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In this doctoral thesis, the spring mass model for running has been conceptually analyzed. A runner has been
reduced to a point of mass on a weightless spring, which alternates between the flight phase and the support
phase. This model, known as the Spring-Loaded Inverted Pendulum (SLIP), may be thought of as a reductionist
model of the essential mechanical properties of running. Consequently, an inverted elastic pendulum has been
analyzed, with the attachment point situated at the foot-ground contact location. The physical description of
motion during the support phase aligns with the mathematical one that can be expressed using dimensionless
variables:  L

′′ = L(θ′)2 +K(1− L)− cos θ,(
L2θ′
)′ = P ′ = L sin θ,

where L and θ represent the length of the leg and the angle between the leg and the vertical axis.
Analytically, this problem cannot be solved in a closed form. However, approximate solutions can be derived.

The initial conditions are established, involving a landing with an attack angle of −α and a leg length of 1.
The angular velocity θd and radial velocity −Ld at the moment of landing are also fixed. By transitioning
to a fast time scale, that is putting τ+(t) = ϵ−1ω̃(ϵ)t, where ω̃(ϵ) = 1 − θ2d/2ϵ2 and utilizing perturbation
theory, approximations for L̃(τ+) and θ̃(τ+) are arrived at the moment of landing. The error terms for these
approximations, in the fast time scale, are of order O(ϵ3), which decrease for largeK, where ϵ = 1/

√
K.

Given the requirement that the leg should return to 1 during the contact phase, an approximation is obtained
for the contact time of the foot with the ground, denoted as tc, as well as the angle swept during the support phase,
denoted as ∆θ. Subsequently, by solving the boundary-value problem We obtain two analytical approximation
of the leg stiffness: K̃1 and K̃2. The K̃2 approximation is valid for a single boundary value problem, while K̃1
is an asymptotic approximation in the line of order of the dorect solution of boundary-value problem. The error
of both approximations is compared to the numerically determined, exact value K∗. The approximation K̃2 is
more accurate, with its error being twice as small for values of attack angles appearing in real running. Both
approximations perform well for small values of α.

By utilizing certain assumptions, such as the conservation of energy and momentum and by appropriately
concatenating asymptotic solutions for the two phases it is possible to reduce the dynamics to a one-dimensional
apex to apex return map.

Yi+1(Yi) = cos (α−∆θi) +
[
sin (2α−∆θi)

√
Es − Yi + cos (2α−∆θi)

√
Yi − cosα

]2
,

For this one-dimensional return mapping to have a fixed point, the model parameters must satisfy certain
conditions. For instance, the system’s energy must exceed the minimum energy, given by (θ∗d)2/2 cos2 α+cosα.
It will turn out that fixed points exist only for symmetric solutions. However, in the case of asymmetry, these
fixed points occur only when the angles at take-off are large and exceed the model’s range of application.

The natural continuation is to investigate the stability of fixed points for symmetric support phases. The
parameter sets for which stability conditions are met are derived from solving∣∣f ′(Yi)∣∣Yi=Y ∗ < 1.
Which is expressed as constraints on derivative of∆θ at fix point.

Since such a constructed model exhibits both stable and unstable states, it is possible to proceed with the
study of bifurcations. A numerical and analytical proof of the occurrence of a transcritical bifurcation in the pre-
viously constructed mapping has been presented. This means that conditions on the first and second derivatives
at the hyperbolic fixed point are examined. For instance, it is necessary to verify that when passing through the
bifurcation point, two branches of fixed points are obtained.

Mathematical modeling is a crucial aspect of biomechanics. Therefore, at the end of this study, an experi-
mental approach is also employed. Based on the collected data, both approximations for K are calculated and



compared to the stiffness calculated directly as the ratio of spring - leg deformation to the ground reaction force.
It turns out that also in this case, K̃2 is more accurate. After verifying the model’s ability to estimate real values,
we can move on to the study of running energetics. This involves comparing the energy generated by the runner
with the minimum energy required for stable running, predicted by the model. This allows for an interesting
conclusion that the runner aims to achieve stable running with minimal energy expenditure.


