z), B(0)) = (21,22) € C1 and r > 29 > 1 we have

E@12) e“%TCI'B(T )Edr| == _t 1 /%me 9, (1) WA () B} (22)¢%, 5 (r)d¥
NG (r2 — 1)z 2mi % _joo s A Ui A ’
where
1
o= 3 <\/z%+ (z2+1)24+1/28 + (22— 1)2> ,
1
T = 3 (\/szr (224 1) - \/Zer (22 — 1)2>
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Figure 2: Trace of the trajectory of (X1, X3) stopped at the first exit time from H and its image by the
function A.
and the function my »(-) is the solution of the following differential equation

(1-2%)y"(2) - (2 - e)zy'(z) - V(1 -2*) + 2)y(z) = 0, |z <1, (11)

with boundary conditions my x(—1) = 0, my x(1) = 1. The functions qbg, NOK: ¢$,A(') are respectively
increasing and decreasing independent positive solutions of the differential equation

(2= 1y"(r) + 2 - a)ry(r) - V2 —1)+20)y(r) = 0, r>1. (12)
satisfying limg_,14 qS;)\(as) =0, limg_ye0 ¢1¢,Y)‘(x) =0 and

2
(1 - r2)2/2-1W{g} \, 65 ,}(r)’

wy(9) =

where W{(/b;)\, ¢1‘;’,\} s the Wronskian of the pair {¢QT,,)\, ¢1¢9,>\}‘

The main idea of the proof is similar as in the previous case. We begin with the process Y described
by the equations (10) and two independent one-dimensional diffusions

2 —
aX; = /[T = X7[dB1 - — < Xyt )
22 ) 13
dXy = /| X2 — 1]dBs + Ta|X2|dt
where | X1(0)] < 1 and X3(0) > 1. The first one is a version of the Legendre process and the other one is

the so-called hyperbolic Bessel process. We have X1(t) € [-1,1] and Xo(¢) > 1. We define h: R? — R?
by h(z1,22) = ((1 — 22)(23 — 1), z122). The function A is a bijection between

G = {(z1,22) € [-1,1] x [L,00) : =1 < zy < 1}
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and C1. As previously, we show that the process Z = (Z1, Z3) = h(X1, X2) is just Y = (Y1, Y3) with its
time changed by o2, which is generalized inverse to the integral functional

t
A(t) = /0 (X2(s) — X3(s))ds.

The form of i was postulated on basis of the formula z — sin(z) = sin(Rz)ch(Sz) + ish(S2) cos(Rz) and
a very simple observation: for o = 0 the processes Xi(t) = sinBi(t) and X(t) = cosh Ba(t) solve the
above-given stochastic differential equations. Despite the fact that for « € (0,2) we do not have such nice
representations, using the same function h leads to the relation between the distributions of the processes
(Xl,XQ) and (Yl, Yg)

Lemma 3 (Lemat 4.5 w [H1]). The distribution (1c,,Y (1¢,)) with respect to PWL¥2) is the same as the
distribution of (Aa(7a), h(X (7)) with respect to PEL22) | where h(z1,22) = (1, y2).

Also in this case the functional Ay(t) is a sum of two integrals depending only on X7 and X respectively,
and the first exit time from G is independent from X5. Consequently, we can translate the problem to one-
dimensional ones. Unfortunately, the theory of the processes described by 13 is not well-developed. Thus,
we use the general theory of Feynmann-Kac semi-groups to reduce our considerations to solving certain
second-order differential equations. However, the equations, which are called spheroidal wave equation, are
quite general and there is a lack of analytical tools to study and describe such equations and their solutions,
which can lead to more transparent representation of the studied distributions. However, for A = 0 the
formulas can be used to provide the formula for the Poisson kernel of an interval for symmetric a-stable
process (Corollary 4,7 in [H1]), which were originally obtained by M. Riesz using Kelvin transform.

Multi-dimensional case. We consider the following multi-dimensional generalizations of the sets C;

and D

D'n, = {y € Rn+1 ‘Y= 07 Y2 > O}Cy
Ch {ye R™!:y =0, lya] > 1}°.

The first one is just the complement of n-dimensional half-space in R™*! and the other is the complement
of n-dimensional strip. We denote the first exit times of Bessel-Brownian diffusion Y = (R, o/ 2,B”(t))
from the sets by 7p, and 7¢,. They are also the first hitting times of half-space and strip codimension
1. At the beginning we deal with set D, assuming additionally that the diffusion starts from y € R™+!
such that y; = 0. Note that this is the crucial case to determine m-harmonic measure for corresponding

relativistic a-stable process.

Theorem 5 (Theorem 5.1 in [H1]). Fory = (0,y2,...,Ynt+1) such that yo < 0 we have

. sin(me/2) [—y2\% 1 |6 — y?
Ey[TDn c dt, Y('TDn) c dU] = m (0_—2> t1+n/2 exXp (—T N (14)

wheret >0 and & = (09,...,0n41) € R", 09 > 0.

This representation is proved by finding the distribution of (7p,, B(7p,)), which can be obtained by
inverting the Laplace transform and the formula (9). Simplicity of the formula in (9) (compare with the
case y1 > 0), is crucial and enable us to compute the inverse Laplace transform effectively. Since the
half-space D,, is a Cartesian product of D; and R™™!, the first exit time depends only on the first two
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coordinates and practically it coincides with 7p,. Thus we can find the distribution of (1p,, B(7p,)) using
the one-dimensional result. v

Since in the general case the formula in (9) is very complicated, inverting the Laplace transform and
finding the distribution of (7p,, B(7p,)) for y1 > 0 is very difficult. Thus, we limit ourselves to find the
Laplace transform in time and distribution of place, i.e. the multi-dimensional generalization of Theorem
3. Here we use the Markov property, the formula (4) for the first hitting time of zero by Bessel process and
the one-dimensional result.

Theorem 6 (Theorem 5.2 in [H1|). For y € R™! such that (y1,92,. .., Yn+1) € Dy we have

ntea

P i oer" " Kapa(Ay—5))
BHlemons ¥lrn,) € 48} = G sgait (a2) 1y~ 35

N 2\ 7 Knra(Ay = 2) Kn (Mo — 2
+cn;ay1a)\n+5/ (_;’2) 2 nto 25 I ~| I)dz’
(reooxrrt \ G2 )y 55 |5 23
where ¢p o = W% and & = (02,...,0n41) € R®, 09 > 0.
For y; = 0 we get
2 2si 2AV2 [ o\ 2 K oMy — &
B0 Y, ) € do) = BN ()T LB 2T (15
285" o2 ly — &/

The formula for m-harmonic measure of half-space for relativistic a-stable process with parameter m,
obtained previously in [D2] using different methods, follows immediately and we get

COROLLARY 7 (Corollary 5.3 in [H1]). Let Dy, C R™ be the half-space {% € R™, z; <0} C R™. Then the
" m-Poisson kernel of Dy, for relativistic a-stable process with parameter m > 0 is given by

PE (4,6) =

2sin(ra/2)mza <—y1 )W Ky jo(ma | — 5))
Dy n+2

o1 |7 — 5]7/2

where § = (y1,...,yn) € Dp 16 = (01,...,00) € DE. For m = 0 we obtain the Poisson kernel of Dy for
the standard isotropic a-stable process given by the formula

_ o sin(ma/2)T(L) -\ 1
PDn (y’ J) = nt2 2 o2 i n’
T2 1 l I

Due to very complicated nature of the distributions given in Theorem 4, we introduce the following
notation

A2

H(z, 20, A\, 1) = E(z122) [e_Tml;Bz(TCI) € dr] , |rl > 1,

where (21, 22) € C1. Moreover, let

2
h(\,y,5) = EY[e=F "0 BMrg,) € d6], & = (02, ...,0nt1) € R™, |oa| > 1.

We characterise the Laplace transform of the hitting time and the distribution of the hitting place of a
strip (i.e. the function h given above) by computing its Fourier transform.
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Theorem 8 (Theorem 5.4 in [H1]). Letn > 2. Fory = (0,y2,...,Yns1), such that |ya| < 1 and 7z € R*?

we have
/ h(Ay, 6)ei(6'2)d6 = H(0,y2, /|7 — 2|2 + A2, 09). (16)
Rﬂ—l

Here 6 = (09,7).
An immediate consequence of the above-given result is the following

CoroLLARY 9 (Corollary 5.5 in [H1]). Assume that n > 2. Let C, C R™ be the strip {& € R™; |z1] <
1} ¢ R". Then the (n — 1)-dimensional Fourier transform of m-Poisson kernel of Cy, for the relativistic
a-stable process with parameter m > 0 is given by

/ PZ(§,6)¢PdG = H(0,y1,/17 — 21+ m¥*, 0y) ,
RrRn-1 n

where § = (Y1,...,9n) € Cy 15 = (01,5) € CE.

In the case of interval (strip) the nature of the problem appeared to be very complicated. Nevertheless,
we were able to provide closed description of the corresponding harmonic measures for the relativistic
processes. However, these results show that it was impossible to "guess"’ the form of the distributions (as
it was done in [D2]) without finding effective methods to determine them.

Hitting sets of codimension 2 and further applications.

In the last part of the work [H1] we present an application of the obtained results to determine the
distributions of the hitting time and the hitting place of (n — 1)-dimensional sets by (n + 1)-dimensional
diffusions. Let Y = (Y3, Bi, By,..., By) be the Bessel-Brownian diffusion in R™*!, where Y; is Bessel
process with index —a/2 for o € (1,2). Consider the complement in R™*! of the (n — 1)-dimensional

half-space
]yn ::{y € I{n+d ‘Y1 ::O,yQ =:0ay3:> O}c

and let us denote by 7g, the first exit time of Y from Hy, i.e. the first hitting time of the half-space of
codimension 2. Note that the process Z = 1/Y;? + B? is Bessel process with index (1 — «)/2, which follows
from additive property of the squared Bessel processes. Consequently, the process W = (Z, Bs,...,By,) is
n~-dimensional Bessel-Brownian diffusion. Defining

H,={feR":y1=0,52 >0}

observe that Y exits H, when W leaves H, and consequently we can translate our question into the
corresponding one for W and H,,. Thus, using the previous results with n replaced by n— 1 and « changed

into o — 1, we get

Theorem 10 (Theorem 5.6 in [H1]). Fory € R, such that v+ 43 > 04 1 < o < 2 we have

2y} +93) " AT Kapa(ly — 7))

2 .
EY[e~ % ", Y(rg,) € d5] =

o n—2+a

@) 2T T(%)  y-o|™
:z_3> 5 Kuzzea (Ay - 2) Kaca (M — Zl)dz

+G. 2 2/ (
vits (-00,0)xR2=2 \ 03

T niota n-1 ’
ly— 22 7 — 2|
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where » B

4sin(m2 ) (yf +93)"7 A

yity; 22n 3+°‘7|-n]_"(9_l)
3

2n—3+a

and & = (03,...,0n41) € R"™, 03 > 0. Fory; =y, = 0 we get

2sin(r &L\ —y T Knoi(Aly - 5))
BY 2 ki SOV R AN S 2
le” s Y(ra,) € d] = n;lﬂ_n;}—l ( 3 > ly — 5| (D72

For n = 2 the first formula can be simplified to

a—1 a—1

E' > 5 TH 3) 4 (| l_ 3)
(Z 122,23) e 2 2 B (TF{ ) e dr (I Zl Z z 2 2

(45
o a—1i
X / e~Ual4ms (g2 _ 32)%F (\/—\/lzl + 23y/s% — ) (17)
A
where |z| = \/2% + 23 + 2% and 23 + 22 > 0.

Once again, we can translate the result to obtain the harmonic measures formulas for the relativistic
processes

X

CoROLLARY 11 (Corollary 5.7 in [H1]). Letj?g C R? be the complement of the half-line {% € R? z; =
0, xo > 0} C R?. Then m-Poisson kernel Hy for the relativistic a-stable process with parameter m > 0

and 1 < a < 2 is given by

_ (7 +3) 5 (1] - 90)°F
23—(—( )r(a 1)/4

00
X / | e hHne(s2 m2/°‘)TII1—Ta (\/2—7"\/ 9] 4+ 2 V5% — m2/a) ds
ma

Pm(~

where T > 0 and § = (y1,92) € Hy, y1 #0. Ify1 =0 and ya < 0 we have

sin(m (e —1)/2) (jz) (012 g=ml/2(r—w)
- .

PR (5,r) = T -

For m = 0 we obtain the Poisson kernel of Hy for the standard isotropic a-stable process given by the
formula

a—1 a—1
_ (19 +32) 7 (19] —v2) 2

Py (§,r) = 1) (
2= 4 I‘(—"‘gl)r(a—l)/‘l

y / eI %5 11y (v /I ) ds (18)
0

where v > 0 and § = (y1,y2) € Hy, 11 #0. Ifyy =0 and y2 < 0 we have
sin(r(a — 1)/2) (:y_2>(“"’1)/2 1
T

T r—au

Pflz ((0,30),7) =
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In the multidimensional case the result is as follows

COROLLARY 12 (Corollary 5.8 in [H1]). Let H, C R™ be the complement of the (n — 1)-dimensional half-
space {& € R™; z1 = 0,25 > 0} € R™. Then m-Poisson kernel ofH for the relativistic a-stable process
with parameter z parametrem m >0 and 1 < a < 2 is given by

2sin(m(a - 1)/2)m3s (1) @012 K,y n(mi g - o))
g2

P™ (7.5) =
Hn(y’ J) 2nT~-17T_nT+1 ],g — 5'(71—-1)/2 !

where §= (y1,...,Yn);y1 = 0,92 < 0 and & = (09, ...,0,);09 > 0.

For m = 0 we obtain the Poisson kernel of the H,, for the standard isotropic a-stable process given by

the formula
P. (5.5) = sin(m(e— 1)/2)D(B52) /_gp\ @ D2
a,\%0)= Trn-zl—l 02 . |7 — 5In—-1.

Note that these formulas were unknown even in the most classical case of the standard isotropic a-stable
process (for m = 0)

Sharp two-sided estimates on first hitting time density (paper [H2])

The next natural question in this context relates to Bessel processes hitting a point @ > 0. It turns out
that this problem is much more complicated and significantly departs from the case @ = 0. It should be
emphasized that we consider situation when a process starts from 2 >.a, i.e. leaving a half-space (a, c0)
(the opposite case when z < a was studied in [P13]). Thus, we consider the whole range of the indices
u € R, since in the obvious way we have T, < Tp (“ )-as and we do not have to take care of the
boundary conditions at zero (i.e. for every boundary condltlon the result is the same). From the other
side, the absolute continuity property (2) allows to reduce the problem to the case u > 0 (or u < 0). It
this place, it is worth mentioning that the first hitting times of a given level for Bessel process are related
to the geometric Brownian motion. Using the Lamperti representation (see. [51]) we can show

T, L A0(r) = o? [ exp(28, ~ 2us) s, (19)
0

where the distribution of Ty is considered with respect to ng‘). Here ; is Wiener process starting from
0 and 7, = inf{t > 0 : zexp(B: — ut) = a}. The integral functional A%(¢) has been a subject of study in
substantial number of papers (1], [3], [4],[5], [25], [15], [16], [29], [33], [52], [53], [64], [69], [70] in connection
with its wide range of applications in financial mathematics, diffusions theory or representation of hyperbolic
Brownian motion. The hitting distributions T;, were studied in 1970s and 1980s by Kent [44], Getoor and
Sharp[30], Pitman and Yor [60]. Kent [44] computed the Laplace transform of T}, which is given by

A2 a\r K, (z)
B exp(- 5 T.) = (2" TAZ)

, A>0.

Kyu(al)

Various ratios of Bessel functions were proved to be completely monotonic functions hence they are Laplace
transforms of probability distributions [37], [38], [39]. This topic became popular once again in the be-
ginning of our century [3], [4], [10], since the development of the potential theory of hyperbolic Brownian

motion required better description of the density function of p¥ (T, € dt). The article [H2] fits to this
trend and it is devoted to describe the behaviour of the density function of the first hitting time of @ > 0
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by Bessel process with index p € R. Let us denote by g(“ )( t) the density of the distribution of T, with
respect to the Lebesgue measure, i.e.

PUN(T, € dt)

g (t) = —

Using the scaling properties of Bessel processes we can write

(/l) (t/a)
qg(c,g(t) = m/%———, x>a >0,

and it allow us to reduce our considerations to the case ¢ = 1. Finding the estimates of qa(;“ ) (t) directly
from the formula for the Laplace transform seems to be impossible. Thus, the key result here is the integral
representation of q(” )( t) in terms of the modified Bessel functions provided in [11]

Theorem 1 (Byczkowski, Ryznar 2006). For u > 0 there is a function wy such that

-x2/2t [, u—1/2 o0
" [ T —K,
Qa(vl,l)(t) =A— o ( t +/0 : (e - 1) wA(v)dv) ’ (20)

where k= K(V) = A+ )2 = A2 =v(2A+v), and A =z — L.

The function w) appearing in the above-given representation is a sum of two components
wx(v) = w A (v) + wa A (v), (21)

where the first one is given in terms of the (complex) zeros {z1,...2,}, ks € N, of the analytical extension
of Ky(2)

/\zz iL 31 -

"B Vt
W) = =5 Z
A =1
The other component has an integral representation

N TS I, (zu) Ky (u) — 1,
wnaw) = —eos(r) [

;4121

)SK” (zv) e MYy dy, (22)

(u
+ sin(mpe) K, ()2

This theorem is an excellent example showing how much the case a > 0 differs from the case ¢ = 0. The
complexity of these formulas contrasts with the very simple formula for q(“ )( t) given in (4). From the other
side it naturally raises the question of more accessible description of q(” )( t) by providing its estimates.
Some results related to the asymptotics of q(“ ) (t) can be found in [11]. Note that some deeper analysis

of the asymptotic behavior of q(” ) (t) and the cumulative distributional function of T, was made in later
papers (the results of [36] were announced on arXiv.org 9 month later then [H2]) of Y. Hamana and H.
Matsumoto [34], [35], [36]. The main aim of [H2| was to provided sharp two-sided estlmates on q(“ )( t) for
every £ > 0 and t > 0 and the result is given in the following theorem. Here f(¢,z) S 9(t,z) means that
there exist constants ¢ (1), c2(1) (depending only on ), such that e1(u)g(t, z) < f(t,z) < co(u)g(t, z) for
every x and t. ‘
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Theorem 2 (Theorem 2 in [H2]). For every p # 0 we have

(23)

1 ) e—(m—1)2/2t x2ll‘|—1

Wy £ (0 —
q:z;,l (t) ~ (‘T 1) (1 + 2 $3/2 (t + x)l#l_l/Q

for every x > 1 and t > 0. Moreover

O () x (- e"@-V/2 [y 1+Ing
To 1\ 1372 z  (Q+In(+t/2)0+ 0 +)

for every x > 1 and t > 0.

We have to indicate that the formulation (not the proof) of Theorem 2 in the published version of the
article is incorrect. Instead of (¢ + 2)*=1/2 in the denominator of the right-hand side of (23) there is an
expression ¢#1=1/2 1 gl¥l=1/2_ For |u| > 1/2 both functions are comparable. However, for |u| < 1/2 there
is a mistake, which was noticed and corrected in [H3]. The direct consequences of the result are the sharp
two-sided estimates on the density of the first hitting time of unit sphere by the n-dimensional Wiener
process

Theorem 3 (Theorem 3 in [H2]). Let o™ e the first hitting time of o unit ball by n-dimensional Brownian
motion W = {Wt(n),t > 0}, e

o™ = inf{t > 0; W = 1}.
Then, for Wén) =z € R™ such that |z] > 1 we have

Pe(c™ edt) |o|—1e(el-D)%/2 1

dt 'xl +3/2 t(n—3)/2 4 '$|(n_3)/2’ n> 2,

for every t > 0. Moreover, we have

Pw(O'(Q) S dt) — IiEI —_ 16_(|x|_1)2/2t (lx, -+ t)1/2 . 1 4 log I.TI
dt || 32 (1+log(1 + I—;—|))(1 + log(t + |z]))

Once again, the scaling properties implies the corresponding result for spheres with radius r > 0. Note
that we described very complicated (in the analytical sense) function qi’f 1) (t) by very simple elementary
functions for the whole range of space and time parameters with constants depending only on the index
of the process. On the other side, it seems to be very rare in the diffusion theory to find sharp two-
sided estimates which precisely describe the exponential behaviour of the density. Moreover, even the
result for the hitting time of a Brownian motion is new. Known results of this kind are usually only
quantitatively sharp, i.e. the constants appearing in the exponential terms are different in the lower and
upper bounds. Such estimates for Brownian motion in more general setting of Riemannian manifolds are
given in [32], where we have the expressions exp(—c;|z|2/t) with different constants c; and ¢y in lower and
upper bounds, respectively. It makes the estimates precise only for |z|?> < ¢. Theorem 2 can be treated
as an complement of [32], where we remove this defect and we generalize the result for Bessel processes of
any dimension (index). Due to (19), we immediately obtain the estimates for the integral functionals of
geometric Brownian motion.

Note also the different nature of the estimates for 4 = 0. The appearance of the logarithmic function is
not surprising if we remember that the Bessel process with index 0 relates to the two-dimensional Brownian
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motion. Wiener process is quite exceptional just to mention its recurrent character or the logarithmic
character of the compensated potentials in comparison with the power potentials in other dimensions.
Technical reason for appearance of logarithmic functions for x = 0 is the fact that the modified Bessel
function of the second kind Kp(z) behaves as —Inz at zero, where for u # 0 we have K,(2) ~ z7#, as
z — 0%, However, the logarithmic term in (23) matters only when ¢ is large in comparison to 2. In the
other case, it is comparable with a constant and the estimates for 4 = 0 and p # 0 are of the same type.

Finally, in some cases we get more accurate results than it follows from Theorem 2. The following
lemma gives the estimates when ¢/ is small, but in fact it is stronger result, which gives the second term
of the asymptotic expansion for ¢t/z — 0.

Lemma 4 (Lemma 4 in [H2]). For u > 0 we have

—A2/4t 4,2
(1) 4 € u—1/2 1-4p°t
Qa:,l (t) - /\(27r)1/2t3/2x (1 + 8 z + E(ta $) y

where the error term satisfies the following estimate
IB(t,2)| < CL(vin )
T T A

Moreover, for 0 < u < 1/2 we get
e—A?/2t

—A2/4t 1._ 4 2 t
u=1/2 (=) e 4-1/2 LA
)\—(Zw)l/zt‘g/?l <gpp (H) <A (1 + a:>

= Yan)zgEr” g

for everyx > 1,t > 0.

Proofs. In general, the proof of Theorem 2 relays on very delicate and often laborious estimates of
the elements of the integral representation from [11], which makes the article very technical. However, it
is important to emphasize that the main advantage of the paper is very precise and simple to formulate
result with technical, laborious and arduous proof. Thus, we will discuss the main steps and ideas of the
proof without going into complicated details. Since the absolute continuity property implies

() = M), t>02>1, (24)
we will consider only the case of non-positive indices —g for ¢ > 0. Moreover, we will use the following
notation & = k(v) = (A +v)? — A2 = 9(2X + v) and A = z — 1 introduced previously in the representation
(20). In [H2|, we dropped the index 1 in the notation of the density and wrote qg(f ) (t) instead of qa(g’_l“ ) (t),

however we will write qi}“ ) (t) to keep the notation of the Summary consistent. The first step of the proof
is to show the formula given in Lemma 4. Using the integral representation (20) together with the formula

/oow (v)dv = x#—l/z( 2_1/4)
0 A - 2 M )

proved in [11], we show that



The estimates of w(v) given in the Appendix give then the desired upper-bounds for E(z,t). Additional
properties for 0 < p < 1/2 follows from the simple relations

0< /w(e_“/zt — Dwy(v)dv < — /00 wy(v)dv = 2*~Y2(1/4 - p?) /2z.
Jo Jo

The nest step is to extend the result for z/t > C for arbitrary constant C' > 0. Recall that Lemma 4
provides the estimates for z/t > C' for C sufficiently large and consequently it remains to show them for
C < z/t < ', where C and C’ are arbitrary constants.

Lemma 5 (Lemma 6 in [H2]). For every C > 0 there exists ¢; > 0 depending on C and p > 0 such that

1 —AZ/2t
._Ae
el $3/2

12 < qi’_lu) (t) < e1A

whenever x > Ct and z > 1.

Unfortunately, the published version of the Lemma contains an error and instead of the correct inequal-
ity > Ct we have opposite one x < Ct. Moreover, the role of the constants C' and C’ was reversed in
the proof. However, the key part of the proof for C < z/t < C’ is correct and it is about showing that the

ratio of qa(E“ 1) (t) and the expression on the right-hand side of (23) has a limit when z/t tends to a constant
¢ > 0 and at the same time 2 — oo (Proposition 5 in [H2]). We explore here the explicit formula for wy(v).
Then, using the open cover method and the absolute continuity property (2) we provide the bounds. The
result for z/t > C' for €’ sufficiently large (not for sufficiently small as it is written) follows immediately
from Lemma 4.

Next two lemmas relates to the case, where ¢ is relatively large in comparison to z and, as we have
just mentioned, we have to distinguish u # 0 from u = 0 in our considerations. This part of the work is
the most technical and mostly relays on very careful estimates of the integrals. We begin with the special
case, where u —1/2 € N. The modified Bessel functions Kj.1/5(2), | € N, are then elementary functions
and consequently the function wy(v) simplifies. In particular, ws »(v) = 0, since we have cos(nu) = 0 (see

(22)). It leads to the following result.

Lemma 6 (Lemma 7 in [H2]). Suppose that 1~ 1/2 € N. We have the following expansion

W2 )
(=) py _ (2 1) —AZ/2t L
Q():,l (t) - F(,U;)2ﬂ € t”’+1 (1 + E(.’D, t))

There is a constant ¢ > 0 such that for t > 0,
|B(=,1)] < e,

The proof is based on the integral representation (24) from [11], which is some slight modification of
the one given in (20) . Tt is about careful study of the proof of the asymptotic behaviour of qg’l(t), when
t — oo and z > 0 is fixed, which was given in [11]. In our case, the dependence on z of the constant
appearing as the limit is crucial and the proof concentrate on this relation. We use here the strong Markov
property and the known results for the first hitting time of zero.

For p—1/2 ¢ N we split qg(ﬁftl) (t) into two parts relating to wy y(v), for which the proof is the same as
in Lemma 6, and the one corresponding to ws »(v). We use the estimates of the integrand (22) to find the

bounds of wy »(v) and we get
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Lemma 7 (Lemma 8 in [H2]). Let p — 1/2 ¢ N and let | = [u+ 1/2]. There are constants ¢1,c2,¢3
depending only on u such that

Azl A2/t x\i-pt+1/2 _ D T
@t © L= (Z) >ng ) <@g,

fort>z > 1. Note that! —p+1/2> 0.
The result of the last lemma covers the case u = 0 and the missing bounds for t/x large.
Lemma 8 (Lemma 9 in [H2]). Let u = 0. Fort > 2z,
(O)(t) A e~ /2t 1+logz
z t  (L+logi)(1+logt)

qm,l
Once again, the careful estimates of wy(v) and the successive study of the behaviour of each integral
give the result. The sharp estimates of wy(v), which are crucial here as well as in many other parts of the
proof, are given in Appendix (Lemma 14, Lemma 16 and Lemma 17) to the paper.

Applications. The first direct consequence of Theorem 2 are sharp estimates of the survival proba-
bilities, i.e. the probability that the process starting from z > 1 does not hit 1 before time ¢t > 0. We
consider here the case of non-negative indices and using (24) we get

PUA(E<T) = 2 PM(t < Ty < 00), u>0.

In particular, for u > 0 we have Pg”) (Ty =00) = 1 —z72~,

Theorem 4 (Theorem 4 in [H2|). let u > 0. Then, for everyt >0 and x > 1, we have
z-1 1

Vanita 1t +a

PW(t < Ty < oo0) w

Moreover, for everyt > 0 and x > 1,. we have

logz
log(1 +t1/2)

Another application of the results are the precise bounds for the Poisson kernel of the half-space for
hyperbolic Brownian motion with drift. We consider here a half-space model of real hyperbolic space of
dimension n

PO >t ~ 1A

H* ={y=(y1,-- -, ¥n—1,9n) : Yn > 0}
and the Laplace-Beltrami operator associated with the hyperbolic metric on H" given by

5 02 )
Aprn = — — (N — 2)Yn=—.
H Un 22:; (9‘1]12 (TL )yn s

Hyperbolic Brownian motion with drift is a diffusion on H", with the infinitesimal generator of the form
%AHn. Replacing the term (n—2) by (2u—1), g > 0, in the above-given formula we obtain an operator A,

and the corresponding diffusion Yt(“ ) is called hyperbolic Brownian motion with drift. The more detailed
description of hyperbolic spaces and hyperbolic Brownian motion is given in Section 5.2, where we will
discuss the potential theory on hyperbolic spaces. Let us consider the set D = {y € H" : y, > 1} (the
boundary of D is a horocycle in H"). We denote by PW(y,2), y € D, z € OD, its Poisson kernel, i.e. the

density function (with respect to the surface measure) of a random variable YT(g) , where 7p = inf{t > 0:
Y;(“ ) ¢ D} is the first exit time from D.
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Theorem 5 (Theorem 5 in [H2]). For every p > 0 we have

1 p—1/2
Py ) n Y - -
.2) |z —y|™ (coshdm]n(y’ z) ’ "

where y = (§,Yn), Yn > 1 and 2 = (3,1), Z € R* 1,
The hyperbolic metric appearihg above is characterized by the formula,

_ ’y - le n
coshdyn(y,2) =1+ ——, y,z€H"
2Ynzn
The set D is unbounded in this metric and consequently we can not apply the general theory of compara-
bility of potential theories (in particular Poisson kernels and Green functions) for strongly elliptic operators

with their classical analogues. Moreover, such comparability does not hold for u # 1/2, and the difference
1/2
between hyperbolic kernel and Euclidean kernel of D is described by (coshd?,%)u .

Sharp two-sided estimates on heat kernel on half-line (a,c0) (papers [H3] and [H4])

The last part of the habilitation thesis is devoted to provide sharp two-sided bounds on the transition
probability density for Bessel process starting from z > o and killed at the first hitting time of @ > 0, i.e.

the function
pg")(t,x,y) = E:(v“)[t < Ty Xi € dy)/mP(dy), z,y>a, t>0.

In other words, we consider Bessel process with index p € R up to time 7,. The above-given density is
described by the Hunt formula in the following way

p((z”)(t)xay) = p('u)(t’x’y) - E:(t”)[t > Tayp(#)(t - Ta; R(Ta),y)]a T,y >a, t>0.

Continuity of the paths implies that R(T,) = a a.s. and consequently we can write
t
ri#(t,z,y) = B[t > Ty, pW(t — To, R(To), )] = /0 p(t — 5, 0,)q)(s)ds. (26)

The probabilistic approach is not the only one in this context. In the theory of partial differential equations
the function pg" ) (t,z,y) is a fundamental solution to the heat equation based on the Bessel operator, i.e.
O — %L(”). In the most classical case, when the Bessel operator is replaced by Laplacian, the problem
of estimating the Dirichlet heat kernels on subsets of R™ has a very long history and it is impossible to
mention all the results and research on this topic. However, it goes back to 1980s and the works of E.B.
Davies [22], [19], [20], [21], through the Q.S. Zhang work [71], where we can find the bounds for C1:!
domains, up to the paper [64], where much more general operators were studied in this context. A quite
comprehensive description of such results can be found in [65].

The main results of the papers [H3] and [H4] are
Theorem 13 (Theorem 1 in [H3]). Let pn# 0 and a > 0. We have

- 2
PR VPR OB PN o) [ Cll)] sy\2 1 1 ey
(¢, z,v) 1A : (1/\ ; ) —(g;y)u+1/2\/{eXp 5 , (27)

for every x,y > a and t > 0.
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Theorem 14 (Theorem 1 in [H4]). For every a > 0 we have

-1 2.4 .2
Ot ) s Il , 3t 3t 1 z°+y
py (tx,y) ~In(z/a) In(y/a (ln In —exp | — ,  xy <t, 28)
o (hey) (¢/a)In(y/a) ax +avt ay+avi ¢ P 2t W (28)

and

= (1A ETA) L)

where z,y > a and t > 0,

Note the different nature of the estimates depending on whether i is zero or not. This duality causes
that the proof of the first part of Theorem 14 require different methods and consequently it has resulted in
the separate publication. The both results give bounds for the whole range of space z,y > a and time £ > 0
parameters. Most importantly, the description of the exponential behaviour of p((l” ) (t,z,y) is very precise
The known results for a Wiener process [71] (classical Laplacian with Dirichlet boundary conditions) are
only quantitatively sharp, i.e. there are different constants in the exponential terms in the upper and lower
bounds. Even more surprising, there are no sharp estimates for Laplacian on the two-dimensional ball as
well as for heat kernels on manifolds [65]. The precise sharp result for the Fourier-Bessel kernels, i.e. the
corresponding transition probability density of Bessel process killed upon leaving the interval [0, 1), were

provided only recently in [P13]. Note that for u # 0 we can write

(1) _ —
wé 1/\£§M 1Vi , Ty>a, t>0,
P (t,2,1) ‘ 7y

and
pg“)(t,a;, Y) & Pg‘) (T,E“) > t)P;“) (T(E”) > tpM (@, z,y), zy <t

The last bound above is a very common way to estimate a heat kernel of a subset by a product of survival
probabilities and a global heat kernel. Usually, the time variable ¢ in p(®) (t,z,y) is multiplied by different
constants in the lower and upper bounds. (see. Theorem 5.16 in [65]). In our result, the constants are the
same. Moreover, we show that for zy > ¢ the kernel p((L“ )(t, z,y) does not behave like the right-hand side of
the above-given estimates, i.e. the bounds for p,(f ) (t,z,5)/p"(t, 2, 1), when zy > t, can not be factorize
as a product of survival probabilities or any other product of the form f(t,z)f(t,y) for some function f.

It is caused by the accuracy of our estimates.
The absolute continuity property let us consider only the case, where p has a constant sign. From

technical reasons, we choose this time y to be non-negative.
Proof of Theorem 13 is divided in the natural way into two parts, related to zy/t small and large
respectively. The case p = 1/2 is the starting point for our considerations, since in this case the function

I j5(2) as well as qg(gll/ 2) (t) can be expressed in terms of elementary functions. Consequently, by the Hunt
formula (26), it leads to

and immediately implies the estimates for u = 1/2. By the absolute continuity property, we also get
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Proposition 15 (Proposition 1 in [H3]). For up>1/2> v > 0 we have

y n—1/2 v—1/2 v
(5" o2 < o820 3,9) < <(4) T tay)

for every x,y > 1 and t > 0.

The inequalities of the similar kinds hold also for the density of the first hitting times and are given
in Lemma 1 in [H3]. The above-given bounds are optimal, i.e. they give the upper-bounds for u > 1/2
and the lower-bounds for v < 1/2 from (27), whenever zy > t. The proof of the remaining estimates
(lower-bounds for 1 > 1/2 and upper-bounds for » < 1/2) is also divided into cases relating to the distance
of the space variables ¢ and y to the boundary of (1,00). Assuming that z and y are bounded away from
1, the right-hand side of (27) is comparable with p(#)(¢, z, ) and the estimates in this case are given in

Proposition 16 (Proposition 3 in [H3]). Let u > 1/2 > v > 0. Then there exist constants C’l("), 02(” )> 0
and C(“) > 1 such that :

v+1/2 2 u+1/2
() (V) 1 ( (z-y) ) (1) (x) ( )
oh t, x, exp | ———— ) < C, - t,z,1
<y) ( y) \/z p £ = Oy y ( J)

whenever xy > t and the upper bounds are Ualzd with additional assumption x,y > C’(/‘)

The proof for 1/2 > v > 0 follows immediately from the obvious relation p (¢, z,y) < p™ (¢, ,y). For

© > 1/2 we show that r#(t, z,7) < I W) (¢, &, y) and consequently p(” (t,z,y) > p(“)(t z,y). Here we
use the results of Proposition 15, the mentioned inequalities for the first hitting times densities (Lemma, 1
in [H3]) and the formula for b= 1/2. When z and y are bounded (i.e. close to boundary) the bounds are

provided in

Proposition 17 (Proposition 4 in [H3]). For fized m > 0 and p > 1/2 > v > 0 there exist constants
C'i”), C’é") > 0 such that

pt1/2
ONES (u) (z— 1)(y 3] (z=1)?
Cy <y) (t,z,v) (1/\ )\/-exp( o )
and

(o) b (L)t (3

whenever (x Ay)? > mt.

Once again we use (2) and we estimate the integral functional fj ! R™2(s)ds up to time Tj, where
b= ((zAy)+1)/2, using the obvious relation Ty > T;. The scaling property allow us to change p(’ )(t, z,Y),

appearing in the estimates as the result of replacmg T by T3, back to p(“ (t,z,y). Moreover, for zy > t,
z, y < C for a fixed C' > 1, we have (z Ay)? > C~lzy > C~!, and we can use the above-given result (for

= 1/C} to obtain the required bounds.
The last case, i.e. when one of the space variable is close to 1 and the other is large (unbounded), is

studied in the following two propositions related to v € (0,1/2) and p > 1/2 respectively.
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Proposition 18 (Proposition 5 in [H3]). For v € (0,1/2) there exists constant 05(?) > 0 such that

,2,0) < 00— (4) ey (_(i;tﬁ> (1 A (@_—_Ut&;}z)

forl<z <2<y andxy>t.

Proposition 19 (Proposition 6 in [H3]). For every u > 1/2 and ¢ > 1 there exists C’(“ )( ) > 0 such that
foreveryl <z <ciy>5c(u+1) we have

whenever xy > t.

The proofs are in general analytical and based on a delicate analysis of the Hunt formula and an
estimates of r%” ) (t,z,y) taking into account the cancellations between p(*)(¢, z;,y) and 7"1“ (1) (t,z,y), but at
the same we can not lose control on the exponential behaviour of the density. We use the explicit formula
for p® (¢, z,y) and some properties of I u(2). In particular, we apply the estimates for the ration of the
modified Bessel functions I, (z)/I,(y) proved by A. Laforgia in [50].

We start the proof of (27) for zy/t small with providing the upper-bounds.

Proposition 20 (Proposition 7 in [H3]). For every p > Othere ezists constant C’.E” )'> 0 such that

ut+1/2 2,2
2 <owr! ly—1 1 @ty
(t,z,y) < C7 P t \/EGXP 9 ,

whenever xy < t.

In the easiest case, i.e. for z,y > 2 (both variables bounded away from 1), the inequality is just

(s )(t,x,y) < p(t,2,y). Note that for zy < t assuming additionally z,y < 2, the expression |z — y|2/t
is bounded and consequently the exponential terms in (27) vanish, which simplifies the consideration.
We only have to take into account the decay of p(” ), (t,2,y) near boundary. Using the simple inequality
(” ) (t,z,y) < pW(t,z,y) < cle“— together with the Chapmann-Kolmogorov equation we obtain the

bounds in terms of the product of survival probabilities and p(*) (t,2,y). Then, the estimates from Theorem
4from [H2] give the result. Finally, for 1 < z < 2 and y > 2 we apply the estimates for first hitting time
density given in Theorem 2 and we make delicate estimates of the obtained expressions.

The case of the lower-bounds for zy < tis d1v1ded into two propositions separately covering the situation

when (y — 1)2 /t is large and small.

Proposition 21 (Proposition 8 in [H3]). For every pp > 0 and m > 1 there exists constant C’é“ ) (m) >0
such that

(»)
pr (4=, ) (u r—1
L0207 o =, y>a>1,
pW(t, z,y) ~ (m)= x

whenever xy < mt and (y;tl)i >2(p+1).
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Proposition 22 (Proposition 9 in [H3]). For every u > 0 there exists CI) > 0 such that

)
pgﬂ (t’x>y) >C(N)x—1y_1

) > >1)
Pt zy) ~ 0 2 v=7

whenever zy < t and (y_tl)z <2(u+1).

The proof of Proposition 21 is analytical and once again based on the properties of the modified Bessel
functions and delicate estimates of the expressions appearing in the Hunt formula. The second part follows
from the Chapmann-Kolmogorov equation where we change the range of integration in such way that we
can use the previously proved estimates for zy > ¢. It leads to split the double integral into product of two
depending only on z and y respectively. Moreover, these integrals can be estimated by using Proposition
21. ’

Applications. The bounds from Theorem 13 can be used to obtain sharp two-sided estimates of the
A-Green function of the half-space (the set bounded by a horocycle) for the hyperbolic Brownian motion
with drift. This result was obtained in [P12] described below.

Proof of Theorem 14 relates only to the case zy < t. As we have mentioned, the estimates for zy/t
are of the same form for every u € R and the proofs given in [H3] can be directly applied for y = 0. In
[H4] they are presented in the shorten version adapted to the case u = 0 (Propositions 4.1 and 4.2 in [H4])
_ for the completeness of the exposure and convenient of the Reader. Thus, we will not discuss them here.

We begin the description of the logarithmic behaviour for zy < t with a simple observation that for
1<z <y and zy <t we have 22 < ¢ and consequently, the estimates (28) can be rewritten in the simpler

following forms

Inzlny
0 0 2
t’m’ ~ t’x’ ) S t’
pi(t,z,y) 23 P (t 2,y) y
and )
ng 2
t,z2,y) ® ——— 2, y), > t.
n(tz,y) n(3t/9) p(t,z,y) y

We start with the first one, i.e. the case where y2/t is bounded above by a constant.

Proposition 23 (Proposition 3.1 in [H4]). For every m > 2 we have

Inzlny 4
t’ 3 ]
(@ 7 oY)

m
Pt 2,y) =

where xy <t and y? < mt.

The upper-bounds can be obtained by applying (two times) the Chapmann-Kolmogorov equation, the
estimate
POt 2,9) < pO(t,2,y) <1/t
and the estimates of the survival probabilities (Theorem 4). The lower-bounds require changing the range
of integration in the Chapmann-Kolmogorov equation to [2v/m¢,3v/mt] and the following estimates

Inz
In(3t)

The above-given bound follows from the Hunt formula and the inequalities for the rations Io(z)/Io(w)
given in [50]. We also use here the monotonicity of  — pO(t,z,y) for 2z <y, 4% > 4t (see Remark 2.2 in
[H4]), which follows from the estimates for the derivative of the function given in Lemma 2.1 in [H4]. The
most difficult and the most important part of the proof relates to the case, where y2/t is sufficiently large.

p(o)(t,x,y), l<z<y/2, y>1+2V1

pg,O)(t: z, y) Z Cm
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Proposition 24 (Proposition 3.2 in [H4]). We have

(0) Inz
i ~
pl ( 7$)y) ln(St/y)

POt 2,9),

where zy < t and y? > 16t.

We write

2, z,7) PO y) - O, 1,y) +/°°q(o)(s)ds+/t O, 1,y) —p(o)(t—s,l,y)q(o)(s) ds
pO(t, z,y) pO(¢,1,9) ol 0 pO(¢,1,y) ol '

and reduce the problem to estimating the above-given three components. The first one, relating to the
explicit formula for the probability transition density, can be simply estimated using the Lagrange theorem.
The behaviour of the second one is known by the estimates of the survival probabilities. However, both of
them are dominated by the third one. We provide the bounds for the integral component by splitting the
range of integration into [0, 2z), [2z, 4t%/y?), [4t%/y?,t] and estimating the integrand separately on each of
them. We show that for 0 < s < 4y?/t? we have

p(o)(t> 17 y) - p(O) (t — S, 1’ y) ~ 83—/—2-

pO(t,1,y) 2’

by delicate and quite technical estimates of the expressions involving the function Iy(z). The bounds for
qﬂ(s) from Theorem 2 let us find the bounds for the integrals over [0, 2x) and [2x,4t2/y?). In the case
s > 4y?/t?, once again analysing the formula for p{© (¢, z,), we show that

pO(t,1,y) — pO(t — 5,1,y)
pO(t,1,y)

is comparable with a constant and consequently we get the estimates of the integral over [4t%/y2, 1] using
the bounds for qg(s) from [H2]. This ends the proof.
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5. Description of other scientific achievements

Besides the four papers, which constitute mono-thematic series of publications, after Ph.D., I published
thirteen articles and additional one article was accepted and it has been waiting for publication since March
2015. Total number of my publications is 20, the number of citations, according to the Web of Science
database ("Sum of the Times Cited’ on 2016-04-13), is 98 (71 without auto-citations), and the h-index
(Hirsh index) is 6. Total impact factor of the journals for four publications constituting the scientific
achievement, according to the Journal Citation Reports, is 3,576; total impact factor of the journals for all
20 publications is 18,044, see Table 1.

Table 1: Impact factor of the journals according to Journal Citation Report from the publication
year (or the year in parentheses for publications from 2016)

publication journal publication year impact factor
] Potential Anal, 2010 0,853
[H2] Potential Anal. 2013 1,048
[H3] Potential Anal. 2015 0,992
[H4] Math. Nachr. 2016 0.683 (2015)
[P1] Collog. Math. 2010 -
[P2] Proc. London Math. Soc. 2010 1.243
[P3] Demonstratio Math. 2012 -
[P4] J. Differential Equations 2012 1.480
[P5] Colloq. Math. 2012 0.403
[P6] J. Math. Phys. 2013 1.176
[P7] Stoch. Proc. Appl. 2013 _ 1.046
[P8] Annals Probab. 2013 1.431
[PY] Rev. Math. Phys. 2013 1.448
[P10] Electron. J. Probab. 2014 0.765
[P11] Ann. Inst. Henri Poincaré (B) 2015* 1.059
[P12] Studia Math. 2015 0.610
[P13] J. Math. Anal. Appl. 2016 1.120 (2015)
[P14] J. Math. Anal. Appl. 2016 1.120 (2015)
[D1] Trans. Amer. Math. Soc. 2009 1,060
[D2] Potential Anal. 2007 0.507
Sum: 18,044

* - article [P11] has been waiting for publication since March 2015.

[P1] T. Byczkowski, J. Matecki, T. Zak, Feynman-Kac formula, A~Poisson kernels and X-Green functions
of half-spaces and balls in hyperbolic spaces, Collog. Math. 118, 201-222 (2010).

[P2] T.Kulczycki, M. Kwasnicki, J. Matecki, A. Stés, Spectral properties of the Cauchy process on half-line
and interval, Proc. London Math. Soc. 101(2), 589-622 (2010).

[P3] J. Malecki, G. Serafin, Hitting hyperbolic half-space, Demonstratio Math. 45(2), 337-360 (2012).
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[P4] J. Lorinczi, J. Malecki, Spectral properties of the massless relativistic harmonic oscillator, J. Differ-
ential Equations 253, 2846--2871 (2012).

[P5] T. Byczkowski, J. Chorowski, P. Graczyk, J. Malecki, Hitting half-spaces or spheres by the Ornstein-
Uhlenbeck type diffusions, Colloq. Math. 129, 145-171 (2012).

[P6] P. Graczyk, J. Malecki, Multidimensional Yamada- Watanabe theorem and its applications to particle
systems, J. Math. Phys. 54, 021503 (2013)

[P7] M. Kwasnicki, J. Malecki, M. Ryznar, First passage times for subordinate Brownian motions, Stoch.
Proc. Appl. 123(5), 1820—1850 (2013).

[P8] M. Kwasnicki, J. Malecki, M. Ryznar, Suprema of Lévy processes, Annals Probab. 41(3B), 2047-2065
(2013).

[P9] K. Kaleta, M. Kwasnicki, J. Malecki, One-dimensional quasi-relativistic particle in the boz, Rev.
Math. Phys. 25(8), 1350014 (2013).

[P10] P. Graczyk, J. Malecki, Strong solutions of non-colliding particle systems, Electron. J. Probab.
19(119), 1-21 (2014).

[P11] L. Chaumont, J. Malecki, On the asymptotic behavior of the density of the supremum of Lévy pro-
cesses, Ann. Inst. Henri Poincaré (B), in print, http://imstat.org/aihp/accepted.html (2015).

[P12] K. Bogus, T. Byczkowski, J. Malecki, Sharp estimates of Green function of hyperbolic Brounian
motion, Studia Math. 228(3), 197-222 (2015).

[P13] J. Malecki, G. Serafin, T. Zérawik Fourier-Bessel heat kernel estimates, J. Math. Anal. Appl. 439(1),
91-102 (2016). '

[P14] K. Kaleta, M. Kwasnicki, J. Malecki, Asymptotic estimate of eigenvalues of pseudo-differential op-
erators in an interval J. Math. Anal. Appl. 439(2), 896-924 (2016).

Before Ph.D. I published the following two papers, which will not be discussed here.

[D1] T. Byczkowski, J. Malecki, M. Ryznar, Bessel potentials, hitting distributions and Green functions,
Trans. Amer. Math. Soc. 361, 4871-4900 (2009).

[D2] T. Byczkowski, J. Malecki, Poisson kernel and Green function of the ball in real hyperbolic spaces,
Potential Anal. 27(1), 1-26 (2007).

I will now discuss the results obtained in the papers [P1]-[P14]. For clarity, the description is divided
into four sections relating to my main research interests.

5.1 Bessel process on an interval

The direct continuation of the papers [H1]-[H4] is [P13], where the estimates of the Fourier-Bessel heat

kernels, i.e. the probability transition density for Bessel process killed upon leaving the interval [0, 1), were
studied. Since we now deal with the bounded set, the kernel has its representation in terms of eigenvalues
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and eigenfunctions, which in this case are given by the Bessel functions of the first kind J,(z) and its zeros
Anp- '

Jo(An @)y (An vy
G{(z,y) = 2(zy)~ Zexp /\2t V(Izil()A:E/)Téu)’ z,y € (0,1), t>0,

where v > —1. Fourier-Bessel expansions appeared in the famous book of J. Fouriera [27] in 1822 to study
the heat propagation in cylinders. However, such expansions had been used even before, for example by
D. Bernoulli (1732) to describe an oscillation of a hanging chain or L. Euler (1764) to examine vibrations
of circular diaphragm. Despite the fact that it is an element of such classical theory the estimates of the
Fourier-Bessel heat kernel for the whole range of parameters were proved only recently in [58], [59]. Once
again the result is only quantitatively sharp, i.e. we have different constants in the exponential terms
in upper and lower bounds. Note that the estimates for large ts can be quite easily obtained from the
above-given spectral representation, since the first term decides about the behaviour of the whole series.
However, for ¢t small, this representation becomes of no use, because the terms of the series are highly
oscillating and all of them matter. This is way we use the probabilistic approach. In particular, the Hunt
formula for G¥(z,y) enables us to find sharp two-sided estimates for the whole range of parameters of the

form (Thm 1.1 in [P13])
14 ¢+ —z)(1— 1 —y|?
GY (2, y) @+ (1 A w) = exp (J"E 4ty| _ A%,;ﬁ) ,

(t -+ xy)”+1/2 t \/Z

for every z,y € (0,1) and ¢ > 0, where v > —1. We simultaneously provide sharp two-sided estimates for
the transition probability density of Bessel process starting from z < a killed at the first hitting time of a
(Corollary 1.1 in [P13]) and analogous result for the first exit time from the interval (0,1) (Corollary 1.2
in [P13]). In both results we precisely describe the exponential behaviour.

5.2 Potential theory on hyperbolic spaces

The publications [P1], [P3], [P5],[P12] are continuations of the research started in my Ph. D. thesis
(see [D2]) and they are related to the potential theory of hyperbolic Brownian motion. In particular, we
focus on finding descriptions of Poisson kernels and Green functions of balls, sets bounded by horocycles
" and half-spaces. The model of hyperbolic half-space is a set H" = {zx € R™ : z,, > 0} equipped with the
Riemann metric given by ds? = dz?/zZ. The hyperbolic distance is then determined by the equation

cosh(dyn (z,y)) =1+ ICE_—__Z_/E’ z,y € H"
’ 22nYn ’

and the Laplace-Beltrami operator (defined as the diver 5ence of the gradient) is the second order differential
operator

5 ", 92 a
n=a2Y oy — (0= 2)Tns—.
Ay xz 2 3$i (n - 2)zy, i

In the disc model D® = {z € R™: |z| < 1} with the metric ds?> = |dz|?/(1 — |z|?)" the hyperbolic distance
is given by

2|z —y?

(1 [z - [y?)’

cosh(2dpn (z,y)) =1+ z,y € D",
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and the corresponding Laplace-Beltrami operator on D" is
a2 N~ O 2 - 9
Apn = (1 — — +2(n—2)(1— .
= (=o' Y g + 2=l L

Both models are isomorphic. However, it is more convenient to deal with balls in the disc model and with
horocycles and half-spaces in the half-space model H". Hyperbolic Brownian motion (HBM) X = (X;):>0
is the diffusion on H™ (on D" respectively) with %A]}Hn (resp. %ADn) as its infinitesimal generator. If we
replace the factor n by 24+ 1 in the formulas for Laplace-Beltrami operators, we will say about hyperbolic
Brownian motion with drift. Recall that for D C H" (resp. D) and A > 0 we define A\-harmonic measure
as

PA(z, A) = E*[e=TD, Xy €A, zeD, A€dD,

and A-Green function of a set D is an integral kernel of the A-Green operator
oo
GHf(z) = / e ME[t < 7p; f(Xy)]dt, z € D.
0

Here 7p is the first exit time of the process from D. In [P1] we unify, sort and expand the results of [D1],
[10], [72] related to the harmonic measures and the Green functions of balls D, = {z € D" : 2| < r < 1}
and half-spaces D, = {x € H" : z,, > a > 0}. The balls with Euclidean radius r < 1 coincide with the
centred hyperbolic balls (with hyperbolic radius %ln %—J_f%) The results for balls with any centre can be
immediately obtained by using the group of hyperbolic isometrics and the invariance property of HBM.
Using the Feynmann-Kac techniques we derive formulas for the Fourier transform A-harmonic measure of
D, and the corresponding A-Green function in terms of the modified Bessel functions I,(z) and K, (2).
The results related to harmonic measures generalize those given in [10], where the formula for the Poisson
kernel was provided (the case of A = 0) and the characterization of A\-Green function had not been known
before (even for A = 0). The description of A-harmonic measure and A-Green function of a ball D, is
based on finding their Gegenbauer transform (i.e. the expansion of the functions in series of ultraspherical
polynomials). Representing the process in terms of its radial and spherical parts we reduce the problem
to solving the appropriate second order differential equation, which leads to the formulas in terms of the
hypergeometric function o /. These results generalize the results from [D2], where only the case A = 0 was
studied. We do a similar analysis in the complex case, which expands the results from [72] for any A > 0.

The paper [P3] is devoted to study HBM with drift on H" killed upon leaving the hyperbolic half-space,
i.e. the set D = {z € H" : z; > 0}. The name "hyperbolic half-space" is justified by the fact that there
exists an isometry of H” transforming D into the interior of its complement and D is in this sense a""half"’
of the space. We start with proving the reflection principle and we use it to find the transition probability
density of HBM killed when leaving D. Then we provide formulas for the Green function and the Poisson
kernel of D in terms of the Legendre functions QP(2) and P2(z). These representations lead to sharp
two-sided estimates and asymptotics behaviour descriptions of the objects. In the last part of the paper
we apply the results to study A-harmonic measure and A-Green function of D.

The aim of the paper [P5] was to describe the general method leading to explicit formulas for the hitting
distributions of a set D C R" for Ornstein-Uhlenbec type processes, i.e. diffusions in R"” with A+ F(z)-V
as its infinitesimal generator. Here we assume additionally that the vector field F is orthogonal to the
boundary of D. In particular, the method leads to new integral representations for the Poisson kernel of a
half-space and a ball for HBM. Using new formulas we show some estimates and asymptotics of the kernel.
The full description by providing sharp two-sided estimates are given in Theorem 5 from [H2]. Additionally,
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we apply the method to find the hitting distribution of a ball by classical Ornstein-Uhlenbeck process (i.e.
for F(z) = Az, A € R).

The characterization of the A-Green function of a half-space from [P1] is very complicated and it is
hard to use it to provide estimates. Thus, the aim of the paper [P12] was to fulfil this gap and describe
the Green function by providing sharp both-sided estimates for the whole range of parameters. Note once
again that the considered set is unbounded and thus we can not apply the general theory of comparability
of potential theory for strongly elliptic operators [17]. However, we use the representation of the HBM with
drift on H™ in terms of geometric Brownian motion, subordinated Wiener process of codimension 1 and
Lamperti theorem to reduce the problem to study the transition probability density for a Bessel process
killed at point a. Thus, the main result of [H3] can be here applied to prove the desired bounds. Then, we
aplly the estimates of the Green function for HBM with drift to find the estimates for the A-Green function
of the set.

5.3 Spectral analysis of jump processes

The papers [P2], [P4], [P9] and [P14] are devoted to spectral analysis of operators related to one-
dimensional jump processes. On the one side, the research contribute in the theory of non-local operators.
On the other side, the knowledge of the semigroup of a killed process provides deeper understanding of
its behaviour and properties. This subject was intensively developed in the last years by, among others,
Bafiuelos, Chen, DeBlassie, Kulezycki, Song in the context of a-stable processes and related processes.

In the paper [P2] we study the Cauchy process on a half-space using the relations of the generator of the
process, i.e. the fractional Laplacian (o = 1/2) and the Dirichlet-Neumann operator for two-dimensional
Laplacian in the upper half-space. Translating the one-dimensional problem to the corresponding two-
dimensional one for a Wiener process (with appropriate boundary conditions) we provide explicit formula
for generalized eigenfunctions for square root of Laplacian on a half-line. Then we use the result to
approximate the eigenvalues and eigenfunctions for the operator on the interval (—1,1). T particular, we
show that all the eigenvalues are simple and we derive their asymptotics. We also prove the upper and
lower bounds for the eigenvalues using the Rayleigh-Ritz method and the approximation based on Legendre
polynomials, which then are applied to numerical computations.

. d?
We continue the research on —1/—@ in [P4], however this time we do not kill the process upon

leaving a set, but we consider killing with time by adding the Schrédinger potential of the form z2. Then
the killed semigroup generated by the operator is compact and it has a discreet spectrum. Using the
Fourier transform we reduce the problem of finding the eigenvalues and eigenfunctions to solving the Airy
equation and consequently we identify the eigenvalues as the appropriate zeros of Airy functions and the
eigenfunctions as integrals of Airy functions A%(z). In the paper [P4] we provide numerical computations
and the asymptotic expansions for the eigenvalues as well as the asymptotics of their trace and the estimates
of the spectral gap, i.e. the difference between the first two eigenvalues. We derive very accurate asymptotic
expansions for the eigenfunctions at infinity, their Maclaurin series expansions and we prove the uniform
boundedness of the eigenfunctions. Moreover, we show that every eigenfunction has finite number of zeros,
the first eigenfunction (the ground state) decreases on [0, c0) and it is concave on some neighbourhood of
zero and convex for sufficiently large arguments. We finish the article with some analysis of the transition
probability density p(¢,z,y) of the process showing its continuity on [0,00) x R? and providing sharp
two-sided estimates for t > 1.

The articles [P9] and [P14] continue the research initiated in [P2] and further developed in [49] related to
approximation of the eigenfunctions on intervals A, by the generalized eigenfunctions on a half-line derived
in [48]. This method gives asymptotics of the eigenvalues Ap, when n — co. In the paper [P9] we consider
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the special case of the Klein-Gordon square-root operator (8) (i.e. quasi-relativistic Hamiltonian), which
has very important applications in Physics. In particular, the eigenvalues for the Klein-Gordon operator on
intervals (—a, a) relate to the energy levels of quasi-relativistic particle in the infinite square potential well.
We show that all the energy levels E, are non-generated (i.e. the eigenvalues are simple) and E,, behaves
at infinity as (% — %)% +0(1/n) (we assume here that m = 1). Moreover, we provide the estimates, which
give control on the lower order component at the expense of transparency of the main term or its accuracy.
Finally, we show the uniform boundedness of the eigenfunctions. In [P14] we expand the results for the
operators of the form 1(—A), where 9 is a complete Bernstein function such that £4(£) tends to infinity
when £ — oo. From probabilistic point of view, we consider subordinated Brownian motions, where the
Laplace exponent of the subordinator is ¢(£). We prove that the eigenvalues for ¢)(—A) on interval (-1,1)
fulfils A, = ¥(un) + O(1/n), where the sequence u, is defined by a functional equation, which enable us to
find the asymptotics of u, at infinity. Since the considered problem is much more general, the description
here is less precise. However, such accurate control on the constants appearing in the estimates as in [P9]
is not available in full generality.

5.4 Supremum functional of Lévy processes

In the papers [P7], [P8], [P11] we consider a one-dimensional Lévy motion X = (X¢);>0, i.e. a stochastic
process starting from zero and having independent, stationary increments and cadlag trajectories, We
denote by ¥(¢) its characteristic Lévy-Khintchine exponent, i.e.

Elexp(i¢ X,)] = e™®), ¢eR.

One of the most important object of the fluctuation theory of Lévy process is a supremum functional
' X; = sup{Xs : 0 < s < t}. The supremum functional increases only at first passage times 7, = inf{t >
0: X; > a}, and the set (74, Xr,) : @ > 0 has the regenerative property. Therefore, it coincides with the
range of a two-dimensional Lévy process with increasing coordinates (a bi-variate subordinator), which is
called the ascending ladder process. Its Laplace exponent is denoted by (¢, z), where the first coordinate
relates to the co-called ladder-time process and the second one to the ladder-height process. We also denote
by h(z) the increasing co-harmonic function in (0, c0), which from the other-side is the renewal function
for the ladder-height process. Despite the great theoretical significance, numerous practical applications
(including risk theory or queuing theories) and the enormous literature raised on the subject, the explicit
formulas for the distribution of X; or the description in terms of the estimates were known until recently
only in very few cases. Baxter and Donsker [2] derived double Laplace transform of X; (with respect to
the time and space variables), however, inverting the formula is a very difficult task. Consequently, the
explicit formulas for the supremum distribution are known only for a Wiener process (due to the refection
principle), a symmetric Cauchy process [18], a compound Poisson process with ¥(¢) = 1 — cosé [2] and a
Poisson process with drift [61]. The next results of this kind were published fifty years later by Kuznetsov
[47] and are related to series representations of the supremum distribution for stable processes. The results
of the papers [P7], [P8], [P11] can be treated as a continuation of the classical research from 1950s and the
motivation was to describe the supremum functional for the broadest possible class of Lévy processes.
In the article [P7], we study some properties of the cumulative distribution function of Xj, i.e. the
function P(X; < z). Under mild assumptions, we show the following bounds

P(X; < z) = min{1, h(z)x(1/t,0)}, =,t>0.

In the symmetric case, under some not very demanding assumptions on regularity of ¥(£), we show that
h(z) = 1/4/¥(1/z). Since for symmetric processes we always have x(z,0) = /z, it gives the estimates
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of the cumulative distribution function for every ¢,z > 0 in terms of the Lévy-Khintchine exponent.
Moreover, the constants are absolute and they do not depend on the process. Furthermore, for ¥(¢) being
the increasing characteristic exponent of symmetric process, we. provide the integral representation of the
Laplace transform of X, i.e. we invert the Baxter-Donsker formula with respect to the time variable.
Finally, we derive the integral formulas for h(z) and its derivative A'(z) in the special case, when ¥(¢) is
given by a complete Bernstein function.

The paper [P8] is devoted to deeper analysis of the symmetric case under additional assumption that
U(€) = 1(€2), where 1(€) is a complete Bernstein function. It means that the original Lévy process is just
a subordinated Brownian motion, where the Lévy measure of the subordinator has a complete monotone
density. It is easy to see that P(r; > ¢) =P (Yt < z), where 7, is the previously defined first passage time
of a given level > 0. Thus, the results of [P7] can be directly translated into the corresponding ones for
P(7; > t). In particular, we use the integral representation of the Laplace transform of X; from [P7] to
derive the integral representation of P(r, > ¢) (equivalently for P(X; < z)) in terms of the generalized
eigenfunctions F(z) studied by Kwasnicki [48]. Moreover, we provide the analogous representations for the
derivatives d"/dt"P (7, > t). We also generalize the results of [48] by proving the so-called /2-conjecture
(Lemma 3.1 in [P8]). Careful analysis of the behaviour of Fy(z) let us derive sharp two-sided bounds for
d"/dt"P(ry > t) for large times ¢t and small z and the corresponding asymptotics for ¢t — co and z — 0.

The last publication [P11] is devoted to study the properties of the supremum density function f(z) =
P(X; € dz)/dz, z > 0. It is a natural continuation of [P7] and the research of Chaumont from [13], where
the absolute continuity. of different distributions related to supremum function was studied. In particular,
the very useful representation of fi(z) in terms of the entrance law of the reflected excursions g (dz) was
proved. Under the mild assumption that there exists bounded probability density function of the original
process, excluding compound Poisson processes and subordinators, we show that fi(z)/h/(z) tends to
n(t< () = f0°° ¢:(dz) uniformly on [tg, 00) for every given ¢y > 0. Under additional assumption that the
Laplace exponent of the ladder time process is regularly varying, we establish the asymptotic of fi(z) for
t"— 00. We also prove the bounds for f,(z) for small z and large ¢, which become sharp under regularity
assumption for k(a,0). Moreover, we show that the continuity of f;(z) at some z > 0 is equivalent to
continuity at every z > 0 and also to continnity of A/(z). Then we use the results to study the properties
of the Lévy processes conditioned to stay positive and its meanders.

5.4 Non-colliding particle systems

We will discuss the results from [P6] and [P10], which are devoted to study properties of solutions
to stochastic differential equations describing the so-called non-colliding particle systems and the corre-
sponding matrix stochastic differential equations. Natural step in developing the Bessel processes theory
is finding its matrix analogue. Thus, let us denote by N; a Brownian p x n matrix for n = 1,2,... (ie. a
matrix process, where the entries are independent one-dimensional Brownian motions). Put X; = NtT N;
and it is an analogue and generalization of the construction of the squared Bessel process we begin this
Summary with. Similarly as in the one-dimensional case, we can show that such process with values in S,
(symmetric p x p matrices) is a solution to the following stochastic differential equation

dX, = /X AW, + dWEV/ X + aldt,  Xo = a, (29)

with a = n, where W = (W) is a Brownian p X p matrix. The matrix equation (29) was studied by M.F.

Bru [7, 8, 9], who showed in particular that for zg € S (positive-definite matrices) and o > p — 1 there
exists a unique weak solution of (29). Moreover, for xp € SF and o > p+ 1 there exists unique strong

solution and any solution starting from zg € S,'," stays in SZ',F , whenever & > p — 1. Such solutions are
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called matriz squared Bessel processes or Wishart processes. We do not know if the pathwise uniqueness
holds for (29) in the case a € (p — 1,p + 1), since there is no multidimensional (matrix) version of the
one-dimensional Yamada-Watanabe theorem. Consequently, there are no tools to show the uniqueness of
a strong solution in the case, where solutions hit the boundary of St (Le. for v € (p—1,p+1)). Bridging
the gap in the theory was the motivation for the research done in [P6] and [P10].

It turns out that the process A(t) = (Ai(f),..., A\p(t)) of increasingly ordered eigenvalues of X; is very
important in studying the properties of X;. F01 xo € S (the set of symmetric matrices with distinct
eigenvalues) it is described by the following system of SDEs

dXi = 2¢/|N|dB; + a+zli\l+l;‘l dt, i=1,...,p.
J=#i

Note the similarities between these equations and (1) and the additional expression appearing in the drift
parts related to the repulsive forces between eigenvalues. The interest in such systes of SDEs comes not
only from the above given relation to matrix SDEs [23], [24], [46], but must of all with their wide range of
applications in various models of mathematical physics and physical statistics [40], [41], [42], [43].

In the paper [P6] we consider the generalization of (29) of the form

dX; = g(Xp)dWih(Xy) + h(X:)dW g(Xy) + b(Xp)dt, Xo = o,

where functions g, h,b: R — R appearing above act spectrally on Sp. First of all, we derive the systems
of SDEs describing the eigenfunctions and eigenvalues of a solution in both real and complex cases. In
particular, assuming that 2o € S, the SDEs for the eigenvaleus are goven by

)\,,)\)

dX; = 2g(N)h(N)du; + B | B +Z dt, i=1,...,p. (30)

J#i

for 8 =1 (real case) and 8 = 2 (complex case). Here G(z,y) = ¢*(z)h(y) + g*(v)h?(z). However, appli-
cations in physical statistics statistic mechanical models for log-gases, see [28]) require study of the whole
range of B > 0. We prove some special multidimensional version of the Yamada-Watanabe theorem and
we apply it to show existence and uniqueness of solutions to the systems describing eigenvalues and eigen-
functions up to the first collision time. Moreover, we provide some sufficient conditions on the coefficients
of the SDEs which prevent the eigenvalues A; from collisions in finite time. Uniqueness of the solutions to
the SDEs for eigenvalues and eigenfunctions does not imply the corresponding result for the matrix SDE,
but it emphasizes the advantages of the description of the solutions to (30) in terms of its eigenvalues and
eigenfunctions.

In all the results from [P6] we assume that the eigenvalues of the starting point are all distinct. Un-
fortunately, the start from collision points (all the eigenvalues equal for ¢ = 0) is quite often crucial in
applications. For example, if we consider the simplest case of Brownian motion in Sy, it is the most natural
to assume that it starts from 0, i.e. A;(0) = 0 for every ¢ = 1,...,p. Analogously, applications of the
square Bessel particle systems in some models of mathematical physics require studying the case, where
Ai(0) = 0 for every 7. The paper [P10] is devoted to this issue, i.e. we study the existence, uniqueness and
behaviour of solutions to the following SDEs system

H.‘ ..,
dlL’i = O'i(wi)dBi + bi(xi) + Z ;f(ilmxj) dt7 L= l) D (31)
g#
() () <. Saplt), £20. (32)



Note that such systems are more general than previously, the coefficients in the martingale parts and drift
parts can change (they depend on 4 and j). Additionally, now we do not require that the particle are distinct
for t =0, i.e. we allow that 2;(0) = z;(0) for some ¢ # j. However, we assume that Hi;(z,y) = Hj(y, ),
ie. the particles push each other with the same force. The key idea to deal with such systems of SDEs
is to look at symmetric polynomials of (z1,...,%,). The symmetry of H described above implies that
in the SDEs for symmetric polynomials the problematic expressions (z; — 2;)~! vanish and the collisions
between particles does not cause any problem for the symmetric polynomials. Thus, we find the SDEs for
the symmetric polynomials and use them to show that, under appropriate assumptions on the coefficients,
the eigenvalues become immediately distinct (if starting from collisions) and never collide again. It enable
us to construct a solution of (31) and show that pathwise uniqueness holds (by analogue of Yamada-
Watanabe). Our assumptions and requirements on the coefficients of the equations have their heuristic
(physical) explanations or motivated by some examples. Finally, we apply our theory to many important
and classical examples of particle systems having their theoretical and practical applications.
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