FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD

Name in Polish: Finanse Obliczeniowe

Name in English: Computational Finance

Main field of study (if applicable): APPLIED MATHEMATICS

Specialization (if applicable): FINANCIAL AND ACTUARIAL MATHEMATICS,

COMPUTATIONAL MATHEMATICS

Profile: academic /-practical*

Level and form of studies: 1st/ 2nd level, uniform magister studies*, full-time / part-time* Kind of subject: obligatory / optional / university-wide*

Subject code:

Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	90		60		
Form of crediting	Examination / crediting with grade*				
For group of courses mark (X) final course	Х				
Number of ECTS points	3		2		
including number of ECTS points for practical classes (P)	2		2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1,5		1,5		

*delete as not necessary

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Student knows and can apply basic notions of financial mathematics.
- 2. Student knows basics of computer programming.

SUBJECT OBJECTIVES

C1 Study of concepts and acquisition of knowledge concerning algorithms and methods in computational finance

C2 Acquisition of abilities in implementing selected models and methods

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge the student:

PEK_W01 knows basic models and algorithms used in finance

PEK_W02 has in-depth knowledge regarding numerical implementation of selected derivatives pricing techniques

relating to skills the student:

PEK_U01 can implement and apply in practice computational techniques used in finance

relating to social competences the student:

PEK_K01 can, without assistance, search for necessary information in the scientific literature

PROGRAMME CONTENT					
Lecture					
Lec1	1 Derivatives: forwards, futures, swaps and options. Portfolio construction and pricing.				
Lec2- 3	Partial differential equations technique. Pricing in the Black-Scholes model.	4			
Lec4- 5	Sensitivity analysis. Delta-neutral and delta-gamma-neutral strategies.	4			
Lec6	Volatility modeling	2			
Lec7- 8	Binomial pricing: CRR, JR and "exact" trees. Hedging strategies on trees. Trinomial trees.	4			
Lec9- 10	Binomial and trinomial pricing of path dependent derivatives.	4			
Lec11- 12	Finite difference schemes: explicit, implicit, Crank-Nicolson.	4			
Lec13- 14	Monte Carlo method in finance. Euler and Milstein schemes, variance reduction.	4			
Lec15	MC pricing of American options.	2			
	Total hours	30			
Laboratory					
Lab1- 15	Implementation (Matlab, R, Excel/VB, C++, Java and/or Python) of algorithms and methods discussed during lectures	30			
	Total hours	30			
TEACHING TOOLS USED					
N1. Le	cture – traditional method				
N2. La	N2. Laboratory – traditional method				

N2. Laboratory – traditional method

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming	Learning outcomes	Way of evaluating learning outcomes achievement
during semester), P –	code	
concluding (at semester		
end)		
F1	PEU_W01	Test
	PEU_W02	
F2	PEU_U01	Exercises
F3	PEU_K01	Project
P=0.34F1+0.33F2+0.33F3		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] P. Wilmott (2000) Paul Wilmott on Quantitative Finance, Wiley
- [2] J. Hull (2008) Options, Futures and Other Derivatives (7th Edition), Prentice Hall
- [3] J. London (2005) Modeling Derivatives in C, Wiley
- [4] A. Weron, R. Weron (1998, ..., 2009) Inżynieria finansowa, WNT.

SECONDARY LITERATURE:

- [5] Z. Bodie, A. Kane, A.J. Marcus (2007) Essentials of Investments (6th ed.), McGraw-Hill
- [6] M. Capiński, T. Zastawniak (2003) Mathematics for Finance: An Introduction to Financial Engineering, Springer
- [7] P.Cizek, W.Härdle, R.Weron, eds. (2011) Statistical Tools for Finance and Insurance, Springer
- [8] J. Franke, W. Härdle, C. Hafner (2005) Introduction to Statistics of Financial Markets, Springer

[9] P. Glasserman (2004) Monte Carlo Methods in Financial Engineering, Springer

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

dr inż. Joanna Janczura (joanna.janczura@pwr.edu.pl)