FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD Name in Polish: Matematyka finansowa

Name in English: Economathematics Main field of study (if applicable): Applied Mathematics Specialization (if applicable): Financial and Actuarial Mathematics Level and form of studies: 1st/ 2nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code Group of courses YES /-NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	30			
Number of hours of total student workload (CNPS)	90	60			
Form of crediting	Examination / crediting with grade *	Examina tion / crediting with grade*	Examination / crediting with grade*	tion /	on /
For group of courses mark (X) final course	Х				
Number of ECTS points	3	2			
including number of ECTS points for practical classes (P)	2	2			
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1,5	1,5			

delete as not necessary

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES 1. Student has an elementary knowledge of financial markets and discrete models of financial mathematics

SUBJECT OBJECTIVES

C1 Learning and mastery of key concepts and methods in the field of financial mathematics.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEK_W01 knows the most important theorems and hypotheses of financial mathematics PEK_W02 knows the basics of stochastic modeling in financial mathematics relating to skills:

PEK_U01 can construct mathematical models used in financial mathematics relating to social competences:

PEK_K01 can by hisself search for information in the literature, even in foreign languages

PROGRAMME CONTENT				
Form of classes - lecture				
Lec 1	Black-Scholes model	4		
Lec 2	Stochastic calculus and its application to the valuation of assets and liabilities and design hedging strategies	4		
Lec 3	Feynman-Kac formula and Blacka-Scholes formula	2		
Lec 4	Bachelier model	2		
Lec 5	Risk-Neutral and Real World scenarios, deflator and its applications	2		
Lec 6	Modeling of term structure	2		
Lec 7	Vasicek and Cox-Ingerson-Ross models, HJM model, LIBOR model	4		
Lec 8	Calibration of interest rate instruments	2		
Lec 9	Valuation of debt instruments and interest rate derivatives (bonds, cap/ floor, caplet/floorlet and swaptions)	2		
Lec10	Subdiffusive Black-Scholes and Bachelier models	2		
Lec11	Fractional Brownian motion in finance	2		
Lec12	Gerber-Shiu model, Esscher transform	2		
	Total hours	.30		

Form of classes - Class		Number of hours
Cl 1	Illustration of all models. Analytical and computer methods. Examples of pricing derivatives.	30
	Total hours	30

TEACHING TOOLS USED

1. Lecture – traditional method

2. Problem and counting exercises.

3. Consultations.

4. Student's self work - preparation for exercises.

PEK_W01 PEK_W02 PEK_K01	exam
PEK_U01 PEK_K01	oral responses, tests, small tests
PH PH	EK_W02 EK_K01 EK_U01

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] A. Weron, R. Weron (1998) Inżynieria finansowa, WNT SECONDARY LITERATURE:

[1] A. Jakubowski, A. Palczewski, M. Rutkowski, Ł. Stettner (2003) Matematyka finansowa, WNT.

[2] M. Musiela, M. Rutkowski (1997) Martingale methods in financial modelling, Springer.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS) Dr hab. Marcin Magdziarz (Marcin.Magdziarz@pwr.edu.pl)