FACULTY OF PURE AND APPLIED MATHEMATICS

SUBJECT CARD

Name of subject in Polish Analiza Funcjonalna i jej zastosowania Name of subject in English Applied Functional_analysis Main field of study (if applicable): APPLIED MATHEMATICS Specialization (if applicable): Mathematics for Industry and Commerce Level and form of studies: 1st/2nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	90		60		
Form of crediting	Examination				
For group of courses mark (X) final course	Х				
Number of ECTS points	3		2		
including number of ECTS points for practical classes (P)			2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1,5		1,5		

*delete as not necessary

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Student knows and can apply basic concepts of mathematical analysis
- 2. Student knows and can apply basic concepts of linear algebra

SUBJECT OBJECTIVES

C1 Study of the classical concepts of topology, elements of optimization and functional analysis and its application to solve simple inverse problems

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEU_W01 knows the most important theorems and hypothesis of functional analysis, topology

PEU_W02 knows basic methods of optimisation

relating to skills:

PEU_U01 knows and can apply methods of functional analysis

relating to social competences:

PEU_K01 can, without assistance, search for necessary information in the literature, also in foreign languages

	PROGRAMME CONTENT		
	Lecture	Number of hours	
Lec1	Introduction to functional analysis – real world problems modeled by operator equations	4	
Lec 2	Elements of topology and linear spaces	2	
Lec 3	Linear normed spaces	2	
Lec 4	Hilbert spaces	2	
Lec 5	Linear operators	4	
Lec 6	Elements of spectra theory	4	
Lec 7	Fundaments of optimisation	4	
Lec 8	Role of functional analysis in solving inverse problems	4	
Lec 9	Elements of functional analysis in numerical methods	4	
	Total hours	30	

Laboratory		Number of hours
Lab1	Solving of problems illustrating theory given in the lectures using mathematical packages for numerical computing	30
	Total hours	30

TEACHING TOOLS USED	
N1. Lecture – traditional method	
N2. Computer laboratory	
N3. Consultations	
N4. Student's self work – preparation for the laboratory	
EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT	

Evaluation (F – forming	Learning outcomes	Way of evaluating learning outcomes achievement
during semester), P –	code	

concluding (at semester end)		
F1	PEU_W01	examination
	PEU_W02	
	PEU_K01	
F2	PEU_U01	oral presentations, tests, projects, raports
	PEU-K01	
P=0.5*F1+0.5*F2		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] E. Zeidler, Applied Functional Analysis, Springer-Verlag 1995
- [2] Ch.W. Groetsch, Inverse Problems in the Mathematical Science, Vieweg-Verlag 1993

PRIMARY LITERATURE:

[1] L. Debnath, P. Mikusiński, Introduction to Hilbert Spaces with Applications, Academic Press 2005

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Prof. dr hab. Wojciech Okrasiński (Wojciech.Okrasinski@pwr.edu.pl)