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I. Introduction

The classical Schrodinger equation, formulated in 1926 by the Austrian physicist Erwin
Schrédinger, is one of the key equations of non-relativistic quantum mechanics. It describes
the evolution of the quantum state of the physical system. The Schrédinger operator, which
acts as the energy operator (the so-called Hamiltonian) of the system, is the main object of
the theory. For a single particle moving in a potential V, this operator takes the following

form in the position representation
H=Hy+YV,

where Hy = —A, and V is the multiplication operator. The stationary states of the system
are described by the time-independent Schrodinger equation, which takes the form of the
eigenequation Hyp = Agp. Since the Laplace operator A is the infinitesimal generator of
the Brownian motion, the properties of H and the solutions of this eigenproblem can be
effectively investigated by probabilistic methods [66].

Tt follows from the special theory of relativity that in the case of particles moving at high
velocities (the case of high energies) the kinetic term H, should be chosen differently (see
e.g. [50]). Certain approximations of relativistic theory are often realized through models
based on the so-called non-local Schrédinger operators. In this case, Hy = —L, where L is the
generator of some Lévy process with jumps. The key examples are the operators H based on

L=-(-A +m¥*)*% 4+ m and L= *(—A>a/2’ a€(0,2), m>0,

called respectively quasi-relativistic and ultra-relativistic (or fractional) Schrodinger opera-
tors. .




The evolution semigroups of non-local Schrédinger operators can be represented via the
Feynman-Kac formula based on Lévy processes with jumps. This allows one to study their
properties using probabilistic methods. In recent years, Markov processes with jumps and
non-local pseudo-differential operators have received much attention in both pure and applied
mathematics. Jump processes provide new methods in scientific modelling, in particular they
allow us to model discontinuous phenomena, providing realistic correctives and refinements
to established theories.

The theory of non-local Schrédinger operators underwent rapid development over the
last 30 years. Spectral and analytic properties of such operators together with their evolu-
tion semigroups have been investigated by many excellent mathematicians and physicists by
both analytic and probabilistic methods. Among researchers who contributed to the sub-
ject one can mention Bahuelos, Bogdan, Byczkowski, Carmona, Chen, Fefferman, Frank,
Garbaczewski, Hansen, Herbst, Hiroshima, Jakubowski, Kim, Kulczycki, Kwasnicki, Lieb,
Lorinczi, Seiringer, Simon, Song, Takeda, Weder, Wang [1, 8, 9, 11, 13, 20, 21, 23, 24, 30,
31, 33, 34, 35, 37, 38, 39, 46, 47, 48, 69, 70]. Let us note that many of these research works,
especially in mathematical physics, have been strongly influenced by the investigations of E.
Lieb and his collaborators on the stability of relativistic matter [27, 50, 51].

The present scientific achievement is concerned with non-local Schrédinger operators
H = —L +V, where L is the generator of a Lévy process with the direct jump property,
and Feynman-Kac semigroups associated with H. Their properties have been studied by
probabilistic methods, in particular by the techniques of modern probabilistic potential the-
ory. In the paper [H1] we have considered operators H with confining Kato-decomposable
potentials (i.e. V(z) = oo as |x| = 0), obtaining sharp two-sided pointwise estimates of
the ground state eigenfunctions and the upper bound for other eigenfunctions. These results
have been then used in proving the necessary and sufficient conditions for the intrinsic con-
tractivity properties of the corresponding semigroups ([H1] and [H4]). In the paper [H3| we
have investigated the fall-off rates of eigenfunctions corresponding to negative eigenvalues for
operators H with decaying potentials (i.e. V(z) — 0 as |z| — oo). In [H2] we gave sharp
two-sided estimates for the heat kernels of operators L in finite time horizon. An important
feature of this scientific achievement is that it provides a general framework and methods
which allow one to obtain the sharp estimates for Lévy processes with various types of inten-
sities of large jumps. This covers important families of processes with both heavy and light
tails (e.g. isotropic stable and relativistic or tempered stable processes).

The following discussion of the series of papers [H1]-[H4] is divided into five chapters.
In Chapter I, we give definitions, set the notation, and discuss the basic properties of the
processes and operators under consideration. In Chapter II, we present estimates of eigen-
functions for confining potentials. Chapter III is devoted to the presentation of our results on
intrinsic contractivity properties. In Chapter IV, we discuss the estimates of eigenfunctions
for decaying potentials. Chapter V gives our estimates for heat kernels of the operators L.

Notation

Positive constants appearing in the statements of our assumptions and results in this sum-
mary will be denoted by the same symbol C' without numbering. However, locally, we use the
notation C or numbering Cy, Cs, ... to distinguish between constants in a given assumption,
lemma or theorem. Our results are quite general and, therefore, the constants typically de-
pend on the process, the potential and the dimension of the space. This will not be indicated
below. If the dependence (or the independence) of a particular constant on a given parameter




is essential, this will be clearly pointed out. If f and g are non-negative functions, then the
notation f(z) < g(z), z € A, means that there exists a constant C' > 1 such that

Clg(z) < f(z) < Cg(z), =€A

. e .
We also write f(z) X g(z) to allow for further reference to the constant C. A two-sided
estimate

Cig(z) < f(z) < Coh(z), w €4,
will be called sharp if g(z) < h(z), z € A.

Lévy processes and the direct jump property

Let {X;}:;>0 be a Lévy process in R%, d > 1. Recall that {X;}¢>0 is a time- and space-
homogeneous Markov process with respect to its natural filtration, with strong Markov prop-
erty and cadlag paths. Denote by P® and E” the probability measure and expectation for
the process starting from z € RY. Lévy processes are uniquely determined by the Lévy-

Khintchine formula
EleXt = ¢~ ¢ e RY ¢t >0,

where _
PY(€) = —if b+ & AL+ / (1— %Y i€ ylpen(y) v(dy), &€ RY, (1)

A = [aij)ij=1,..,4 s a symmetric, non-negative definite matrix, b € R¢, and v is a Lévy measure

~on R4\ {0}, i.e., fﬁ{d\{o} (1A |z|*) v(dz) < co. Denote by {P; : t > 0} the transition semigroup
of the process {X;}i>0. Below we use the same symbol P, to denote the distribution of the
random variable X; (tj. P,(E—z) = P*(X; € E)) and to denote the operator defined by this
measure (ie. P.f(z) = E*f(X;) = [ga f(y+2)P:(dy)). The infinitesimal generator L (of the
transition semigroup) of the process { X }¢»o is a homogeneous, non-local, pseudo-differential
operator defined by

~

T7E) = —p(OF(€), €eRY fe D)= {he AR phe R} 2)

(7(€) denotes the Fourier transform [p, f(z)e®“dz of the function f; we also write Ff(8)).
The function 2 is called the characteristic (Lévy-Khintchine) exponent of the process or
symbol. For smooth functions f with compact support, the action of L takes the form

DH@) =b-TI@)+ Y ag0ude, (@) + [ (fa+2) = @) = Lo ()z - V() v(do)
2J= (3)

In this chapter and in the next three Chapters II-IV, which contain the description of the
results obtained in [H1], [H3] and [H4], respectively, we always assume that

b=0, v(-E)=v(E) (4)
and

| v(R*\ {0}) = 00, v(dz)=v(z)dz, (5)




i.e., v is an infinite measure which is absolutely continuous with respect to the Lebesgue
measure (in the remaining of this chapter and in the next Chapters II-IV we only use the
density of the Lévy measure and we denote it by the same symbol v). The condition (4)
implies that the process {X}i>0 is symmetric, i.e., —X; and X; are equally distributed, and
(5) guarantees that the measures P, are absolutely continuous with respect to the Lebesgue
measure [61, Theorem 27.7] (the corresponding densities are denoted by p;(z)). Equivalently,
the process {X;}i>0 has the strong Feller property: the function z — P, f(z) = E* f(X;) is
bounded and continuous on R4, for every f € L®(R¢) and ¢ > 0. Thanks to (4)—(5) the
formula (1) reduces to '

YE) =€ A+ / (1 cos(€ - y)) v(y)dy, &€ RS, (6)

% is an unbounded (even if A = 0) function with values in [0, c0), and —L is a self-adjoint,
non-negative definite unbounded operator on L?(R¢).

Below we will also need information on the Lévy process killed on exiting an open
nonempty set D C R% Denote by 7p the first exit timne of the process from D:

Tp:=inf{t >0: X, ¢ D}.
Transition probability densities of such a process are given by the Dynkin—Hunt formula
po(tz,y) =p(y — ) —E%[rp <t;pi—rp(y — X7p)], 7€ D, t>0. (7)

We always assume that pp(¢,z,y) = 0, whenever z ¢ D or y ¢ D. We have, P*(t < 7p) =
Jppo(t,z,y)dy, = € D, t > 0. The Green function of the killed process is then given
by Gp(z,y) = fD°° pp(t,z,y) dt. For further details on Lévy processes and their evolution
semigroups we refer the reader to [6, 17, 41, 61].

Let us recall that in the papers [H1], [H3| and [H4] we consider the symmetric Lévy
processes with infinite and absolutely continuous Lévy measures on R? \ {0} (i.e., (4)—(5)
hold). We now formulate the assumptions (A1)-(A3) under which we obtain our main results
for this class of processes. The first two assumptions are concerned with v(z) and p;(z)
and they are of structural importance. The third one, originating from [15], is a technical
assumption concerning the Green function of a ball, needed for a potential-theory argument
we use.

(A1) Lévy density. There exists a non-increasing function g : (0,00) — (0, 00) such that

a) v(z) < g(|z]), z € R*\ {0},
b) there exists C; > 1 such that g(r) < Cig(r +1), r>1,
c) direct jump property (DJP in short): there exists Cy > 0 satisfying

/z_y|>19(|$ - ?!)g(lyl) dy < Cag(|z)), |z| > 1.

ly|>1

The function g appearing in (Al.a) will be called a profile of the Lévy density.

(A2) Transition density. There exists ¢, > 0 such that sup,ega py, () < 00.




(A3) Green function. For every 0 < p < ¢ < R <1it holds that

sup sup Gper(z,y) < oo
z€B(0,p) y€B(0,9)¢

In our papers [H3]-[H4] the assumptions have been formulated exactly as above (in [H3] we
additionally assume that (A3) holds for all R > 0), while in the paper [H1], which opens the
mono-thematic series of papers, it is done in a somewhat different way. The conditions (Al)-
(A3) correspond directly to [H1, Assumptions 2.1-2.3]. The first one of these assumptions has
been stated in a more general form, but it holds automatically under (A1) (see the comments
given below this assumption in [H1]). Additionally, [H1, Assumption 2.2] claims the existence
of p,(x). However, it is not needed — this follows directly from (5). It suffices to assume (A2).

" The convolution condition (Al.c), which determines the class of processes studied in this
mono-thematic series of papers, is of structural importance. In some sense, it explains the
structure of our results and it has a very natural and suggestive interpretation. Since v < g
and the profile g is monotone, the condition (Al.c) is in fact equivalent to the existence of a
constant C' > 0, such that

coyicio V@ ~ VYW dy < Ov(a), el > 1.
1<ly|<lo]

The function v(z) restricted to {z : |z| > 1} can be seen as the intensity of large jumps of
the initial Lévy process (after normalizing it is the distribution density of a single jump of
its Poissonian component). Therefore, the inequality above means that the intensity of two
consecutive large jumps of the process is dominated by the intensity of a single direct large
jump. It can be understood as follows: the probability of getting by a particle (starting from
0) to a given distant position z by a single direct jump is asymptotically not smaller than the
probability of getting there by a combination of several shorter jumps. This interpretation of
(Al.c) justifies the name direct jump property. This phenomenon can also be understood as
the ability of the process to reduce or pare mutliple large jumps (in [H3]-[H4] the condition
(Al.c) was referred to as the jump-paring property).

Our assumptions (A1)-(A3) cover a large class of Lévy processes with jumps [H1, Section
4], [H4, Section 4], [H3, Sections 4.3-4.4]. The convolution condition (Al.c) was characterized
in [H2, Proposition 2] (see also [H2, Example 2 (1)]) for a specific family of profiles g,
which covers the most important and interesting examples of processes. For instance, if g
has the doubling property, (Al.c) holds automatically. However, let us point out that our
assumptions and methods can be applied to processes with various types of intensities of large
jumps: polynomial (e.g. jump stable processes), exponential (e.g. relativistic and tempered
stable processes), and intermediate (e.g. Weibull-type processes, which are now more and
more common in modelling). They can be both isotropic or non-isotropic processes. In the
latter case, we only assume that the jump intensities are controlled by monotone and isotropic
profiles. Some references to applications of the processes with light tails are given in [P6].

Feynman—Kac semigroups and non-local Schrodinger operators

We first introduce a class of Schrodinger potentials that are studied in our papers (cf. [HI,
Definition 2.1}, [H3, Definition 2.2] and [H4, Definition 3.2]).




DEFINITION 1 (Kato class). We say that the Borel function V : R? — R belongs to the
Kato-class K associated with the Lévy process {X;}i>o if it satisfies

t

lim sup E° [/ ]V(XS)|ds] =0. (8)
t0 gerd 0

Also, we say that V is a Kato-decomposable potential (or X-Kato class in short), denoted

V € K4, whenever

V=V,-V., with V.eX¥ and V,eX{

loc»

where V., V_ denote the positive and negative parts of V, respectively, and V. € Kjo means
that V15 € X for all compact sets B C R%

If L is a generator of the Lévy process described by (2) and (4)-(5) and V' € Xy, then
H.=-L+V

can be defined in a quadratic form sense as a self-adjoint and bounded below operator with the
dense domain in L?(R%). Such H is called a non-local Schrédinger operator based on generator
L. Here —L is often referred to as the kinetic part of H and V' is the operator of multiplication
by a function, which is called a potential. As mentioned above, most of the motivations to
study the non-local Schrédinger operators come from mathematical physics. The operator
H can be interpreted as a Hamiltonian of some physical system. The negative part V_ and
the positive part Vy are often called attractive and repulsive potentials, respectively.

The Schrédinger semigroup associated with H has a stochastic representation with respect
to the process {X;}:>0 [29, Chapter 2.A]. More precisely, it holds that

e f(z) = Tf(z), feL’RY), t>0, (9)
where |
Tf(s) = B7 [ BV f(X,)| e PR, (10)

The equality (9) is often called the Feynman-Kac formula. It should be seen as a general-
ization of a known fact from the theory of classical Schrodinger operators, for the Brownian
motion instead of the process {X;}i>0. The Feynman-Kac formula is a very useful tool,
which allows for studying various properties of the operators H and e Ht by probabilistic
methods, especially by effective techniques of modern probabilistic potential theory. Very
often, various problems related to the non-local Schrédinger operators, including those in
mathematical physics, are even formulated in terms of stochastic processes. Here a starting
point is the process {X;};>0 and the family of operators {T} : t > 0}, that can be considered
independently of (9). Our approach in the papers [H1], [H3], [H4] is also mainly probabilis-
tic, which fits this trend very well. In the sequel, we will be working only with a stochastic
representation of the Schrédinger semigroup associated with the operator H.

The family {7} : t > 0} defined in (10) is a strongly continuous semigroup of symmetric
operators in L2(R%). It is called the Feynman-Kac semigroup of the process {X:}tz0 with
potential V. When V > 0 (ie. V- = 0), then {T} : t > 0} is a transition semigroup of
a Markov process, whose paths are being killed with a random intensity described by V.
If V_ # 0, then due to mass creation effect the semigroup {T; : ¢ > 0} has not a direct
probabilistic interpretation

We now recall some basic facts from the theory of Feynman—Kac semigroups.
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Lemma 2. Let {X;}i>0 be a symmetric Lévy process with infinite Lévy measure v(dz) =
v(x)dz such that (A2) holds, and let V € K.

(a) The operators T, : LP(RY, dz) — LP(R dz) are bounded for t > 0 and 1 < p < oo.
Moreover, Ty : LP(R?, dz) — L®(R%,dz) are bounded fort >ty and 1 <p < o0.

(b) The function x — T f(x) is bounded and continuous on R¢ for every f € L®(RY, dz)
and t > 0 (i.e. the semigroup {T;: ¢ > 0} is strong Feller).

(c) All operators Ty, t > 0, have integral kernels: for everyt >0 there exists a continuous
and symmetric function ug(-,-) on R® x R* such that

Ti(a) = [ ulen)f)dy, fe R da), 1Sp< oo

Moreover, w;(z,y) > 0 fort > 0 and z,y € R%, and sup, yege (2, y) < 00, for t > t.

A more detailed introduction to the theory of Feynman—Kac semigroups can be found in
monographs [29] and [25, Chapter 3.2].

Since H is a self-adjoint operator, specH C R. We say that A is an eigenvalue of H
if there exists ¢ € L?(R% dz) such that Hp = Ay (or, equivalently, Typ = e My, t > 0).

Denote: .
Ao := inf spec H.

When ) is an eigenvalue, then, by following the terminology from mathematical physics,
we say that H has a ground state. Since us(z,y) > 0, Ao is unique (i.e. H has a non-
degenerate ground state), and the corresponding eigenfunction g is strictly positive (see
e.g. [58, Theorem XII1.43]). Below we call Ao and o the ground state eigenvalue and
eigenfunction of H, respectively. We always assume that |lgoll, = 1. Observe that if ¢ is
an eigenfunction, then the properties (a) and (b) in Lemma 2 imply that ¢ = Ty €
L*(R% dz) and ¢ € Cy(RY). This means that ¢ has a bounded and continuous version
(and, additionally, ¢o is strictly positive) on R?. In particular, the eigenequations Tip(z) =
e~ y(z) hold pointwise, for every z € R

We now define two disjoint subclasses of Kato-decomposable Schrédinger potentials that
are studied in our papers.

DEFINITION 3. Let V € KX.. Then
o Ve g(:g:o if lim|a,.|_)oo V(:E) = 00,
o Ve 9(:3: if hm|z|—+oo V(:B) = 0.

The class X, called the class of confining potentials, is studied in the first and the fourth
paper from the series (cf. [H1, Assumption 2.4] and [H4, Assumption (A4)]). The second
class K9, called the class of decaying potentials, is investigated in the third paper (cf. [H3,
Assumption (A4)]). In this summary, this material is presented in Chapters II-III and IV,
respectively. '

When V € X%, the operators T, t > 0, are compact and the spectra of T; and H
consist of isolated eigenvalues of finite multiplicty. More precisely, there exists a countable
orthonormal basis {¢,}, 5, in L2(R¢ dz) such that Hp, = Anpn and Tyen = e~ Mty for
t >0, where —co < Mg < A <A <A< >0 (for convenience, in this representation,
we count all eigenvalues without multiplicity, but every A, appears only finitely many times;
Ao is unique). In particular, H has a non-degenerate ground state.
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When V € X9, then the operators T; are not compact and the spectra of T; and H
look completely different. The essential spectrum of H coincides with the essential spectrum
of —L and is equal to [0,00). Therefore, if there exists an isolated eigenvalue A (of finite
multiplicity) of H, then A < 0. The existence and properties of negative eigenvalues have
been widely studied for both local and non-local Schrédinger operators. Some references,
together with a short discussion, can be found at the beginning of [H3, Section 4.1].

Ground state transformed semigroup and related Markov process

We now introduce the definition of a ground state transformed semigroup, which is one of
the basic objects studied in the papers [H1| and [H4] (this material will be presented in
Chapter III of this summary). Let V € X¥. Recall that in this case there exists a unique
wo € L2(R%, dz), o > 0, ||oll, = 1, such that Hepg = Ao and Ty = e *%py, t > 0, where
Ao := infspec H. Let u(dz) = pi(z)dz.

We define

Tif(e) = — < TJpo)(z), € L(RYp), t20, (11)
po(z)
where {Tt it > O} is the Feynman—Kac semigroup of the process {X;}:>0 with potential V.
One can easily check that the operators defined in this manner are symmetric and they form
a strongly continuous semigroup in L2(R%, u), which is called a ground state transformed (or
intrinsic) semigroup. It is generated by the operator —H, where Hf = w0y *H(fpo) — Xof is
defined for those f € L*(RY, p), for which fyo belongs to the domain of H. The operators
HiH-— ) are then unitarily equivalent. Moreover, ’ftl =1,t>0.
All operators T;, t > 0, are of integral type. More precisely, if u;(z,y) is the integral
kernel of T;, then '

Tito) = | Tle) i), | eL2(®p), 150

where
eMiuy(z,y)

90.0(33)<P0(y)'

The semigroup {’ft ct> O} defines a stationary Markov process with cadlag paths, the
so-called ground state transformed Markov process associated with the Schodinger operator
H. Observe that ¢g is a positivie harmonic funtion of the shifted Schrédinger operator
H — )Xo = —L+V —)Xo. This means that from the probabilistic point of view the construction
(11) is in fact a special case of conditioning in the sense of Doob. In stochastic analysis, such
a change of measure is also often referred to as a jump-type Girsanov transformation [32,
Chapter 6.3], [62] (see also [57]).

For classical Schrédinger operators based on the Laplace operator, the above contruction
leads to a diffusion process in which the drift term is determined by V log ¢g. For instance, if
H = —A+]|z|? (harmonic oscillator), then the transformed process is the Ornstein-Uhlenbeck
diffusion. More generally, when the potential is a polynomial of an even degree, then the
transformed diffusion is called a P(¢);-process associated with H (see e.g. [59]). It is worth
mentioning that such processes play a central role in the Nelson stochastic quantum mechanics
[55]. |

Transformed processes have also been partly investigated in the non-local case [33, 34,
35, D1, P6, P11].

/Et(may) =




Tools of probabilistic potential theory

The most of our main results in the papers [H1], [H3] and [H4| are concerned with a fall-
off of eigenfunctions of operators H. Our methods are based on the pointwise estimates of
functions that are harmonic with respect to the process {X;};>o whose paths are being killed
with random intensity given by the potential V.

Let 0 <V € K4. A non-negative Borel funtion f on R is called (X, V)-harmonic in an
open set D C R4, if it has the mean value property

flz) =E° [TU < o0; e~ Jo” V(XS)dsf(XTU)} , zel, (12)

for every open set U with its closure contained in D, and is called regular (X, V)-harmonic
in D if (12) holds for U = D (recall that 7y is the first exit time of the process from U).
By the strong Markov property of {X;};>0 every regular (X, V)-harmonic function in D is
(X, V)-harmonic in D. Below we mainly consider the case when D is an open ball or a
complement of a closed ball in R% The latter case is often referred to as harmonicity at
infinity.

We often consider the case when V = n, for a positive number 7. In this case, if the
support of f is separated from the set D, then the expression on the right hand side of (12)
can be effectively estimated by means of the Ikeda- Watanabe formula (cf. [40, Theorem 1]): if
D C R4 is an open and bounded set, n > 0, and f is bounded or non-negative Borel function
on R¢ such that dist(supp f, D) > 0, then the formula

B o)) = [ [ e mttana [ S —udsdy, seD, (9

holds.
The Green (or potential) operator for the semigroup {7T; : ¢ > 0} is defined by

% — * _ e Ooe—fOtV(Xs)ds
6" s = [ T =E [/ f(Xt)dt],

0

for all boundedd or non-negative Borel functions f on R¢, and the Green operator for an
open set D is given by

[e%s] . TD
QY f(z) = /0 E* [t < p; e~ Jo V(Xa)ds f(Xt)] dt = E° [ / o= Jo V(Xe)ds f(Xt)dt] . zeD,

0
for all bounded or non-negative Borel functions f on D. Note that when V' > 0 on D, then
the expression GH1(z) =E° | [P e” JoV(Xs)dsgt| e D, can be understood as the mean exit

time from D of the process starting from z € D, whose paths are being killed at the rate
given by V. It follows from the strong Markov property of {X:}i>0 that

GV f(z) = GYf(z) +E* |7p < coje lo VI qVr(x, )|, ze€D. (14)
D

The following two-sided estimate for functions that are (X, V')-harmonic in balls is a key
technical tool in our papers [H1] and [H3].

Lemma 4 ([H1, Lemma 3.1, Corollary 3.1]). Let {X;}i>o be a symmetric Lévy process with
infinite Lévy measure v(dz) = v(z)dz such that v(z) < g(|z|), z € R*\ {0}, for some non-
increasing profile funtion g : (0,00) — (0,00). Moreoever, assume. that (A8) holds. Then
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there exists a constant C > 0 such that for every potential V € K, V > 0 on B(zp, 1) and
for every non-negative function on R% which is regular (X, V)-harmonic in B(zo, 1) we have

F0) £ Ghaa1) [ f@vlz—a0)dz v € Bleo,1/2),
J B(z0,3/4)¢

This fact follows directly from the strong result which was obtained by Bogdan, Kumagai

and Kwasnicki in a much larger generality [15, Lemma 3.2 (b), Theorem 3.5]. Let us point

out that estimates of this type play a fundamental role in the boundary potential theory of

Markov processes with jumps. For our applications it is crucial that the constant in this

estimate is uniform with respect to f, V and zo. :

Investigation of the potential theory of non-local Schrédinger operators and their Feynman—
Kac semigroups has been initiated for the fractional case by Bogdan and Byczkowski in the
pioneering papers [8, 9]. Many further results in this direction can also be found in the papers
[23, 24, D3] (for more general approach see the monographs [25, 29]). Our basic references
on potential theory for general Markov and Lévy processes are monographs [6, 7, 10] and
papers [15, 60, 63].

Decomposition of paths of the process

Our methods in [H1] are based on an appropriate decomposition of paths of the process,
which is determined by the first exit and hitting times of some annuli in R? centered at the
origin. We apply the iterative scheme from the papers [18, 47]. For sufficiently large no € IN
and n,k € N such that n,k > ny we let (see [H1, p. 1371-1372])

{xeRd:k—1<lx]’§k} if k>ng+2,
Ry = {weRd:]x[§n0+1} if k=mng+1,
{xE]Rd: [aslgno} if k=nyg,

D. i~ {xE]Rd:|w|>n—2} if n>mng+2,
" R¢ if n e {ngno+1},

and

=inf{t > 0: X; € Rx} (the first hitting time of Ry),
=inf{t >0: X; ¢ D,} (the first exit time from D,).

ORy -

This decomposition is based on iteration of the scenario in which the procéss exits the com-
plement of some ball (i.e. the set D,) moving to one of the shells Ry, k£ < n — 2 (inside this
ball). More precisely, for n —2 > k > ng and t > 0 we define

S(n k,1,t) = {XTD € Ry, 0r, <t},

S(n,k,1,t) USnp, Lt)NS(p,k,1,t), [>1.

p=k+2

The event S(n, k, 1,¢) describes the scenario in which the process hits Ry on exiting Dy, before
time ¢. Similarly, S(n,k,[,t) is defined inductively, by the [-fold iteration of this scenario.
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For instance, if K+ 2 < p < n — 2, then the event S(n,p,1,t) N S(p, k1, t) corresponds to
those paths which get to R, on exiting D, and then, hit Ry on exiting D,. All these happen
before time t.

The iterative structure of this scheme allowed us to find sufficiently sharp estimates for
probabilities of such scenarios for the process with DJP with the potential.

Lemma 5 ([H1, Lemma 3.6]). Let {X;}:i>0 be a symmetric Lévy process with infinite Lévy
measure v(dz) = v(z)dz such that (A1)-(A83) hold, and let V € K. Then there exists
ng € N and a constant C > 0 such that forn—1 < |z| <n,ny <k <n-2,n,k,l €N and
t > 0 we have

Ry, C
E® |S(n, k,1,t); e~/ o BV < / T — z)dz.
[ ( ) } ~ 2Vinfy 2 V(Y) JR, V(@ —2)

The above estimate was proven by induction with respect to [ € IN and its proof is mainly
based on the convolution condition (Al.c). The key step is to establish the claimed bound
for [ = 1. This follows from the next lemma. '

Lemma 6 ([H1, Lemma 3.5]). Let {X;}i>0 be a symmetric Lévy process with infinite Lévy
measure v(dz) = v(z)dz such that (A1)-(A3) hold. Then there exist ng € N, a constant
C > 0 and 0y > 0 such that for all >0y, n— 1 <|z|<n,ny <k <n-2,nkeN, and
t > 0 we have

Y

E?® [1p, <t,X,, € Ry e fmn] < %/ v(z — z)dz.

Lemmas 56 extend the analogous results from [47], where the above scheme was proposed.
Our proof of Lemma 6 is based on a new idea and substantially differs from that in the cited
paper. The argument is based on Lemma 4, some self-improving estimate and (Al.c). It is
essential for our applications below that the constants do not depend on ¢.
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II. Pointwise estimates of eigenfunctions for V' € X

Let us recall that if V € X, then the operators T;, t > 0, of the Feynman—Kac semigroup
are compact, the spectra of T; and H consist of countably many isolated eigenvalues of finite
multiplicity, and the corresponding eigenfunctions {¢,},, form an orthonormal basis in
L*(R4,dz). In particular, there exists a nondegenerate gr;)und state of H. This chapter is
devoted to the presentation of the two-sided sharp estimates at infinity of ¢y and the upper
bounds for other ¢,’s. These results were obtained in [H1].

Motivations and background. Investigations of the localization and geometric properties
of eigenfunctions are one of the most important challenges of spectral analysis. Let us
recall that in the non-relativistic (local) and quasi-relativistic (non-local) models of quantum
mechanics the eigenfunctions ,, are solutions of the time-independent Schrodinger equation
with the energy operator H (or, simply, the eigenproblem for Hamiltonian H). They encode
full information about the so-called stationary states of the system, in particular their squares
are the probability densities of the particle positions in the configuration space. Knowing
the rate of decay at infinity of the ground state ¢y turns out to be crucial for understanding
the evolution properties of the semigroup {7;:t¢ > 0} for large times. If the semigroup
{T; : t > 0} is intrinsically ultracotractive (see Definition 10 (iii) below), then the factorization

—Aot

uL(m,y) =e (,0[)(75)(,00(y), t> th z,y € Rd7 (15)

holds. This means that ¢y describes the spatial behavior of the kernels us(z,y) for large
times (this will be discussed in the next chapter).

In several classical models the eigenfunctions of the operator —A + V' can be computed
explicitly. The most well known example is the quantum harmonic oscillator for which the
eigenfunctions are Hermite functions. The literature concerning the estimates of asymptotic
behaviour of eigenfunctions for classical Schrédinger operators is abundant (e.g. [2, 19, 65]
and the survey [67]). From the point of view of this scientific achievement, the most inter-
esting contribution is due to Carmona [19], who proved the pointwise estimates by using the
Feynman—Kac formula. It is worth noting that the results obtained by probabilistic methods
were typically more general and they required much less assumptions than those obtained
by analytical methods [66]. The probabilistic approach shed new light on these issues ([67,
point (V), p. 3|). A common feature of eigenfunctions of classical Schrédinger operators
with Kato-decomposable potentials is that their decay rates at infinity are not slower than
exponential ([19, Proposition 3.3|) and [65, Theorems C.3.3-C.3.4]).

The localization problem for eigenfunctions of non-local Schrédinger operators with con-
fining potentials has been studied as well. In this case, one can not expect to get any explicit
formulas. Certain asymptotic expansions for eigenfunction of H = /—A 4+ |z|? were obtained
in [52]. The famous work of Carmona, Masters and Simon, based entirely on probabilistic
techniques, contains a result linking the exponential decay of eigenfunctions with the exis-
tence of an exponential moment of the Lévy measure [20, Proposition IV.4]. More specifically,
for a wide class of Lévy processes and confining potentials, the following implication is true:
if ¢ is an eigenfunction of H and fly|>1 e?¥ly(dy) < oo for some b > 0, then there are con-
stants Cy,Cy > 0 for which |p(z)| < Cie~“2Fl, z € R Later, only the decay of ¢, was
studied, and that was only in the context of intrinsic ultracontactivity of the semigroup
{T} : ¢t > 0}. Kulczycki and Siudeja dealt with the relativistic a-stable process (o € (0,2))
and non-negative potentials from certain subclass of K¢ with sufficiently regular growth at
infinity. Under the condition that the semigroup {7; : ¢ > 0} is intrinsically ultracontractive,
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" they obtained two-sided sharp estimates of ¢ at infinity. Another important contribution
to this field is the work of Kwasnicki [48], which is concerned with isotropic stable semi-
groups on unbounded subsets of R¢. The author proved sharp two-sided estimates of (g
and then applied them to characterize the intrinsic ultracontractivity. These results do not
apply directly to Schrodinger semigroups, but a natural adaptation of techniques from this
article allowed us to prove equally strong results for Feynman—Kac semigroups of isotropic
stable processes associated with fractional Schrodinger operators [D3, D1]. The key idea of
Kwasnicki was based on a pioneering application of the boundary Harnack inequality (proven
in [14]) to obtain some strategic estimates of a-harmonic functions, which appear naturally
within this framework. Both works [47, 48| were the inspiration for our research in [H1].

Our results. The main goal of the paper [H1], which initiated the mono-thematic series
of articles, was to investigate the decay properties of the ground state g and the intrinsic
contractivity properties of the semigroup {T; : t > 0} for a large class of Lévy processes with
jumps and confining potentials. We wanted to understand how do these properties depend
on the process and the potential. We expected to find a proper framework which would
unify old and new results. These goals have been achieved for a wide class of processes with
the direct jump property, which turned out to be optimal for our results. It includes both
the isotropic jump-type stable processes and processes with exponential intensities of large
" jumps such as relativistic and tempered stable ones. Our results apply to arbitrary confining
potentials and they do not require any additional regularity assumptions on the semigroup.

Our first main result is the upper estimate for non-negative Borel functions ¢ on R4
which satisfy the following condition: for some A > 0 the inequality

p(z) < eMTyp(z), t>0, zeRY (16)
holds.

Theorem 7 ([H1, Theorem 2.1]). Let {X:}i>0 be a symmetric Lévy process with infinite Lévy
measure v(dz) = v(z)dz such that (A1)-(A3) hold, and let V € K. If ¢ is a non-negative
and bounded Borel function on R satisfying the condition (16) for some XA > 0, then there
exist C = C(A\) and R = R(\) such that

p(z) < Cllell,v(z), |z] >R
Observe that if
o(z) = MTyp(z), t>0, =R, (17)

holds for some A > 0, then || satifies the condition (16). This allows us to improve the
upper bound in the theorem above for functions satisfying (17), even if they change the sign.

Theorem 8 ([H1, Theorem 2.2]). Let {X:}i>0 be a symmetric Lévy process with infinite Lévy
measure v(dz) = v(z)dz such that (A1)-(A8) hold, and let V € XP. If ¢ is a bounded Borel
function on R? satisfying the condition (17) for some A > 0, then there exist C = C(\) and
R = R(X) such that

lo(2)] < Cll¢ll o GEeplla) v(z), |a] 2 R.
If, in addition, ¢ is positive, then there are C = 5(x\, @) and R= ﬁ,()\, @) such that

p(z) = OGh (@) v(z), |a| > R.
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Recall that GB( pl(z) =E° UOTB(“’” e~ ho V(Xs)dsdt],

The main ideas of proofs of Theorems 7 - 8 will be discussed at the end of this chapter.
First we focus on applications of these results in proving pointwise estimates of eigenfunctions
of the operator H. Since for every > 0 such that n + Ag > 0 (then also, n + A, > 0,
n=1,2,...) we have

e, (@) = M Tpu(x) = BF [ HOTII, ()] e RY >0,

every eigenfunction ¢, satisifes (17) with respect to the Feynman-Kac semigroup with shifted
potential V' 4+ 7 and A = A, + 7. This immediately gives the following corollary.

Corollary 9 ([H1, Theorems 2.3-2.4]). Let {X:}i>0 be a symmetric Lévy process with infinite
Lévy measure v(dz) = v(z)dz such that (A1)-(A3) hold, and let V € X. Then for every
n € {0,1,2,3,..} andn > 0 such that Ao +n > 0, there are C' = C(n,n) and R = R(n,n)
such that :

lon(z)] < CGRM L) v(e), |z > R.

Furthermore,
po(z) = Gl Ue)v(z), |z| > R,

The rate of decay of ¢y at infinity is determined by the product of functions v(z) and
Ggg’l) (x). First of them describes the intensity of jumps of the free process, while the
other can be interpreted as thr mean exit time from the ball B(z, 1) for the process starting
from z and evolving under the potential V + n (recall that ¥V > 0 outside a bounded set).

One can check (cf. [H1, (3.2)]) that there is a constant C' > 1 such that

1 1 . 1
— <G 1(z) < C——m
CSUpyeB(x,l) V(y) B(=1) 1) infyep@1 V() v

for sufficiently large z. This allows us to make the estimate in Corollary 9 more explicit (see
- [H1, Corollary 2.2]). However, first of all, this gives a full factorization of the estimates and
explains how the fall-off rate of (g at infinity depends on the process and the potential. In
particular, if there exists C' > 1 such that sup,cp 1y V(y) < Cinfyepey V(y), for [z] > R,
then

wolz) < %((—%, |z| > R+ 1.

The estimates of the ground state eigenfunction of the operator H presented above are
crucial in proving our further results in the papers [H1, H4] (this will be discussed in the
next chapter).

Let us notice a further, quite surprising, consequence of our estimates from Corollary 9
(see [H1, Corollary 2.1]): for every n > 1 there is a constant C' = C(n) such that

lon(z)] < Co(z), = €R% (18)

This means that all eigenfunctions of non-local Schrodinger operators with confining poten-
tials decay at infinity not slower than the ground state eigenfunction. Interestingly, such a
domination property is not true in general for classical Schrodinger operators —A + V' with
V € XK. The simplest example is again the harmonic oscillator (i.e. V(z) = |z|?). Clearly,
the Hermite functions do not satisfy (18) with any contants.
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We now describe the main ideas of the proofs of Theorems 7-8. Recall that these results
corresponds to Theorems 2.1-2.2 in [H1]. Their proofs can be found on pages 1377-1383 of
this paper.

First of all, let us point out that Theorem 7 is fundamental for our further results in
the papers [H1, H4] (it also naturally motivates our main questions in [H3|). This was the
most laborious part of the research. The main difficulty was caused by the fact that we
expected the result which said that the decay rate of ¢(z) at infinity was dominated by the
intensity v(z). Moreoever, we wanted to include the processes with exponential intensities
of large jumps. As mentioned above, some rough estimates for such processes have been
found by Carmona, Masters and Simon. However, the more difficult question about the
exact domination of ¢(z) by v(z) remained unanswered. Known methods, working well in
the polynomial case, were not sufficient for this problem. Below we describe our idea which
led us to the solution.

We discovered that it is possible to prove the following estimate: for sufficiently large
ng > 0 there exists C' > 0 such that

> e
w(x)SCIlsOIloo(/l | u<x~y>)  lel>no+3, peN. (19)
y|<no

This is enough for the proof of Theorem 7. Indeed, the constant ' is uniform not only in z,
but also in p. The expected upper bound is then a consequence of taking the limit p — oo
and application of (Al.b). The inductive argument leading to (19) is based on certain self-
improving estimate. The starting point is the inequality (16) and the decomposition of paths
that was discussed in the previous chapter. Thanks to them, we can write (cf. [H1, (3.11)
and the estimate above it])

o(z) < Tp(z) <E [TD > t; e‘fJ(V(Xs)"*)dsw(Xt)}

s S E [S(n,k L0) 5, > e KV IBp00)] (an)

k=ng+2 I=1
no+l oo

+) D E {S(W% l>t);le"fJ(V(XS"A’dSsD(Xt)] )

k=ng I=1

for t > 0, n — 1 < |z| < n and sufficiently large natural n. Recall that for ¥ = ng and
k = ng + 1 we have set D, = R? (and so TDpy = TDpgs1 = 00). This means that after
getting to R,, and R,,+1 the process may freely evolve in the whole space up to time ¢. In
particular, its paths may approach the region in which V, is not bounded away from zero,
or even the support of V_. In consequence, the last two terms of the above sum have to be
treated separately.

The proof of (19) consists of two steps. First we prove the claimed bound for p = 1. The
condition V(z) — oo, |z| = oo, and Lemma 5 allow us to estimate effectively all expected
values on the right hand side of (20). We can then sum up all the appropriate upper bounds
with respect to [ and k. After some rearrangements this leads to the inequality

o) < ol (C 1+ +e0 [ sa- y)dy) , (21)

lyl<no
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valid for all t > 0, n — 1 < |z| < n and sufficiently large natural n, with uniform constants.
Now, taking

1
t:=——1log (03/ vz — y)dy) >0, (22)
2¢ ly|<no

we get the claimed bound (19) for p = 1. Observe that the first term in the brackets on
the right hand side of (21) contains e~®?, while the second one, which already includes the
integral flyl <o v(z — y)dy, contains e“* (the positive constant in the exponent appears here
because we can not control the values of the potential in balls B(0,np) and B(0,ng + 1); it
was explained above). This means that (22) is indeed the optimal choice of ¢ in the first step
of the proof. '

In the second part of the proof we verify the induction step. Starting from (19) with p
and using the estimate (20), we improve (19) by increasing the range of summation up to
p+ 1. Here the argument is similar as before, but it is more delicate and technical.’ All terms
on the right hand side of (20) are estimated in a similar way, with use of Lemma 5, and by
taking into account the values of ¢ within the sets Dg. Proper summation of all terms with
respect to k requires subtle rearrangements of multiple integrals that are based on the Tonelli
theorem, the convolution inequality (Al.c), and the properties of the Lévy density. Similarly
as above, the final bound is obtained by a proper choice of ¢. Our inductive procedure
allows us to get the desired bound in Theorem 7 via countably many iterations of (20). The
convolution inequality (Al.c), determining the class of processes with direct jump property,
is of structural importance for this reasoning.

We now turn to a brief discussion of the proof of Theorem 8. Since ¢ satisfies (17) for
some A > 0, we may integrate the equality e *(z) = Tip(z), t > 0, over ¢t € (0, 00), getting
w(z) = MGV p(z), pointwise in z € R% Now, by using the formula (14) with f = ¢ and
D = B(z,1), we have ‘

. * _ TB(=,l) s
p(2) = AGhpyple) + B [en o™ VO o D], s eRY, (23)

which gives

TB(x,1)

lo(2)] < AGgeplel(z) + E? [e‘f" V(Xs)ds Igo(XTB(x,l))y} = I+1I, zeR%

The term I can be first estimated from above by /\Gg(x,l)l(x) SUDyep(z1) |#(Y)], and then by
the bound from Theorem 7 and the property (Al.b). The proof of the upper bound for I
consists of two steps. Here we use the non-negativity of V' on B(z, 1), the bound in Theorem
7, the assumption (A1), the Ikeda-Watanabe formula (13), and the estimate of harmonic
functions from Lemma 4.

The lower bound follows directly from the fact that ¢ is positive. We just omit the first
term in (23) and apply the Tkeda-Watanabe formula to the second one.

Let us point out that if (Al.c) does not hold, then the ground state eigenfunction ¢ does
not satisfy the upper bound as above. This was not discussed in [H1|, but it follows by the
same argument as in Theorem 19 below.
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II1. Intrinsic contractivity-type properties and domination by ¢

In this chapter, we still assume that V' € K%, which gives the compactness of T; for every
t > 0. We now present our results on intrinsic contractivity properties of Feynman—Kac
semigroups associated with non-local Schrédinger operators. They include necessary and
sufficient conditions for intrinsic ultra- and hypercontractivity, and some consequences of
them. These results come from the second part of [H1| and from [H4].

Definitions, motivations and background. Let us recall that A\g and ¢y denote the
ground state eigenvalue and eigenfunction of the Schrodinger operator H, respectively, and
{T; : t > 0} is the corresponding ground state transformed semigroup defined in (11). Also,
recall the notation u(dz) = pa(z)dz.

We study of the following properties.

DEFINITION 10 (Contractivity properties).

(i) The Semz'gmup~{ﬁ : t > 0} is supercontractive, if for every p € (2,00) and t > 0
the operators Ty : L2(R% p) — LP(RY, u) are bounded. We then say that the initial
semigroup {T; : t > 0} 4s intrinsically supercontractive (ISC in short).

(1) The semigroup {ﬁ . t > 0} 1is hypercontractive, if for every p € (2,00) there exists
t, > 0 such that for every t > t, the operators T; : L*(R%, u) — LP(RY, 1) are bounded.
We then say that the initial semigroup {T; : t > 0} s intrinsically hypercontractive
(IHC in short).

(111) The semigroup {i : t > 0} 1s ultracontractive, if for every t > 0 the operators
T, : L2(R% p) — L*(R% ) are bounded. We then say that the initial semigroup
{T} : t > 0} is intrinsically ultracontractive (IUC in short).

(iv) The semigroup {T, : t > 0} is asymptotically ultracontractive, if there ezists too > 0
suh that for every t > to, the operators T, : L2(R% p) — L®°(RY, ) are bounded.
We then say that the initial semigroup {T; : t > 0} is asymptotically intrinsically
ultracontractive (AIUC in short).

Observe that it is enough to assume the boundedness for some tp,te > 0 in (i) and (i),
respectively. Indeed, thanks to the semigroup property this extends to ¢t > ¢, and ¢ > t.
Properties (4)-(%4) have appeared in the literature in the context of classical differential op-
erators. The notion of IHC was introduced by Nelson [54], and IUC has been first studied by
Davies and Simon [28], Davis [26] and Bafiuelos [4] (see also [5]). We have investigated AIUC
for fractional Schrodinger operators in [D1]. The above properties have many important
applications. It, however, should be pointed out that AIUC is equivalent with the two-sided
sharp large time estimate (15) and with the uniform estimate |u(t, z,y) — 1| < Ce-(1=20t
t > tp, which implies very strong uniform ergodicity property (see e.g. [D1, Lemma 4.1]). In
light of our results, which will be presented below, it is also worth emphasising that for clas-
sical Schrédinger operators there exists a natural hierarchy between properties (1)-(%4): TUC
is stronger than ISC, and ISC is stronger than IHC. Moreover, AIUC is also stronger than
IHC. This can be illustrated by the following example: for classical Schrodinger semigroup
of H = —A + |z|*log(l + |z|)?, with & > 0 and 8 > 0, it is known that [28]:

o ifa>20ra=2 8>2, then IUC holds;

o if o =2, 0 < B <2, then ISC holds, but IUC does not hold,;
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e if « =2, 8 =0 (harmonic oscillator), then THC holds, but ISC does not hold,;

e if o < 2, then even IHC does not hold.
In addition, we verified that if & = 2, # = 0 (harmonic oscillator), then also AIUC does
not hold [H4, Example 4.4]. Let us mention that for classical Schrodinger semigroups of
H = —A + V with potentials that have non-decreasing profiles (cf. (26)), the IUC was
characterized in 2009 [3] (cf. Corollary 16 below). Properties (%)-(iii) have also been partly
studied for non-local Schrédinger operators: IUC in [47, D3], and AIUC in [D1]. For a class
of Feynman—Kac semigroups of non-homogeneous Markov processes, IUC, ISC and THC have
been investigated in a recent paper [21] via Dirichlet forms.

Our results on intrinsic contractivity properties. The chronology of this research was
the following: first in [H1] we studied the case p = oo (intrinsic ultracontractivity, including
its asymptotic version) for Lévy processes with DJP; then, in [H4], we observed that our
results also extends to p € (2,00) (hyper- and supercontractivity) for the same class of
processes. Note, however, that our first main theorems in [H4] apply to a much larger class
of semigroups. Below we try to present the material from the papers [H1] and [H4] as a
coherent entity. Additionally, for more clarity, we restrict our presentation to the case of
Lévy processes with jumps.

_ It is crucial for our investigations that the boundedness properties of operators
T, : L?*(R% u) — LP(R% u) can be refined in terms of certain integrability properties of
ratios T31/¢pp. .

DEFINITION 11 ([H4, Definition 2.1] Ground state domination properties). Let p €
(2,00]. We say that

(i) the operator T; is LP-ground state dominated (abbreviated as LP-GSD) if

Ll ¢ o, ), (24)
%o

(i1) the semigroup {T; : t > 0} is LP-ground state dominated (abbreviated as LP-GSD) if
for every t > 0 the operators Ty are LP-ground state dominated,

(1i1) the semigroup {T; : t > 0} is asymptotically LP-ground state dominated (abbreviated
as LP-AGSD) if there exists t, > 0 such that for every t > t, the operators T, are LP-
ground state dominated. If the specific value of t, is essential, we write (t,, L?)-AGSD
to emphasize this.

In our first paper [H1|, we only considered the case p = oo and, therefore, we wrote there
AGSD and GSD instead of L®-AGSD and L*®-GSD (cf. [H1, Definition 2.3]).

The following observation, already mentioned above, was crucial in proving the charac-
terization of intrinsic contractivity properties in our papers [H1] and [H4].

Lemma 12 ([H4, Lemma 2.1]). Let {X;}i>0 be a symmetric Lévy process with infinite Lévy
measure v(dz) = v(z)dx such that (A2) holds with t, > 0, and let V € Ki. Suppose
p € (2,00] and consider the following two conditions.

(1) For somet > 0 the operator Ty is LP-GSD.

(2) For some t > 0 the operator T} is bounded from L2(R, 1) to LP(RY, ).
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Then we have the following:
(1) If (1) holds for somet = s > 0, then (2) follows for t = s + ty.
(i1) If (2) holds for some t = s > 0 and

1

Coo L
o "' € LY(RY, da), (25)
then (1) follows for t = 2s.

Note that [H4, Lemma 2.1] was formally formulated for p € (2, 00) only, but the argument
for p = oo is the same (in (25) we use the convention 1/co = 0). The case p = oo was studied
in the first paper in the series. Such an equivalence was not formulated there as a separate
lemma, but it was proven and applied within the proof of [H1, Theorem 2.5]. The assumption
(25) (i.e. o € LY(RY, dx) was automatically satisfied there, but the estimates are general.

Further discussion of (25) is included in [H4, Remark 2.1]. It holds for a large class of
semigroups associated with local and non-local Schrédinger operators.

The following characterization theorem follows directly from Lemma 12.
Theorem 13. Under the assumptions of Lemma 12 we have the following.

(1) (IHC and LP-AGSD) If the semigroup {T; : t > 0} is LP-AGSD for all p € (2,00),
then it also IHC. If the semigroup {T; : t > 0} is IHC and, in addition, ¢} € L}(R4, dz),
for some 6 € (0,1), then it is also LP-AGSD for all p € (2, 00).

(it) (ISC and LP-GSD) If the semigroup {T; : t > 0} is LP-GSD for all p € (2,00), then
it is also ISC. If the semigroup {T; : t > 0} is ISC and, in addition, ¢} € L*(R¢, dz),
for some 6 € (0,1), then it is also LP-GSD for all p € (2, 00).

(111) (AIUC and L*®-AGSD) If the semigroup {T; : t > 0} is L>®-AGSD, then it is also
AIUC. If the semigroup {T; : t > 0} is AIUC and, in addition, @y € L}(R%, dz), then
it is also L*°-AGSD.

(iv) (IUC and L*-GSD) If the semigroup {T} : t > 0} is L*°-GSD and sup,cg« pi(z) < 00
forveryt > 0, then it is also IUC. If the semigroup {T} : t > 0} is IUC and, in addition,
wo € LY(RY, dz), then it is also L®-GSD.

Assertions (i)—(ii) are versions of [H4, Theorems 2.1-2.2], formulated for Lévy processes
with jumps. The proof of assertions (iii)—(iv) is the same as that of [H1, Theorem 2.5], which
was obtained directly for Lévy processes with DJP. Recall that for this class of processes the
condition ¢y € L}(R%, dz) automatically holds.

Note that the L”-domination properties can be effectively studied by using probabilistic
methods. This is the main advantage of the above characterizations.

We now present our necessary and sufficient conditions for LP-GSD and LP-AGSD ob-
tained under framework assumptions (A1)-(A3). These are the next main results in [H1] and
[H4]. The first theorem presents jointly the results from [H1, Theorems 2.6 (1) and 2.7 (1)]
and [H4, Proposition 3.2].

Theorem 14 (Sufficient conditions for LP-GSD and LP-AGSD). Let {X;}i>0 be a
symmetric Lévy process with infinite Lévy measure v(dz) = v(z)dx such that (A1)-(A3)
hold, and let V € K.
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(1) If there exist C > 0 and R > 0 such that

V(z) .
Tog o(@)] >C, |z| >R,

then for every p € (2, 00| the semigroup {T; : t > 0} s (lo, LP)-AGSD with to = 4/C.
(i) If
4 C)
lzlsoo | log v(z)|
then for every p € (2, 00] the semigroup {1y : t > 0} is LP-GSD.

y

The next theorem presents jointly our results obtained in [H1, Theorems 2.6 (2) and 2.7
(2)] and [H4, Theorem 3.1]. Denote V*(z) = supyep(m V (), r > 0.

Theorem 15 (Necessary conditions for LP-GSD and LP-AGSD). Let {X;}i>0 be a
symmetric Lévy process with infinite Lévy measure v(dz) = v(z)dz such that (A1)-(A3)
hold, and let V € X. :

(i) If for some p € (2, 00] the semigroup {T; : t > 0} is LP-AGSD, then for every r € (0,1)
there exist C > 0 and R > 0 such that
V; (z)

>0 |z >R
Tog 1(a)] d

(1) If for some p € (2,00] the semigroup {T} : t > 0} is LP-GSD, then for every r € (0,1)

lim 71/,, (x) =
lal=voo | log v ()]

Note that the usefulness of the above conditions is mainly based on the fact that they are
expressed directly in terms of the intensity of jumps v(z) and the potential V' (z). Moreover,
thanks to Theorem 13 our results in Theorems 14-15 in fact give necessary and sufficient con-
ditions for all contractivity properties from Definition 10. For sufficiently regular potentials
V, they also lead to a somewhat unexpected characterization results (cf. [H1, Corollary 2.3]
and [H4, Theorem 3.2]). Let us define the following two subclasses of functions V : R¢ — R:

VeV, <= thereexist 7€ (0,1) and R >0 such that V*(z) <V (z), for |z|> R,

V €V, <= there exists a non-decreasing function f : (0, 00) — (0, c0) (26)
and R > 0 such that V(z) =< f(|z|), for |z] > R.

Corollary 16 ([H4, Corollary 3.2] Equivalence of intrinsic contractivity properties).
Let {Xi}i>0 be a symmetric Lévy process with infinite Lévy measure v(dz) = v(z)dz such
that (A1)-(A8) hold, and let V € XNV or V € XPNV,. Suppose, in addition, that p(t,-)
is-bounded for every t > 0. The following conditions are equivalent:

(7;) lim|w|_,oo m% = 0,
(i) the semigroup {T; :t > 0} is LP-GSD for all p € (2, c0];
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(iii) the semigroup {T; : t > 0} is ISC;

(v) the semigroup {T, :t > 0} is IUC.
Corollary 17 ([H4, Corollary 3.3] Equivalence of asymptotic intrinsic contractivity
properties). Let {X;}i>0 be a symmetric Lévy process with infinite Lévy measure v(dz) =

v(z)dz such that (A1)-(A3) hold, and let V€ X NVy or V € XP NV, The following
conditions are equivalent:

(1) there exist C, R > 0 such that |1o‘;5f()x)| > C, for all |z| > R;

(1) the semigroup {T; :t > 0} is LP-AGSD for all p € (2,00];
(1) the semigroup {T; : t > 0} s IHC;
(iv) the semigroup {1} : t > 0} is AIUC.

The above conclusions show that the analytic properties of semigroups related to non-local
Schrédinger operators are essentially different from those of classical Schrodinger semigroups
associated with the local operator —A + V. As we have already noted at the beginning of
this chapter, in the local case (even for very regular potentials) ISC is weaker than IUC, and
IHC is weaker than AIUC (see the discussion on the harmonic oscillator in [H4, Example
4.4]). ,
Let us also mention that it makes sense to consider (at least asymptotically) the so-called
borderline or minimal growth of the potential for the intrinsic contractivity properties. Our
results show that this growth is described by |log v(z)|. Moreover, our probabilistic approach
to this problem allowed for a stochastic and variational interpretation of these properties and
the borderline growth. Some results and the heuristic interpretation are included in [HI,
Section 2.5].

An extensive list of examples of processes to which the results presented above apply was
discussed in [H1, Section 4].

We now briefly discuss the proofs of Theorems 14-15. Thanks to the inclusions LP(R¢, u) C
L*®(R4 u), p > 2, in the first theorem we only need to show both implications for p = oo
(i.e. L*-(A)GSD implies LP-(A)GSD for all p > 2). For p = co these are exactly Theorems
2.612.7 (1) in [H1]. We have to show that the assumption on V/|log v| implies the estimate
Ti1(z) < Cipo(z), z € RE for sufficiently large (implication i) or all (implication ii) ¢ > 0,
with a constant ! uniform in z. Since T;1 is bounded and g is continuous and strictly
positive, it is enough to show such a bound for large x only. The key observation, based on
an application of the two-sided estimate for g in Corollary 9 and [H1, Lemma 3.7, is that
in fact we only need to show a weaker bound T;1(z) < Cv(z).

Theorem 18 ( [H1, Theorem 3.1]). Let {X;}i>0 be a symmetric Lévy process with infinite
Lévy measure v(dz) = v(z)dx such that (A1)-(A8) hold, and let V € Ky. If there exist
C >0 and R > 0 such that

V(z)

— - >C, |z|>R, 27
Togu(@)] =& 1 27)

then for every t >ty := 4/C' there exist 5, R > 0 such that

Ti1(z) < Cv(z), |z| > R. . (28)
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If, moreover,

. Viz)
o Togv(z)] ~ >

then (28) holds for all t > 0.

The proof of the above theorem (see [H1, p. 1385-1386]) uses a similar argument as in
the proof of Theorem 7. The main difference is that now the function under the expectation
is equal to one and we need to get more information about the decay from the functional
exp(— fot V(X,)ds). .

The proof of Theorem 15 is based on a direct lower estimate for the expectation of the
Feynman—Kac functional for fixed ¢ > 0. Again, the argument uses in an essential way the
sharp estimates of ¢y from Corollary 9. For p = oo this is the proof of the implication (2) of
Theorems 2.6 and 2.7 in [H1] (p. 1387), and for p € (2, 00) the proof of Theorem 3.1 in [H4]
(p. 179-180).

It should be emphasized that the proofs of Theorems 14-15 could not be carried out
without sharp two-sided estimate of the ground state eigenfunction presented in the previous
chapter.
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IV. Fall-off of eigenfunctions for V € X%

In this chapter we will discuss pointwise bounds for eigenfunctions of non-local Schrédinger
operators with decaying potentials which correspond to negative eigenvalues. These results
were obtained in the paper [H3].

Motivations and background. It is known that in the case of classical Schrédinger op-
erators —A + V with Kato-decomposable potentials such that V(z) — 0 as |z| — oo, the
decay rate at infinity for eigenfunctions corresponding to negative eigenvalues is at least
exponential (see e.g. [65, Theorems C.3.4-C.3.5]). The problem of localization of such eigen-
functions for fractional and relativistic Schrodinger operators has been addressed in the
aforementioned work of Carmona, Masters and Simon [20]. They showed that for frac-
tional Schrédinger operators H = (—A)*2 + V, o € (0,2), the decay rate at infinity of an
eigenfuntion ¢ corresponding to a negative eigenvalue X is dominated by the intensity of
jumps of the isotropic stable process, i.e. [p(z)] < C(1 A |z|~4=%) (moreover, for the ground
state one has @g(z) < 1 A |z|7¢°%). Their results for relativistic Schrédinger operators
H=+v-A+m?2—m+V,m >0, are less sharp, but lead to the following surprising observa-
tion: when |A| > m, then the rate of decay at infinity of eigenfunction ¢(z) corresponding to
A is of the order e=™?l, while for |\| < m it is of order e~ V2™A=**Iel (recall that the intensity
of large jumps for the relativistic process is comparable with the function e™™l|z|~(¢+2)/2),
This means that for |A\| < m the decay rate of ¢ at infinity is still exponential, but it depends
on |A| and is essentially slower than the decay rate of the intensity of jumps of the process.
Note that such a dichotomy does not occur in the fractional case, where the size of |A| does
not affect the fall-off rate of .
One of the main motivations for our study was to understand this dichotomy.

Our results. In the paper [H3] we wanted to understand what properties of the process
generated by L and the potential V' guarantee that the decay rates of eigenfunctions of the
operator H = —L+V are dominated by the intensity of jumps, v, at infinity. Working within
the class of processes with DJP, we obtained sufficient conditions for this property. However,
first of all, we proved that if ¢ is positive, then it automatically satisfies the analogous lower

estimate.

Theorem 19 ( [H3, Theorem 4.1]). Let {X:}t>0 be a symmetric Lévy process with infinite
Lévy measure v(dz) = v(z)dx such that (Al.a) holds, and let V € X%. Suppose p € L*(R%)
18 a positive eigenfunction of the operator H corresponding to eigenvalue A € R.

(1) If (A1.b) is satisfied, then there exist C, R > 0 (depending on A) such that

p(z) > Cv(z), |z| =R

(2) Consider the following two disjoint cases:

(1) (A1.b) holds, and (Al.c) does not hold,
(1) (A1.b) does not hold (and hence also (Al.c) does not hold).

Then in either of cases (i) and (ii) we have

lim sup #(z) =
Jz|—=o0 V(x)
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The second part of the theorem states that outside of the class of processes with DJP the
domination property in question cannot be expected. It is therefore an optimal assumption
for our research. The above result is a direct consequence of the theorem describing analogous
properties for the (X, n)-harmonic functions [H3, Theorem 3.1]. We obtained this theorem
by using the Ikeda-Watanabe formula and some direct estimates based on the monotonicity
of the profile of Lévy density.

The proofs of our further results in [H3], giving the upper bounds for eigenfunctions,
are much more technically complicated. In particular, they require subtler methods than
those discovered in [H1|, where we dealt with the confining potentials. For a potential V/
decaying to zero the perturbed processes behave far out like free processes. Now, there is
no longer a strong killing effect like in the confining case, which helps very much in proving
estimates. The contribution of both the process and the potential in the fall-off rates of
eigenfunctions is now more subtle. The effect of the potential appears in the relative position
of the corresponding eigenvalue from the edge of the continuous spectrum of H.

The following result states that if |A| is large enough with respect to the initial Lévy
process, then the decay rate of ¢ at infinity is dominated by v.

Theorem 20 ( [H3, Theorem 4.2]). Let {X;}i>0 be a symmetric Lévy process with infinite
Lévy measure v(dz) = v(z)dz such that (A1)-(A8) hold, and let V € KXY.. Then there exists
no (depending on process and independent of V') such that if v € L2(R?) is an eigenfunction
of H with eigenvalue A € (—oo, —1p), then there are C, R > 0 (depending on process and \)
satisfying

e(@)] < C gl vl@), o] > R

The constant 7o (given by [H3, (4.6)]) can be estimated for some examples of Lévy processes,
but it is not optimal for the above result. However, let us emphasize that this result is very
general — it applies to arbitrary process with DJP. '

We now formulate our next two results. They provide sufficient conditions on the initial
Lévy process under which the above domination property holds for any A < 0. These results
follow directly from the two different theorems describing the behavior at infinity of (X, n)-
harmonic functions. In our paper, they are formulated as a single result (see [H3, Theorem
4.3]). However, in this summary, for clarity, we will present them separately. Note that
these results require a stronger version of the assumption (A3). In the whole paper [H3| the
condition (A3) is formulated for all R > 0, but for the proofs of these results we have to:
additionally assume that there is a constant C' > 0 such that

C

Geoglz,y) < ———, > 1, ; 29

T.yi‘%fi,,;s) 50:)(Y) T(1/s)s? ° (29)
z—y|2>s

where U(r) := sup <, ¥(£) (see [H3, (2.19)]). The role of this condition is just technical. The
potential theory of Markov processes with jumps has undergone rapid development in recent
years and it now clear that such a condition is satisfied for a large class of Lévy processes
(e.g. for isotropic unimodal ones [36, Theorems 1.2-1.3]). In our settings, it is known that if
there are constants Cy, Cy > 0 such that

sup pi(z) < C1t \I/(:d/r), t>0, r>1, (30)

fx|2r

' d
pt(0)=/ e @ dz < Oy (w;l (%)) , t>1, (31)
R4

and




where ¥ 1(s) = inf{r > 0: ¥(r) = s}, s > 0, then (29) holds [H3, Lemma 2.2].
Our first result is concerned with Lévy processes whose jump intensities satisfy the fol-
lowing condition:

there exists C' > 0 such that for every r > 1 we have (32)
v(z —y) < Cv(z), whenever |y| <7 and |z| > 2r.

One can check that under (Al.a) the condition (32) automatically holds if we know that the

profile g has a doubling property, i.e. there exists C > 1 such that g(r/2) < Cq(r),r>1. Tt
is then a typical property of the densities polynomially decaying at infinity.

Theorem 21 ([H3, Theorem 4.3 (1)]). Let {X:}i>0 be a symmetric Lévy process with infinite
Lévy measure v(dz) = v(z)dz such that (A1)-(A8) (for R > 0) hold, and let V € X}. If
the conditions (29) and (32) are satisfied, and ¢ € L*(RY) is an eigenfunction of H with -
eigenvalue \ < 0, then there are C, R > 0 (depending on process and A) such that

lp(x)| < Cllellv(@), 2] 2 R

When the tail of the process is lighter than polynomial (in particular, (32) does not hold),
then the analysis of the fall-off of eigenfunctions ¢ of H for small |A| is even more complicated.
Our next result is about the case

|lz|?v(dz) < oo (33)
R4
and it requires more regularity of the transition density:

there exist C > 1 and R > 0 such that p(¢,z) < Cp(t,y), (34)
for all t > 0 and |z| > |y| > R with |z —y| < 1.

Under (33) we have ¥(r) =< r2, for r close to 0. Then the condition (31) holds and (29)
reduces to (30).

The sufficient condition in our theorem is expressed in terms of two functions, which
describe the system of large jumps of the process: for 1 < 51 < 59 < 83 < 00 we define

Samyimsn iss: V(& = V)V (©)dy

K¥(s1) = I:EIZI lz—y|>s1, [y|> ;(x) (35)

and
K (51, 89,83) :=inf{C > 1:v(z —y) <Cu(z), |yl < s1, 52 < |z] <83}, (36)

We assume that

there exists k; > 2 such that lim, ., Kif (k18) K3 (s, £15,00) =0 (37)

and
there exists kg < 0o such that for every s; > 1 we have (38)

. . X § .
lim sup,_, ., K3 (1, 8,00) < Ka.

For a discussion of the properties of functions K X and K and the heuristic interpretation
of the both conditions (37) and (38) we refer the reader to [H3, Section 2.2]. Let us also
mention that the function K7¥(s) turned out to be the key tool in our recent paper [P9],
where the spatial asymptotics at infinity for heat kernels of non-local operators were studied.
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Theorem 22 ([H3, Theorem 4.3 (2)]). Let {X;}i>0 be a symmetric Lévy process with infinite
Lévy measure v(dz) = v(x)dz such that (A1)-(A8) (for R > 0) and (30), (33)-(34) hold, and
let V€ X%. If the conditions (37)-(38) are satisfied, and ¢ € L?(R%) is an eigenfunction of
H with eigenvalue A < 0, then there are C, R > 0 (depending on process and \) such that

lo(z)] < Cllellv(z), |z]>R.

In [H3, Section 4.3] we gave a more detailed discussion of the estimates for various types of
jump intensities, and we amply illustrated them with examples. These examples shows that
when the intensity of large jumps of the process is sub-exponential, then the eigenfunctions
of H corresponding to negative eigenvalues are dominated at infinity by this intensity (see
[H3, Corollaries 4.1-4.2 and Remarks 4.2-4.3]). On the other hand, when the order of the
decay of v at infinity is exponential or faster, this domination is broken and a qualitative
transition in the fall-off rates can be observed. For exponential Lévy densities the following
dichotomy occurs. If A is sufficiently low-lying (with respect to the process), then the fall-off
of the corresponding eigenfunction is dominated by v, while for bottom eigenvalues which are
closer to zero (i.e., to the edge of the essential spectrum of H), the fall-off gets much slower,
with essential contribution of the eigenvalue into the rate (see also the heuristic description
of the mechanism of this dichotomy in [H3, p. 651, second paragraph|). The relevance of
the assumptions (37)—(38) in Theorem 21 has been tested in [H3, Proposition 4.2] for certain
class of processes.

We now briefly discuss the proofs of the upper bounds presented above. We always use
[H3, (4.5)] and reduce the proof to an upper estimate of a certain (X, 7n)-harmonic function
defined in [H3, (3.13)], for some 1 € (0, |A|). However, the methods worked out in [H1] turned
out to be insufficient in the present case. Our argument in [H3] is then based on a new idea,
which led us to Lemma 23 formulated below.

Recall that the functions Ki¥, K5 were defined in (35)-(36). For s; > 1 and s, > 251 we
define

ha(X,51,50) = K3 (51,52, 00) [C (X, 22 (B(X, 50) 1B(0,51)] + Elrsozen) + 1]
Pa(X,51) = C (X, 22 ) |C (X, 1) C(X, 1) + E[raoen)] sup v(y)| + sup v(y),
' 16 lvl> % lvl> %

where

CX,s)=if |Lfilloo,  fulz) = fla/s),  s>0,
B = {feC*RY: f(z) = 1for z € B(0,1/2), f(z) = 0 for z € B(0,1)°and 0 < f < 1},

and

= E°[75(0,261)] 51 81 2
C(X,s1) = G (T, +———;(KX(———,—,'>> .
( Sl) w,yesg(l(:))ssn B(O"l)(x y) IB(O> %)| ? 4" 2 i

|lz—yl>s1/8

Also, denote for a moment by C; the constant appearing in (Al.a).

Lemma 23 ([H3, Lemma 3.2]). Let {X;}t>0 be a symmetric Lévy process with infinite Lévy
measure v(dz) = v(z)dx such that (A1)-(A8) (for R > 0). Moreover, suppose there are
ry > 1, 1m0 > 2r; and rs > 19 such that

2CY (X, r1,m2) Ki¥(r2) + ha(X, 1) | B0, 72)| K3 (r2,73,00) < 7. (39)
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Then for every bounded and non-negative function f which is (X, n)-harmonic in B(0,7)¢ for
some > 0, there exist Cy, R > 0 (depending on the process and n) such that

f(@) <G| fllov(2), |l = R.

The structure of the condition (39) is determined by the estimate of (X, n)-harmonic functions
in [H3, Lemma 3.1], which is a version of the upper bound in [15, Lemma 3.2 (b)]. This version
is specialized for use in the case of a process whose path are being killed with the intensity
given by the potential V satisfying V(z) — 0 as |z| — oco. The most technical step of our
research was to understand this structure and to prove [H3, Lemmas 3.1-3.2]. Note that the
paper [42], dealing with a large class of Feller processes, also contains some estimates for
functions harmonic at infinity. However, the assumptions in this paper exclude the processes
with light tails and therefore we could not apply these result in our case.

Theorem 20 follows directly from Lemma 23, while the proofs of Theorems 21 and 22
require some preparation. The intermediate steps are [H3, Theorem 3.2] and [H3, Theorem
3.3], respectively. The proof of [H3, Theorem 3.3] is the second most technical part of the
paper [H3|. An effective application of Lemma 23 in the proof of this theorem requires some
regularization of the density of the Lévy measure.

At the end of this chapter, let us mention that Lemma 23 can also be used to obtain
similar results for the class of confining potentials. This is discussed in [H3, Section 4.5].
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V. Heat kernel estimates

In this chapter, we present the results obtained in the paper [H2|. These are sharp two-
sided estimates of the transition densities for Lévy processes with DJP in finite time horizon.
Note that this paper was written as the second one in the series of articles presented in this
summary. It is not directly concerned with the properties of the Feynman—Kac semigroups,
but the motivations for this study (and also the hope to get such results) came directly
from the paper [H1]. The direct jump property proved to be a structural assumption in
[H1] and our further studies of Feynman-Kac semigroups required some general systematic
knowledge about the properties of such processes. For instance, the results from our paper
[H2] were important for further consideration in [H3], especially in the case of Lévy measures
with finite second moment. They allowed us to check that the assumption (Al) together
" with some additional information about the behavior of the profile g near the origin imply
the other assumptions (A2)—(A3) and (29), (34), even if the process is non-isotropic [H3,
Proposition 3.2].
In [H2] we deal with a slightly different class of Lévy processes than that in [H1], [H3]
and [H4]: we assume that A = 0 and b € R¢ is an arbitrary vector. This means that the
Lévy-Khintchine exponent of the process {X;}:>0 takes the form (cf. (1))

p(€) = —i€ b+ / (1— %Y+t ylpon(y)) v(dy), &R (40)

We always assume that v(R?%) = co. Our most general upper estimate allows for irregular

Lévy measures v, but the strongest characterization result, which will be presented first,

requires v to be symmetric and absolutely continuous with respect to Lebesgue measure.
Denote

U(r) = sup Ry(€), r>0.

[Elsr
We note that U is continuous and non-decreasing, and we also have sup,., ¥(r) = oo, since
v(R%) = oo. Moreover, let :

U t(s) =sup{r >0: ¥(r) =s} fors>0

so that U(¥~Y(s)) = s for s € (0,00) and U~(T(s)) > s for s > 0. To shorten the notation
below, we set

b= [ y¥(dy) i <1,

h(t) := , byi=1¢ b if r=1, (41)
b+ [iqperyvdy) i r>1

and v, (z) = v(2)L{jg/>r}, 7 > 0.
The following theorem characterizes certain type of estimates of the kernels p;(z) for
symmetric and absolutely continuous Lévy measures that have non-increasing profiles.

Theorem 24 ([H2, Theorem 1]). Let v(dz) = v(z)dz be a Lévy measure such that v(R%) =
o0, v(y) = v(~y) and v(z) < f(|z]), z € R*\ {0}, for some non-increasing profile f :
(0,00) = (0,00). Assume, moreover, that b € R%. Then the following conditions (1) and
(2) are equivalent.

(1) There exists ro > 0 and the constants C, C>0 such that
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(@) Vpy * vpy(z) < Cu(a:),‘lx[ > 2ry,
(b) U(1/|z|) < Clz|v(z), 0 < |z| < 2ro.
(2) There exist tg, 0 > 0 and constants Cy — Cy such that for every t € (0,to] we have
C1[h(®)] 7 < py(x + tb) 5» Cs[ht)]™%, te€(0,t), |z|<On(t),
and |
htv(z) < pz+th) < Cytv(z), te(0,t], |z|>06h(t).

The above result gives sharp two-sided small-time estimates for a wide subclass of semigroups
of Lévy processes with DJP, which was studied in the series of articles constituting this
scientific achievement. Recall that this class includes processes with exponential tails, like
relativistic and tempered stable processes [H2, Example 2]. This is also a characterization
result, which shows that outside the class of processes with DJP the behavior of p;(z) is
different [H2, Example 5].

It should be emphasized that proving sharp estimates and asymptotic expansions for
heat kernels is one of the basic and challenging problems in the modern theory of non-local
operators and their evolution semigroups. In recent years, a lot of strong and useful estimates
have been obtained [12, 22, 43, 44, 45, 53]. An important feature of our characterization
presented above is that it also applies to a large subclass of processes with finite second
moments (in this case |Ry(£)] < C|¢[* for small ). Let us emphasize that this class of
processes has been only partly explored so far.

Note that conditions (l.a) and (1.b) refer to disjoint ranges of z. The proof of the
above theorem also consists of two parts, for small and for large |z|, respectively (see [H2,
Theorems 2-3|). Our main contribution was the observation that the uniform comparability
p¢(x +1tb) < tv(z) for small ¢ and large z is in fact equivalent with the condition (1.b), which
is exactly the direct jump property (cf. (Al.c)). This was proven in [H2, Theorem 3| under
some mild regularity assumption on the behaviour of ®1) at infinity (see the condition (E)
below). Here the key step was to show that DJP implies the upper bound p,(z+tb) < Ctv(z).
In fact, we obtained a much more general version of this result [H2, Theorem 4]. It allows
for non-symmetric and strongly singular Lévy measures. We first formulate the assumptions
of this theorem.

(E) There exist C' > 0 and ¢, > 0 such that

/ e\ g de < C R4, te (0],
Rd

(D) There exist a non-increasing profile function f : (0,00) — (0,00), v € [0,d] and a
constant C' > 0 such that
v(A) < Cf(dist(A,0))(diam(A))7,
for every Borel set A ¢ R? with dist(4, 0) > 0.

Here diam(A) denotes the diameter of the set A, and dist(A, 0) its distance to 0. Our last
assumption generalizes DJP (see [H2, Lemma 3]).
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(C) There exist constants C,C > 0 and ro > 0 such that for every || > 2rq and r € (0, 7]
we have

/| R Fly — =) v(dy) < CU1/r) f(lz]) and f(r) < CT(1/r)r7,

with f and y taken from (D).

Theorem 25 ([H2, Theorem 4]). Let v be a Lévy measure such that v(R%) = oo and let the
assumptions (E), (D) and (C) be satisfied for some t, > 0, the profile f, the pammeter vy
and some rg > 0. Then there is a constant C > 0 such that

pe(z + thagy) < CROI™ f(|al), 2] > dro, T € (0,10,

where o 1=ty A\ g7 WO)

This result applies directly to convolution semigroups built on the so-called product and
discrete Lévy measures [H2, Examples 2-3].

The proof of Theorem 25 uses some general method, which is based on estimates for
compound Poisson semigroups of the form

_ = L
Pr = et Z n—'r’ t,r >0,

where 7,(dy) = 1p(os)(y) ¥(dy) [H2, Lemma 4]. This approach was proposed in the papers
of Bogdan and Sztonyk [16] and Sztonyk [68]. In our paper [H2|, we work with a very general
class of processes. In particular, we do not assume that the Lévy measures have the doubling
properties. It should be emphasized that proving sharp estimates in our settings required an
essential modification of this method. v

The main step was the following lemma, which gives sharp upper estimates for the n-fold .
convolutions of restricted Lévy measures.

Lemma 26 ([H2, Lemma 2]). Let v be a Lévy measure such that v(R?) = oo and let the
assumptions (D) and (C) be satisfied for some profile f, the parameter v and some ro > 0.
Then the following hold.

(a) There is a constant C' = C(ry) such that

S fy = ahor @) < ©¥ Q) Jel), el 230, 7€ Oori nEN.
(42)
(b) For every bounded Borel set A C R? such that dist(A,0) > 3ry we have
oM™ (A) < C™ [T(1/r)]™ " f(dist(A,0)) (diam(A))?, 7€ (0,7], n €N, (43)
with a constant C = C(ro, [diam(A)/ro]).
The sharpness of the above upper estimates should be understood as follows: if the conditions

(C) and (D) are satisfied for some profile function f, then the appropriate bounds hold for
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convolutions of restricted measures with exactly the same profile f (i.e. the dilatations of f
are not enough). _

In the proof of Theorem 25 we also needed the observations from [H2, Lemma 1].

The proof of Lemma 26 is inductive. The estimate (a) is a natural extension of (C). It
follows from the fact that the first inequality in (C) can be effectively interated under the
assumption (D). On the other hand, the estimate (b) is an extension of (D). The argument
here is more subtle: we have to check the induction step for dist(A, 0) > 3rp — rp/2" instead
of dist(4,0) > 3rg. We then see that our Lemma 26 extends both assumptions (C) and (D)
to arbitrary convolutions of restricted Lévy measures.
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5. Description of other scientific achievements

Besides the four papers, which constitute mono-thematic series of publications, after Ph.D.,
I published ten articles, one is accepted and is waiting for publication, another two were
submitted to journals. Total number of my papers is 21, the number of citations, according
to the Web of Science database ("Sum of the Times Cited’ on 2019-01-03), is 91 (62 without
self-citations), and the h-index (Hirsh index) is 6. Total impact factor of the journals for
four publications included in the scientific achievement, according to the Journal Citation
Reports, is 4,022; total impact factor of the journals for all publications is 18,577, see Table 1.

Table 1: Impact factor of the journals according to Journal Citation Report from the year of

publication (or 2018 for publications from 2017)

article = journal

publication year

impact factor

[H1]  Annals Probab. 2015 1,734
[H2]  J. Anal. Math. 2017 0,592
[H3]  Potential Anal. 2017 0,852
[H4  J. Spectr. Th. 2018 0,344
[P1]  J. Evol. Eq. 2013 0,643
[P2] Rev. Math. Phys. 2013 1,448
[P3]  CAIM 2014 -

[P4] Stoch. Proc. Appl. 2015 1,193
[P5] J. Math. Anal. Appl 2015 1,014
[P6]  Phys. Rev. E 2017 2,284
[P7] J. Math. Anal. Appl. 2016 1,064
[P8]  Stoch. Proc. Appl. 2018 1,051
[P9] Trans. Amer. Math. Soc. 2018 1,496
[P10]  Potential Anal. 2018 0,852
[P11] Commun. Contemp. Math. 2018 1,155 2
[D1]  Stoch. Proc. Appl. 2012 0,953
[D2]  Studia Math. 2012 0,549
[D3]  Potential Anal. 2010 0,853
[M1]  Prob. Math. Stat. 2010 -

Sum: 18,577

After PhD I published the following papers:

[P1] K. Kaleta, P. Sztonyk, Upper estimates of transition densities for stable dominated
semigroups, Journal of Evolution Equations 13 (3), 633-650 (2013)

[P2] K. Kaleta, M. Kwasnicki, J. Malecki, One-dimensional quasi-relativistic particle in the

boz, Reviews in Mathematical Physics 25 (8), 1350014 (2013)

[P3] J. Lérinczi, K. Kaleta, S.O. Durugo, Spectral and analytic properties of non-local
Schrédinger operators and related jump processes, Communications in Applied and In-

dustrial Mathematics 6 (2), 534 (2014)

Zarticle [P11] is waiting for publication since November 2018
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[P4] K. Kaleta, K. Pietruska-Patuba, Integrated density of states for Poiss‘on—Schrédinger
perturbations of subordinate Brownian motions on the Sierpinski gasket, Stochastic
Processes and their Applications 125 (4), 1244-1281 (2015)

[P5] K. Kaleta, P. Sztonyk, Estimates of transition densities and their derivatives for jump
Léuvy processes, Journal of Mathematical Analysis and Applications 431 (1), 260-282
(2015)

[P6] K. Kaleta, J. Lérinczi, Transition in the decay rates of stationary distributions of Lévy
motion in an energy landscape, Physical Review E 93, 022135 (2016)

[P7] K. Kaleta, M. Kwasnicki, J. Malecki, Asymptotic estimate of eigenvalues of pseudo-
differential operators in an interval, Journal of Mathematical Analysis and Applications
439 (2), 896-924 (2016)

[P8] K. Kaleta, K. Pietruska-Patuba, Lifschitz singularity for subordinate Brownian motions
in presence of the Poissonian potential on the Sierpiniski gasket, Stochastic Processes
and their Applications 128 (11), 3897-3939 (2018)

[P9] K. Kaleta, P. Sztonyk, Spatial asymptotics at infinity for heat kernels of pseudo-
differential operators, Transactions of the American Mathematical Society, published
online, https://doi.org/10.1090/tran/7538

[P10] K. Kaleta, K. Pietruska-Patuba, The quenched asymptotics for non-local
Schridinger operators with Poissonian potentials, Potential Analysis, published online,
https://doi.org/10.1007/s11118-018-9747-x

[P11] K. Kaleta, J. Lérinczi, Typical long time behaviour of ground state transformed jump
processes, Communications in Contemporary Mathematics, to appear (2018), text avail-
able at arXiv:1806.10657

[Prel] K. Kaleta, J. Lérinczi, Zero-energy bound state decay for non-local Schrodinger oper-
ators, 1-35, submitted (2018), text available at arXiv:1804.04245

[Pre2] K. Kaleta, M. Olszewski, K. Pietruska-Patuba, Reflected Brownian motion on simple
nested fractals, 1-37, submitted (2018), text available at arXiv:1804.04228

Before PhD I published the following four papers, which will not be discussed here:

[D1] K. Kaleta, J. Lérinczi, Fractional P(¢)1-processes and Gibbs measures, Stochastic Pro-
cesses and their Applications 122 (10), 3580-3617 (2012)

[D2] K. Kaleta, Spectral gap lower bound for the one-dimensional fractional Schrédinger
operator in the interval, Studia Mathematica 209, 267-287 (2012)

[D3] K. Kaleta, T. Kulczycki, Intrinsic ultracontractivity for Schréodinger operators based on
fractional Laplacians, Potential Analysis 33 (4), 313-339 (2010)

[M1] K. Kaleta, M. Kwasnicki, Boundary Harnack inequality for a-harmonic functions on
the Sierpiriski triangle, Probability and Mathematical Statistics 30 (2), 353-368 (2010)

I will now discuss the results obtained in the papers [P1]-[P11] and [Prel]-[Pre2].
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Spatial asymptotics of heat kernels at infinity

In the paper [P9] we have investigated the spatial asymptotic at infinity for heat kernels of
homogeneous non-local pseudo-differential operators L of the form (3). More precisely, we
gave sufficient conditions under which the limits lim, p—tt(:(oT;f’), teT,0eE,ycRY canbe
computed. Here v is the corresponding Lévy density, 7' C (0, 00) is a bounded time-set, and
E is a subset of the unit sphere $¢1, d > 1. Denote by I'r:= {y : y/|y| € E} a generalized
cone based on the set E C 471,

We assume that A = 0 or infig=1 € - A > 0, v(dz) = v(z)dz and that there exists a

non-increasing profile function f such that v(z) < Cf(|z|) (f should fit v around zero) and
i) g it =9I | »
r) = sup —2" 0 as 7 — 00.
Jal>1 f(|z))

Additionally, we assume there is a non-empty and bounded set 7' C (0,00) and a constant

C > 0 such that
i B 1 d+1
/ e—t%‘:(w(ﬁ)—ﬁ-flf)mdg <C (\11—1 (—)) , teT,
. ]Rd t .
where

U(r) = sup R(Y(§) — € AE) and U~ Y(s) =sup{r > 0:¥(r) =s} forr,s>0.

1<y »

Then our main result [P9, Theorem 1] states that if for some F C $*7* and x > 0

vl —y) K(0-y) d
Tlggo 00 =e , yeR® fe€k, (45)

and infzep, ?'i(% > 0, then for every t € T, f € E and y € R? we also have

w P00y 1 s,
o o) _{ TN i > 0, )

where
B =—¢b—gagh [ (1= e ylaon() vu)dy
JR4\{0}

is the Laplace exponent of the Lévy process generated by L (when x > 0, then the condition
(44) and (45) imply that $(€) is well defined for € = k6 [P9, Lemma 2]). Moreover, when
the limit (45) is uniform in (4,y) € E x D, for every compact set D C R, then (46) is also
uniform in (¢,6,y) € T x E x B(0,p), for ¢ > 0. As a corollary, we get sharp two-sided
estimates of p; in cones I'g, away from 0 [P9, Corollary 2]. Similar results hold true for the
absolutely continuous parts of the compound Poisson processes [P9, Theorem 2, Corollary
2].

Our method in new and it is based on appliction of the function K () which was introduced
in [H3| (see (35) above). The condition (44) compactifies a convergence in our proofs. Our
approach allows us to compute the limit (46) for processes with exponential tails, e.g. for
~ ralativistic stable semigroups (see discussion of examples in [P9, Section 6]). Known methods,
working well in the polynomial case, were not sufficient for such processes.
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Stochastic processes on fractals and in random media

In the series of papers [P4] and[P8| we have investigated the spectral properties of generalized
random Schrodinger operators H,, which correspond to subordinate Brownian motions (both
diffusive and jump) evolving in random environment induced by the Poisson point process
on the Sierpinski gasket G. More precisely, we studied the Feynman-Kac semigroups of such
processes with independent random potential V(z,w) = fsj Wz, y)p¥(dy), where W is a
non-negative profile on § x G and p*(dy) is the Poisson random measure on § with intensity
vm(dz), v > 0 (here m denotes the log 3/ log 2-dimensional Hausdorff measure on §).

In [P4] we proved the existence of the so-called integrated density of states (IDS in short)
of the operator H,. This was done for a very general class of subordinate diffusions [P4,
Assumption 2.1 and Example 2.1] and a family of two-argument profiles W introduced in
[P4, (W1)-(W3) on p. 1262] (see also [P4, Section 4]), which includes the profiles of infinite
range and even singular ones (such a general class of potentials has not been considered on
fractals so far). The density of states [ was obtained as a common (non-random) limit of
random empirical measures based on spectra of generators of killed and reflected processes
on fractal complexes G, /G, n — oo [P4, Theorems 3.1-3.2]. Killing and reflecting of the
process correspond to imposing the Dirichlet and Neumann conditions on its generator.

In the paper [P8], under some additional assumptions on the subordinator (see (L1),
p. 3906 and (U1)-(U3), p. 3913), we established the Lifschitz-type singularity around the
bottom of the spectrum of H, for the integrated density of states. We have proven that
—log ([0, \]) = A7 for some v > 0, when A — 0% [P8, Theorems 3.3 and 4.4]. As a by-
product, we also obtained the large-time estimates for the Feynman-Kac functionals averaged
with respect to the process and the environement. Such objects can be interpreted as mean
survival probabilities up to time ¢ of processes whose paths are being killed by Poissonian
potentials. The behaviours we found depend on the decay rate of W(z,y) as |z — y| — oo,
and on the long range distributional properties of the processes (which are formally described
by the behaviour of the Laplace exponent of the subordinator around zero). It should be em-
~ phasized that our results identify certain qualitative transitions in the asymptotic properties

of IDS and averaged functionals which reflect the impact of the process and the potential.

A key tool used in our both papers are the so-called reflected processes in the complexes
G,, n > 1. In the diffusive case, such a process has been constructed in [56] via folding
projection of the free Brownian motion from the unbounded gasket G to G,. In jump case,
such a process is obtained by the subordination of the reflected diffusion on G,,. Thanks to
this specific construction, we were able to establish a clear connection between the properties
of reflected processes on subsequent levels G,, and G,,41. This allowed us to get a monotonic-
ity for averaged Feynman-Kac functionals for reflected processes in the complexes G,, with
potentials that are periodic with respect to the Poissonian medium (the so-called Sznitman
periodization; see [P4, inequality (3.8)]). This observation was crucial for the proof of the
existence of IDS (the convergence of Laplace trasnforms in [P4, Theorem 3.1]) and in the
proof of the upper bounds ([P8, Lemma 4.4] and its further applications). Another important
step was to prove a version of the theorem of A.S. Sznitman which gives the estimate of the
ground state eigenvalue for random Schrodinger operators [P8, Theorem A.1].

These results and methods essentially depend on the specific geometry of the Sierpifski
gasket (e.g. on the existence of the sequence of reflected processes). We now want to get the
counterparts of them for much more complicated fractal spaces. In [Pre2] we gave the descrip-
tion of a large class of nested fractals on which a natural projection exists and constructed
the desired sequence of reflected processes [Pre2, Definitions 3.1-3.3, Theorems 4.1-4.2].
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Non-local Parabolic Anderson Model (PAM)

In the paper [P10] we have studied symmetric and strong Feller Lévy processes with jumps
{X:}t>0 evolving in random environment in R¢ induced by independent Poissonian potential
V¥(z) = [paW(z — y)u”(dy). Here W is a non-negative profile on R* and p¥(dy) is the
random Poisson measure with intensity pdz, with parameter p > 0. We do not require
the absolute continuity of the Lévy measure, but we always assume that 7 is such that
e~t0¥() ¢ L1(RY) for some ¢y > 0. Our main results are the estimates of the random variables

u’(t,z) = E, [e_ Is Vu(XS)ds] (47)

as t — 0o, almost surely with respect to w (the so-called quenched behaviour). The asymp-
totics of averaged variables u“(t,z) (the so-called annealed behaviour) for Lévy processes
with jumps has been investigated by Donsker and Varadhan, and Okura. The quenched be-
haviour has been an open problem for almost 40 years. It should be emphasized that u*(t, z)
is the survival probability up to time ¢ for the process starting from z, whose paths are being
killed with random intensity given by V*. It is a probabilistic solution of the parabolic prob-
lem d;u = —H,u, u(0,z) = 1, where H,, := —L + V* is the non-local random Schrédinger
operator based on generator L of {X;}:>o.

Our first main results are [P10, Theorems 3.1 and 4.1], which give general upper and
lower estimates. The first result requires some information on decay rates of the tails of
random viariables X; and on the asymptotic behaviour of IDS for the operator H,. For the
proof of the second theorem we have to impose an appropriate condition on the asymptotic
~ behaviour of the ground state eigenvalue for the processes killed in large balls, and assume
that W is of finite range. In [P10, Section 5] we first prove a series of auxiliary results which
allow us to check the assumptions of general results mentioned above, and then we apply
them to identify the asymptotic profiles n(t) and explicit constants Cy, Cy > 0 such that

w w
logu“(t, x) < lim sup log u¥(t, x) < G
U(t) t—o0 77(75)

almost surely with respect to w, for every fixed z € R?. These results are amply illustrated
with a class of isotropic-unimodal Lévy processes [P10, Table 1]. It is worth noting that
we have observed two qualitative transitions in the growth of the rates n which depend on
the decay rate of the intensity of jumps of the process (for a discussion see [P10, p. 6]). In
particular, when the decay rate of this intensity is of order e”c|””|ﬂ, ¢, B > 0, or faster (e.g.
relativistic stable processes), then C; = Cy, i.e. we computed the limit lim; o log ;Tt()t’z), for
almost all w. For such processes the profile n(t) is the same as for the Brownian motion.
Interestingly, this need not be true for any Lévy measure with finite second moment.

—(Cy < liminf
t—o00

Ground state transformed processes

In the paper [P11] we have investigated the asymptotic behavior of the ground state trans-
formed processes associated with the non-local Schrédinger operators H = —L 4V, starting
from their stationary distributions u(dz) = @2(z)dz. A similar problem was studied by Rosen
and Simon in one dimension for the classical Schrodinger operators —A + V' with confining
polynomial potentials [59]. Due to technical limitations, we only look at the trace of paths
on the positive integer time. The first result are the estimates of the order of fluctuations:
the LIL-type theorem giving the upper envelope for the paths of the process [P11, Corollary
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3.1] which follows directly from the corresponding integral test of the Kolmogorov type [P11,
Theorem 3.1]. These observations are fairly general (the only condition here is the existence
of a non-degenerate ground state of H which guarantees the existence of the transformed
process). Another general result is the comparison principle in [P11, Theorem 3.2]. Further
chapters, [P11, Sections 4.2-4.3 and 4.4], contain more detailed versions of these results, spe-
cialized for analysis of processes with DJP and potentials V € X and V € XY, respectively.
Our estimates of ground states obtained in [H1] and [H3| have been crucial in proving these
results. They allowed us to establish a clear and direct dependence of asymptotic profiles on
the potential and the intensity of jumps of the initial Lévy process.

The paper [P6], published in a physics journal, contains a broader discussion of our
results on the localization of ground states for non-local Schrédinger operators in relation to
the transformed processes. The aim of this work was to communicate and disseminate these
results to specialists working in statistical physics.

Zero-energy bound states and zero-resonances

In the paper [Prel] we have studied a problem similar to that in [H3], but in a critical situ-
ation, i.e. when the eigenvalue A = 0. More precisely, we have investigated the localization
properties (i.e. the estimates of the rate of decay at infinity) of solutions to the equation
Hy = 0, for non-local Schrédinger operators H = —L+V (L is a generator of the symmetric
Lévy process satisfying the assumptions (A1)-(A3) and V € X9%). Due to some technical
limitations, we had to additionally assume that the density of the Lévy measure has the
doubling property. When ¢ € L*(R¢), then ¢ is the eigenfunction of the operator H cor-
responding to zero eigenvalue. However, now 0 lies at the bottom of the essential spectrum
of H and it is no longer an isolated eigenvalue. We also consider the solutions ¢ ¢ L*(R%)
such that ¢ € LP(R?), for some p > 2, which are called the zero-resonances. Qur argument
in [Prel] is based on combination of a subtle version of Lemma 23 (specialized for the case
A = 0; see [Prel, Lemma 4.1]) and some abstract, sufficiently sharp, self-improving estimates
[Prel, Section 3]. This allowed us to obtain the estimates of (X, V)-harmonic functions (and,
in consequence, for the eigenfunctions ¢ corresponding to A = 0) which take into account the
actual fall-off rate of the potential V' at infinity. In some cases, if ¢ > 0, then these bounds
are sharp. We also identified two qualitative transitions in the decay rates of eigenfunctions
which depend on the behavior of the function ¥(1/|z])/V (z) and the integrability of the ratio
v(z)/V(z) at infinity (for a discussion based on examples and the heuristic interpretation we
refer to [Prel, Section 6]).

Estimates of Feller and Lévy semigroups

In the paper [P1] we have found the upper estimate for the integral kernels of Feller semi-
groups which describe the evolution of the spatially non-homogeneous jump Markov processes
in R, the so-called Lévy-type processes [17]. Intensities of jumps f(z, y) of the processes under
consideration are required to satisfy certain regularity conditions (including some symmetry
properties). The most important assumption is the existence of a sufficiently smooth profile
function ¢ and constants M, ¢ > 0 such that

Flz,y) < MM

- Ig: — yld+a’ T 7£ Y, and inf f(x’y)

——_dy>cr % re(01),
B9 N e o1
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for some « € (0,2). We assume that the function ¢ is sufficiently smooth, constant around
zero, and that it decays sufficiently regularly at infinity. In particular, ¢(r)r—¢¢ is supposed
to satisfy the convolution condition as in (Al.c).

The main result is the following estimate for the integral kernels (transition probability
densities) of the considered semigroups: there are constants C;, Cy > 0 such that

t ‘ —
p(t,z,y) < C1e%" min (t_d/a, %) . z,y€RY t>0.

Interestingly, this result also covers the situation when ¢(r) is of order e=“"r7, for some ¢ > 0
and v > 0 (e.g. spatially non-homogeneous relativistic and tempered-type processes). Under
our agsumptions, the above bound is sharp for small ’s in the sense that the function on the
right hand side gives sharp two-sided estimates for the density of the isotropic Lévy process
with the Lévy measure v(dz) = C¢(|z])|z|~%*dz which dominates the Markov process in
question.

The paper [P5] includes upper and lower estimates of the transition probability densities
and the upper estimates of their spatial derivatives for a fairly general class of jump Lévy
processes. The first result, [P5, Theorem 1], gives the upper bound for the densities under
certain assumptions on the Lévy-Khintchine exponent and on the Lévy measure. This result
can be applied to a wider class of processes than the results in [H2] discussed above, but it
typically gives less sharp estimates. The second theorem, [P5, Theorem 2|, gives the lower
estimate under the assumption that the Lévy measure of balls can be controlled from below.
This result is local. Upper estimates for derivatives of transition densities are obtained in
[P5, Theorem 3. '

Weyl asymptotics for non-local operators

The paper [P2] is concerned with spectral properties of the Hamiltonian describing the energy
of a one-dimensional quasi-relativistic particle in an infinite potential well. The main goal
of this research was to describe the structure of the spectrum of the Dirichlet square-root
Klein-Gordon operator (—#%c2d?/dz?® + m2c*)}/? on the interval. Here ¢ denotes the speed of
light, m represents the mass of a particle, and # is the reduced Planck constant. We obtained
the Weyl-type asymptotic formulas for eigenvalues ), of this operator as n — oo (from which
we derive that all \,’s are simple), as well as uniform estimates of L> and L? norms of all
eigenfunctions, depending on the length of the interval. In the paper [P7] these results have
been generalized to the case of operators of the form ¢(—A), where ¢ is a complete Bernstein
function such that A¢(\) — oo, when A — oo. The methods of proofs in these papers are
based on new techniques proposed by Kwasnicki [49], which rely on an approximation of the
eigenfunctions by the so-called generalized eigenfunctions.
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