FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD Name of subject in Polish METODY NIELINIOWE Name of subject in English NONLINEAR METHODS Main field of study (if applicable): APPLIED MATHEMATICS Specialization (if applicable): MATHEMATICS FOR INDUSTRY AND COMMERCE Level and form of studies: 1st/ 2nd* level, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	90		60		
Form of crediting	crediting with grade				
For group of courses mark (X) final course	Х				
Number of ECTS points	3		2		
including number of ECTS points for practical classes (P)	2		2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1,5		1,5		

*delete as not necessary

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Student has knowledge of concepts, theorems and methods of mathematical analysis

2. Student has knowledge of concepts and methods of differential equations

SUBJECT OBJECTIVES

C1 Study basic concepts and nonlinear methods used in applications

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEU_W01 has advanced knowledge concerning nonlinear methods

PEU_W02 knows numerical methods applied for approximate solving of mathematical problems in applied sciences

relating to skills:

PEU_U01 is able to construct mathematical models in advanced applications of mathematics relating to social competences:

PEU_K01 can, without assistance, search for necessary information in the literature, also in foreign languages

PROGRAMME CONTENT				
	Lecture	Number of hours		
Lec 1	Examples of nonlinear phenomena	2		
Lec 2	Examples of nonlinear phenomena	2		
Lec 3	Nonlinear oscillators	2		
Lec 4	Lec 4 Bifurcation and stability			
Lec 5	Lec 5 Van der Pol equation			
Lec 6	Duffig equation	2		
Lec 7	2-D systems of nonlinear equations – equilibrium points	2		
Lec 8	Classification of the equilibrium points	2		
Lec 9	Systems of nonlinear equations - attractors	2		
Lec 10 Lorenc equation		2		
Lec 11	Lec 11 Strange attractors			
Lec 12 Belolusov-Zabotynski equation		2		
Lec 13	Benard cells – equations of hydrodynamics	2		
Lec 14	Examples of nonlinear optimisation	2		
Lec 15	Some methods of nonlinear optimisation	2		
	Total hours	30		

	Laboratory	Number of hours
Lab 1	Solving of problems illustrating theory given in the lectures by analytic methods and with MATLAB	30
	Total hours	30

TEACHING TOOLS USED

N1. Lecture – traditional method

N2. Laboratory- solving problems with computers

N3. Consultations

N4. Student's self work – preparation for the laboratory

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F –	Learning outcomes	Way of evaluating learning outcomes achievement
forming during	code	

semester), P – concluding (at semester end)		
F1	PEU_W01 PEU_W02	test
F2	PEU_U01 PEU_K01	oral answers, calculus trainings, presentations, short tests, tests
P==0.5*F1+0.5*F2		

P==0.5*F1+0.5*F2

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- D.W. Jordan, P. Smith, Nonlinear Ordinary Differential Equations [1]
- G. Nicolis, Introduction to Nonlinear Science. [2]

SECONDARY LITERATURE:

D. P. Bertsekas, Nonlinear Programming [1]

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Prof. dr hab. Wojciech Okrasiński (Wojciech.Okrasinski@pwr.edu.pl)