FACULTY OF PURE AND APPLIED MATHEMATICS		
SUBJECT CARD		
Name of subject in Polish:	Zaawansowane zastosowania pakietów	
	statystycznych	
Name of subject in English:	Advanced Applications of Statistical	
	Packages	
Main field of study:	Applied Mathematics	
Specialization:	Data Engineering	
Profile:	Academic	
Level and form of studies:	2nd level, full-time	
Kind of subject:	Optional	
Subject code:		
Group of courses:	YES	

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in	30		30		
University (ZZU)					
Number of hours of total student workload (CNPS)	90		60		
Form of crediting	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*
For group of courses mark (X) final course	X				
Number of ECTS points	3		2		
including number of ECTS points for practical classes (P)	2		2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1.5		1.5		

*delete as not necessary

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Probability theory and mathematical statistics mastered at the level corresponding to the first degree of mathematical studies.
- 2. Knowledge of theoretical foundations and the ability to fit a linear regression model.
- 3. Good knowledge of any procedural programming language, basics of S language are recommended.
- 4. Familiarity with any math or statistics package that has a programming language builtin in addition to a graphical user interface.

SUBJECT OBJECTIVES

C1 A review of advanced applications of statistical packages.

C2 Improving the skills of using the R statistical package.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEU_W01 The student knows the difference between the predictive and confirmatory approach to modeling.

relating to skills:

PEU_U01 The student is able to use the R package utilizing the tidyverse and tidymodels package ecosystem.

PEU_U02 The student is able to analyze data using advanced statistical models.

relating to social competences:

PEU_K01 The student is prepared to acquire new competences and independently analyze data in search of answers to the questions he is interested in.

PROGRAMME CONTENT		
	Lecture	Number of hours
Lec1	Introduction to the lecture; Determining topics for the 1st and 2nd thematic blocks for lectures 7–14; Discussion about differences between predictive and confirmatory approaches to modeling.	2
Lec2	Introduction to generalized linear models; Exponential family of distributions and its properties.	2
Lec3	Estimation and reasoning about parameters in generalized linear models.	2
Lec4	Comparing generalized linear models; Variable selection methods; Verification of assumptions of a generalized linear model.	2
Lec5	Special cases of the generalized linear model for discrete data – logistic, Poisson and negative binomial regression.	2
Lec6	Regularization methods: Lasso, ridge and Elastic-Net; Zero-inflated Poisson and negative binomial regression.	2
Lec7- Lec10	1st thematic block – one of the topics illustrating advanced applications of statistical packages, e.g.: analysis of interval-censored data, Bayesian models, bootstrap methods, generalized linear mixed models, statistical tools of meta-analysis, spatial statistics, statistics of finite populations.	8
Lec11- Lec14	2nd thematic block – one of the topics illustrating advanced applications of statistical packages from the same pool, but different from selected in the first block.	8
Lec15	Lecture summary.	2
	Total hours	30

Laboratory		Number of hours
Lab1	Reading and processing data in tidyverse.	2
Lab2	Data visualization in ggplot2.	2
Lab3	Fitting models using tidymodels.	2
Lab4-	Exercises illustrating fitting and statistical inference for generalized	o
Lab7	linear models in confirmatory and predictive approaches.	0

Lab8-	Exercises illustrating the topic presented in the first thematic block	8
Lab11	(lectures 7–10).	0
Lab12-	Exercises illustrating the topic presented in the second thematic block	8
La15	(lectures 11–14).	0
	Total hours	30

TEACHING TOOLS USED

N1. Computer presentation and traditional methods.

N2. Computer laboratory.

N3. Student's self work.

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming	Learning outcomes	Way of evaluating learning outcomes
during semester), P –	code	achievement
concluding (at semester		
end)		
F1	PEU_U01	Three laboratory reports performed in small
	PEU_U02	student groups.
	PEU_K01	
F2	PEU_W01	A test during lecture.
	PEU_U02	
$P = 5/7 * F1 \pm 2/7 * F2$		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] H. Wickham, M. Çetinkaya-Rundel, G. Grolemund, *R for Data Science*, O'Reilly 2023, wydanie 2.
- [2] M. Kuhn, J. Silge, *Tidy Modeling with R*, O'Reilly 2022, wydanie 1.
- [3] E. Jones, S. Harden, M. J. Crawley, *The R Book*, Wiley 2022, wydanie 3.
- [4] A. Agresti, *Foundations of Linear and Generalized Linear Models*, Willey 2015, wydanie 1.

SECONDARY LITERATURE:

- [1] E. Gentle, W. K. Härdle, Y. Mori, *Handbook of Computational Statistics*, Springer 2012, wydanie 2.
- [2] K. Bogaerts, A. Komarek, E. Lesaffre, *Survival Analysis with Interval-Censored Data*, Chapman & Hall 2018, wydanie 1.
- [3] R. McElreath, *Statistical Rethinking: A Bayesian Course with Examples in R and Stan*, Chapman and Hall 2020, wydanie 2.
- [4] B. Efron, R. J. Tibshirani, *An Introduction to the Bootstrap*, Chapman and Hall 1993, wydanie 1.
- [5] W. W. Stroup, *Generalized linear mixed models: modern concepts, methods and applications*, Chapman and Hall 2012, wydanie 1.
- [6] G. Schwarzer, *Meta-Analysis with R*, Springer 2015, wydanie 1.

- [7] R. S. Bivand, E. Pebesma, V. Gómez-Rubio, *Applied Spatial Data Analysis with R*, Springer 2008, wydanie 1.
- [8] Y. Tillé, Sampling and Estimation from Finite Populations, Wiley 2020, wydanie 1.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Andrzej Giniewicz (<u>Andrzej.Giniewicz@pwr.edu.pl</u>)