FACULTY OF PURE AND APPLIED MATHEMATICS

SUBJECT CARD

Name of subject in Polish: Matematyczne przetwarzanie obrazów Name of subject in English: Mathematical Image Processing Main field of study (if applicable): Applied Mathematics Specialization (if applicable): MODELLING, SIMULATION, OPTIMIZATION Profile: academic / practical* Level and form of studies: 2nd level/ full-time Kind of subject: optional Subject code MAT001582 Group of courses YES

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	90		60		
Form of crediting	crediting with grade				
For group of courses mark (X) final course	Х				
Number of ECTS points	3		2		
including number of ECTS points for practical classes (P)	_		2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	- ,-		1,5		

*delete as not necessary

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Knows basic concepts of theory of partial differential equations
- 2. Knows MATLAB package for mathematical computing

SUBJECT OBJECTIVES

C1 Study of mathematical models in image processing.

C2 Study of numerical methods for solving problems in image processing.

C3 Application of acquired knowledge to construction and analysis of mathematical models in image processing

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEU_W01 knows basic models for image restoration

PEU_W02 knows basic variational models for image segmentation

PEU_W03 knows numerical methods for solving problems in image processing

relating to skills:

PEU_U01 be able to demonstrate the difference between known models of image restoration

PEU_U02 be able to demonstrate the difference between known models of image segmentation PEU_U03 be able to apply numerical methods to solve mathematical problems in image processing

relating to social competences:

PEU_K01 can, without assistance, search for necessary information in the literature. PEU_K02 understands the need for systematic work on course material

	PROGRAMME CONTENT				
	Number of hours				
	Overview of fundamental problems in image processing. Representation of images. Models of image degradation.	2			
Lec 2	Linear diffusion filter. Gaussian smoothing in the frequency domain.	2			
Lec 3	Nonlinear diffusion filters. Isotropic and anisotropic diffusion models.	4			
Lec 4	Discretization of the nonlinear diffusion filter.	2			
Lec 5	Introduction to variational models for image restoration.	2			
Lec 6	Image denoising by total variation regularization.	2			
Lec 7	First order numerical schemes for total variation minimization.	4			
Lec 8	Image deblurring model.	2			
Lec 9	Total variation model for image inpainting.	2			
	The Mumford-Shah model for image segmentation and its approximations.	4			
Lec 11	Active contours model for image segmentation.	4			
	Total hours	30			

Laboratory		
Lab 1	Basic operation on images. Degradation of images. Gaussian smoothing.	4
Lab 2	Solving selected problems illustrating theory given in the lectures using mathematical MATLAB package for numerical computing	26
	Total hours	30

TEACHING TOOLS USED

N1. Lecture – traditional method supported by multimedial presentation N2. Computer laboratory – working on a computer using MATLAB package for numerical computations N3. Consultations

N4. Student's self work – work on the project

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F –	Educational effect number	Way of evaluating educational effect achievement
forming (during		
semester), P –		

concluding (at semester end)			
F1	PEK_W01, PEK_W02, PEK_W03,	activity in the laboratory	
	PEK_U01, PEK_U02,		
	PEK_U03,		
	PEK_K01, PEK_K02,		
F2	PEK_W01, PEK_W02, PEK_W03,	oral presentation, report	
	PEK_U01, PEK_U02,		
	PEK_U03,		
	PEK_K01, PEK_K02,		
P==0.2*F1+0.8*F2		•	

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] G. Aubert and P. Kornprobst "Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations", Springer-Verlag, 2007.
- [2] T. Chan and J. Shen "Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods", SIAM, 2006.

SECONDARY LITERATURE:

[1] O. Scherzer (Editor) "Handbook of Mathematical Methods in Imaging", Springer-Verlag, 2010.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr Monika Muszkieta (monika.muszkieta@pwr.edu.pl)