FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD Name of subject in Polish Badania Operacyjne Name of subject in English Operations Research Main field of study (if applicable): APPLIED MATHEMATICS Specialization (if applicable): MODELLING, SIMULATION, OPTIMIZATION Profile: academic / practical* Level and form of studies: 1st/ 2nd level, uniform magister studies*, full-time / part-time* Kind of subject: obligatory / optional / university-wide* Subject code Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	90		60		
Form of crediting	Crediting with grade				
For group of courses mark (X) final course	Х				
Number of ECTS points	3		2		
including number of ECTS points for practical classes (P)	1		3		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	3				

*delete as not necessary

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Student knows and can apply basic notions of linear algebra and logic.
- 2. Student knows basics of computer programming.

SUBJECT OBJECTIVES

- C1 Learning of basic mathematical models supporting decision-making.
- C2 Learning of basic algorithms used in operations research
- C3 Acquisition of abilities in constructing mathematical models for real problems.
- C4 Acquisition of abilities in implementing models in a mathematical modeling language
- C5 Acquisition of abilities in presenting and interpreting solutions of the constructed models.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge the student:

PEU_W01 has in-depth knowledge of linear programming

PEU_W02 knows basic models and algorithms used in operations research.

relating to skills the student:

PEU_U01 can build mathematical models for real problems

PEU_U02 can implement mathematical models using a mathematical modeling language

relating to social competences the student:

PEU_K01 can present problem solutions to non-mathematicians in an understandable way.

	PROGRAMME CONTENT	
Lecture		
Lec1	Introduction to operations research. Formulation of the linear programming problem	2
Lec2	Building mathematical models (1)	2
Lec3	Building mathematical models (2)	2
Lec4	Building mathematical models (3)	2
Lec5	The simplex algorithm for linear programming.	2
Lec6	Duality and sensitivity analysis in linear programming	2
Lec7	Algorithms for integer linear programming.	2
Lec8	Minimum cost flow problem – applications and mathematical properties	2
Lec9	Network simplex algorithm	2
Lec10	The shortest (longest) path problem – applications and algorithms	2
Lec11	The maximum flow problem – applications and algorithms	2
Lec12	The assignment, minimum spanning tree and traveling salesperson problems – applications and algorithms	2
Lec13	Elements of computational complexity, NP-hard combinatorial optimization problems and limitations of modern computational techniques.	2
Lec14	Multiobjective programming	2
Lec15	Written test	
	Total hours	30

	Laboratory	Number of hours
La1	Introduction to MathProg (AMPL) language	2
La2	Building and implementing linear programming models for chosen problems	4
La3	Building and implementing integer linear programming models for chosen problems	8

La4	Building and implementing models for the minimum cost flow problem and its variants	4
La5	Building and implementing models for various variants of the traveling salesperson problem	2
La6	Building and implementation models for chosen combinatorial optimization problems	4
La7	Building and implementing models for chosen multiobjective problems	4
La8	Written test	2
	Total hours	30

TEACHING TOOLS USED

N1. Lecture – computer presentation and traditional method

N2. Laboratory – building models for chosen problems and implementation of the models using the AMPL language

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming during semester), P – concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
F1	PEU_W01 PEU_W02	Written test (lecture)
F2	PEU_U01 PEU_U02 PEU_K01	Written test (laboratory)
P=0.5*F1+0.5*F2	•	

-0.5 1110.5 12

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] H. A. Taha. Operations research. An introduction. Pearson Eduction 2007.
- [2] F.S. Hillier, G. J. Lieberman. Introduction to operations research. Mc. Graw Hill 2001.
- [3] B. Kolman, R.E. Beck. Elementary linear programming with applications. Elsevier Science 1995.

SECONDARY LITERATURE:

- [4] A. Shrijver. Theory of linear and integer programming. J. Wiley & Sons 1999.
- [5] M.S. Bazaraa, J. J. Jarvis, H. D. Sherali. Linear programming and network flows. J. Wiley & Sons 2010.
- [6] R. Ahuja, T. Magnanti, J. Orlin. Network flows. Theory algorithms and applications. Prentice Hall 1993.
- [7] R. Fourer, D.M. Gay, B.W. Kernighan. AMPL. A modeling language for mathematical programming, free e-book: *http://ampl.com/resources/the-ampl-book/chapter-downloads/*

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr hab. inż. Adam Kasperski (adam.kasperski@pwr.edu.pl)