FACULTY OF PURE AND APPLIED MATHEMATICS SUBJECT CARD

Name in Polish: Równania różniczkowe cząstkowe z zastosowaniami w fizyce i przemyśle Name in English: Partial differential equations with applications in physics and industry

Main field of study (if applicable): APPLIED MATHEMATICS

Specialization (if applicable): MATHEMATICS FOR INDUSTRY AND COMMERCE

Level and form of studies: 1st/2nd* level, full-time / part-time*

Kind of subject: obligatory /-optional / university-wide*

Subject code

Group of courses YES / NO*

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30	30			
Number of hours of total student workload (CNPS)	120	60			
Form of crediting	Examination / erediting with grade*	Examina tion / crediting with grade*	Examination / crediting with grade*	tion /	on /
For group of courses mark (X) final course	X				
Number of ECTS points	3	3			
including number of ECTS points for practical classes (P)		4			
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1	2			

*delete as not necessary

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Student knows and can apply classical notions and methods of real and complex analysis.
- 2. Student knows and can apply elementary notions and methods of ordinary differential equations.

SUBJECT OBJECTIVES

- C1 Study of basic notions and acquisition of knowledge in the area of differential equations.
- C2 Study of basic applications of partial differential equations in science, technology and industry.
- C3 Acquisition of basic abilities in mathematical modelling by partial differential equations.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge the student:

PEK_W01 knows the most important theorems from main areas of differential equations PEK_W02 knows basics of modelling by differential equations in technology and natural sciences, especially in physics, chemistry and biology.

relating to skills the student:

PEK_U01 can analyze basic problems of differential equations,

PEK_U02 can construct mathematical models with the usage of differential equations in concrete applications of mathematics.

relating to social competences the student:

PEK_K01 can, without assistance, search for necessary information in the literature, also in foreign languages

PEK_K02 understands necessity of systematic and individual work on the material of the course.

	PROGRAMME CONTENT				
Form of classes - lecture					
Lec1	A reminder of information concerning first order partial differential equations. Methods of characteristics, weak solutions and shock waves.	4			
Lec2	Second order partial differential equations and their classification. Physical motivations.	2			
Lec3	Parabolic equations and their applications (heat, diffusion). Initial-boundary problems, method of separation of variables, Fourier transform, fundamental solution, maximum principle.	8			
Lec4	Hyperbolic equations and their applications (vibration of strings, membranes and beams; acoustical, mechanical and electromagnetic waves). D'Alembert's solution, initial-boundary problems, method of separation of variables, Kirchhoff's solution, Huygens' principle.	8			
Lec5	Elliptic equations and their applications (stationary temperature distribution, gravitational and electrostatic potential). Boundary value problems, eigenfunctions, Poisson's equation, Green's function.	6			
Lec6	The calculus of variations and its applications. Euler-Lagrange equation, Lagrangian mechanics, geodesic equation, minimal surface equation.	2			
	Total hours	.30			

Form of classes - Class		Number of hours
Cl1	Solving of problems for differential equations and their applications.	30
	Total hours	30

TEACHING TOOLS USED

- 1. Lecture traditional method
- 2. Tutorial class
- 3. Consultations
- 4. Student's personal work preparation for the laboratory

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT

Evaluation (F – forming during semester), P – concluding (at semester end)	Learning outcomes code	Way of evaluating learning outcomes achievement
F1	PEK_W01 PEK_W02 PEK_K01	exam
F2	PEK_U01 PEK_U02 PEK_K01	Oral presentations, tests, written reports.
P=0.5*F1+0.5*F2		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] S.J.Farlow, Partial Differential Equations for Scientists and Engineers, Dover Publications, 1993.
- [2] R.Haberman, Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, Pearson, 2012.
- [3] A. N. Tichonow, A. A. Samarski, Równania fizyki matematycznej, PWN 1963.

SECONDARY LITERATURE:

- [1] J. Ockendon, S. Howison, A. Lacey & A. Movchan, Applied Partial Differential Equations, Oxford University Press, Oxford 1999.
- [2] L. C. Evans, Równania różniczkowe czastkowe, PWN 2002.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

dr inż. Łukasz Płociniczak (lukasz.plociniczak@pwr.edu.pl)