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GRAPHICAL MODELS IN STATISTICS:

coding conditional independence by a graph

(mathematical and statistical theory started
by S. Lauritzen and collaborators, 1980's)



Simpson paradox

A university has 48 000 students
Half boys(24 000), half girls(24 000)

At the final exams: 10 000 boys and 14 000 girls fail
Feminist organizations threaten to close the university,
girl students want to lynch the president!

However, the president of the university proves that the
results R of the exams are conditionally independent
of the sex S of a student, knowing the department
D (notation R 1L S|D)



3 departments

A (literature, history, languages),
B(law),

C(sciences)

16 000 students each

A Succ. Fail B Succ. Fail C Succ. Fail
Girls 3 O 4 4 3 1
Boys 1 3 4 4 9 3

Actually |R 1L S |D =d|for d =A,B,C

The notion of the conditional independence
IS necessary to understand the Simpson paradox.
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Graphical coding of conditional independence
Let G be a graph with vertices v;. If 2 vertices v;,v; are
connected by an (undirected) edge, we write [v; ~ v;].

R 1L S|D will be coded by R%* S no edge between
R and S

Results depend on Department (knowing Sex): R~ D
S depends on D (knowing Results): S~ D

R~ 9

Remark. D separates R from S
(any path from R to S goes through D. Direct route
from R to S impossible.)



We consider undirected graphs G = (V, E) where:

e the vertex (node) set V. =1{1,...,n}
e the edge set E C {F C V| card(F') = 2}

Any 2-element set {i,j} € E will be called an edge.
Then we write 7 ~ j.



Consider a system of random variables Xq,...,Xp on
the same probability space (2,7, P).

The information on conditional independence between
the X;'s is schematized by an undirected graph
G = (V, E) such that

Xl 1 X |XV\{l,m} <— | 74 m.

The graph G is called the dependence graph of the
system of random variables Xq,..., Xp.



Conditional Independence in a Gaussian vector

Let X = (X1q,...,Xp) be a Gaussian vector on RP, with
law Np(&,%) and invertible X.

The matrix K = >~ 1 is called the precision matrix of

the Gaussian vector X.
(K is also called concentration matrix)



This is the precision matrix K = (x;;); j<p that appears
in the Gaussian density

F(2) = (20)P/2(det k)12 (& — O K(z —€)/2



Proposition. Let X be a Gaussian vector in RP. De-
note V = {1,...,p} the index set. Let I,m € V and

[ = m.

The marginals X;, X;, are conditionally independent
w.r. to all the other variables Xy 1 )

Xy AL Xm ‘XV\{l,m}
if and only if
Kim = 0O

i.e. the Im-term of the precision matrix K is equal
0.
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Proof in dim 3.

X ~N(0,%), | X1 1L Xo|X3| K = (kij)ij<z3 =21

Factorization Property of the joint density:
X1 1 X5|X3 & f(x1,72,23) = g(x1,23)h(22,23)

(analogous to Xl Al X2 ~ f(:l:l,xg) = g(a:l)h(xg))

det K)1/2
f($1,£132,$3) — ((e2ﬂ.)3)/2 X

o— (k1127 + Kooa3 + k3375 + 2K122122 + 28137123 + 2K031273) /2

Suppose | X1 L Xo|X3| & f(z1,22,23) = g(x1,23)h(x2,23) =CX

o— (k1127 + Koow3 + k3323 + 2K102120 + 2K132123 + 2K032213) /2

Obligatorily 2k{ox12o =0 &

k1o = 0|
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GAUSSIAN GRAPHICAL MODELS
Let V ={1,...,p} and let G = (V, E) be an undirected
graph. Let

S(G)={ZeSym(nxn)|itj = Z;; =0},

the space of symmetric matrices with obligatory zero
terms Z;; = 0 for ¢ % j.

Definition. The GAUSSIAN GRAPHICAL MODEL
governed by the dgraph G is the set of all random
Gaussian vectors X = (Xy),ey ~ N(&,X), with preci-
sion matrix K = X~1 € S(G).
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Remark. The complete graph G (i.e. G containing all
possible edges) defines Gaussian graphical model con-
taining all Gaussian vectors supported by RP, with no
constraint. Such model is called saturated.
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Precision matrix K = >-1 of a Gaussian vector
contains:

e iNformation on conditional independence:
Xl 1 Xm |XV\{l,m} <~ Rlm = 0

e conditional precision matrices (Kx ,x, = Ka4)
where AUB=V,ANB =

14



e iNn practice, we use conditional correlation
COU(leXm|XV\{l,m})

— —Kim

Pim|V\{l,m} = I 1
Var(Xl|XV\{l,m}) 2 VaT(Xm|XV\{l,m}) 2

~ df -
where k;,, = \/K_l;"\l/% iIs an element of the so-called

scaled precision matrix K.

Intuitively,
PlmV\{Lm} = ~Rim ~ 0 = Xy b Xm [ Xy\g1,m}-

The matrix R with terms py,, ;v\ () IS Called partial
correlation matrix.

For off-diagonal terms, R;,, = —Kjp,-
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Example. Marks of 88 students in 5 exams: Ng(§,X)

Kent and Bibby (1979). [ WHITTAKER]

Table 1.1.1: Marks in five mathematics exams for 88 students. From Mardia,

T

me ve al an st | me ve al an st | me ve al an st
77 82 67 67 81| 30 69 50 52 45 62 44 36 22 42
63 78 80 70 81| 46 49 53 59 37| 48 38 41 44 33
75 73 71 66 81} 40 27 54 61 61 34 42 50 47 29
55 72 63 70 68| 31 42 48 54 68| 18 51 40 b6 30
63 63 65 70 63| 36 59 51 45 514 35 36 46 48 29
53 61 72 64 73| 56 40 56 b54 35| 59 B3 37 22 19
51 67 65 65 684 46 656 57 49 32| 41 41 43 30 33
50 70 68 62 HG| 45 42 b5 56 40| 31 B2 37T 27 40
62 60 58 62 70| 42 60 H54 49 33 17 H1 52 35 41
64 72 60 62 45| 40 63 53 54 25| 34 30 50 47 35
52 64 60 63 54| 23 55 59 HI 44| 46 40 47 29 17
5 67 b9 62 44| 48 48 49 bH1 37| 10 46 36 47 39
50 B0 64 55 63| 41 63 49 46 34| 46 37 45 15 30
65 63 58 56 371 46 52 53- 41 40| 30 34 43 46 18
31 B5 60 57 T3] 46 61 46 38 41 13 51 50 25 31
60 64 56 b4 40) 40 57 5T 52 31| 49 B0 I8 23 9
44 69 53 53 53| 49 49 45 48 39| 18 32 31 45 40
42 69 61 55 45{ 22 58 B3 56 41 8 42 48 26 40
62 46 61 57 451 35 60 47 b4 33| 23 38 36 48 16
31 49 62 63 62 48 b6 49 42 32| 30 24 43 33 %
44 61 B2 62 46 31 57 H0 B4 ¥ 3 9 51 47 40
49 41 61 49 64 ] 17 B3 BT 43 51 7 51 43 17 22
12 58 61 63 67! 49 &7 47 39 26 ) 15 40 43 23 18
4¢ 53 49 62 47 59 HO 47 15 46 15 38 39 28 17
54 49 56 47 63| 37 bH6 49 28 45 5 30 44 36 18
54 53 46 b59 44| 40 43 48 21 61| 12 3¢ 32 35 21
44 56 b5 61 38| 35 35 41 51 B 5 .26 15 20 20
18 44 50 57 81 38 44 564 47 M 0 40 21 9 14
46 52 65 50 351 43 43 38 34 49
32 45 49 57 64| 39 46 46 32 43
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Definition
Examples

Gaussian graphical models

Mathematics marks

Examination marks of 88 students in 5 different mathematical
subjects. The empirical concentrations (on or above diagonal) and
partial correlations (below diagonal) are

Mechanics Vectors Algebra Analysis  Statistics

Mechanics 5.24 —2.44 —2.74 0.01 —0.14
Vectors 0.33 10.43 —4.71 —0.79 —0.17
Algebra 0.23 0.28 26.95 —7.05 —4.70
Analysis —0.00 0.08 0.43 0.88 —2.02
Statistics 0.02 0.02 0.36 0.25 6.45

Steffen Lauritzen University of Oxford Gaussian Graphical Models



Definition
Examples

Gaussian graphical models

Graphical model for mathmarks

Vectors Analysis

Algebra

Mechanics Statistics

This analysis is from Whittaker (1990).
We have An, Stats 1l Mech,Vec | Alg.

Steffen Lauritzen University of Oxford Gaussian Graphical Models



A well-known reference on Graphical Models in statis-
tics is the book:

S.L. Lauritzen, Graphical Models, Oxford 1996.

A very recent reference on Graphical Models in statis-
tics is the book:

Maathuis, M.,Drton, M., Lauritzen, S. and Wainwright,
M. editors ,
Handbook of Graphical Models,
Chapman and Hall - CRC Handbooks of Modern Sta-
tistical Methods, Chapman and Hall, 2018, 536 p.

17



COLORED GRAPHICAL GAUSSIAN MODELS

In order to make Graphical Gaussian Models a viable
modeling tool in the modern Big Data Science, i.e.
when the number of variables outgrows the number of
observations, |p >> n|,
Hgjsgaard and Lauritzen introduced in 2008 models
which impose equality restrictions on certain entries
of precision matrix K or partial correlation matrix
R.

Such models can be represented by colored graphs:

the same color edges of the graph encode
the equal entries of the matrix
18



Exemple. p =3
The complete graph (saturated model). dim =

A colored complete graph. dim =

19



Exemple. p =3
The linear graph (Simpson paradox model). dim =

A colored linear graph. dim =

20



T hree types of restriction on graphical Gaussian models
are introduced by Hgjsgaard and Lauritzen :

e RCON models:
equality among specified elements of
the concentration matrix,
(R for Restriction, CON for concentration = RCON)

¢ RCOR modeils:
equality among specified partial(conditional)
variances x;; and partial correlations R;,, ,

e RCOP models:
restrictions on concentrations and partial correla-
tions generated by a subgroup of the group of
permutations

21



RCOP models (G,IN)
(Permutation invariant coloured models)

Consider a Gaussian graphical model on RP governed

by graph G.
Permutation-generated colourings are done according
to a subgroup

[ C Aut(G) C 6,

of the permutation (symmetric) group &,.

Aut(G) denotes permutations which are automorphisms
of the graph G, mapping edges to edges
ola) ~o(B) e an~p ifoel.

22



Exemple. p=3
The linear graph (Simpson paradox model).

Aut(G)=

23



By definition, permutation invariant colouring (V, &) of
G according to I is given by the |orbits of ' | in V and

E respectively.

Two vertices a,8 € V have the same colour whenever
there exists o € ' mapping o to 5, and similarly for the
edges.

24



Exemple. p=3
The linear graph (Simpson paradox model).
Aut(g) ={id, (1,3)}

2 possible subgroups ' C Aut(G):
= {id}: no coloring
= Aut(G)

25



For a subgroup I' C &p, we define the space of symmet-
ric matrices invariant under I, or the colored matrix

space,

Zr = {2 € SYM(p;R) |24; = To(iyo(j) for all o €T},

and the cone of positive definite matrices in Z,

Pr = Zr N Sym™ (p; R).

Equivalently,
Zr={zeSym(p;R)|R(c) -z =z -R(c) forall c €T },

where R(o) denotes the (permutation) matrix of o.

26



3)
= (1,
= 3,0 =

ple. p =

m

Exa

)__

v3
v2
U1
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In RCOP Gaussian models N(0,X), we have,
equivalently,
equalities in the covariance matrix >_:

Forany o e I, 2 = 2 ;())o(j)

Proof.
RCOP invariance of the concentration matrix of a Gaus-
sian model is equivalent to

R(o) KR(o)! = K

for all c €.
Take the inverse matrix.

We get R(0)XZR(c)! =X for all o €T.

28



Summary. RCOP model (G,I') means two properties:

(i) K € S(6)
Zeros are disposed in K according to missing edges in
g

(i) Forany o €', Kij = K;()0(5)
" Clusters” (colors) of equal terms are disposed in K ac-
cording to the orbits of I

We denote by S'(G) the symmetric matrices satisfying
the constraints (i) and (ii) imposed by the RCOP model
(G,I).

29



Relations between coloured graphical model types

Fig. 10. Relations between symmetry models. Models given by permutation symmetry (RCOP) have
similar symmetries for concentrations (RCON) and partial correlations (RCOR). RCON models are not

necessarily RCOR and vice versa but a model can be simultaneously RCON and RCOR without being
RCOP.
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Example of an RCOP model from [Hgjsgaard and Lau-
ritzen]:

Table 6. Fitted concentrations x1000 (on and above diagonal) and fit-
ted partial correlations (below diagonal) for the examination marks in five
mathematical subjects assuming the RCOP model with coloured graph as

in Figure 8.
Mechanics  Vectors Algebra Analysis Statistics
Mechanics 5.75 —2.28 —3.70 0 0
Vectors 0.30 9.96 —6.44 0 0
Algebra 0.29 0.39 27.4 —6.44 —3.70
Analysis 0 0 0.39 9.79 —2.28
Statistics 0 0 0.29 0.30 5.75
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Vectors Analysis

*

* %

Mechanics Statistics

This colored graph is invariant by the group containing
two permutations:

= {id, (An,Ve) o (Me, St)}
This group I is generated by one permutation
o= (An,Ve) o (Me, St)

(note that =1 = ¢)

Groups with one generator are called cyclic groups.



Advantages of RCOP models

— We Dbelieve that there are permutation symetries in
the nature. RCOP models are colored according to
groups of permutations

— A deep mathematical tool:
theory of groups of permutations and of finite groups

— RCOP models have good statistical properties:
Hgjsgaard-Lauritzen, Gehrmann-Lauritzen: developed
MLE theory of K and > for RCOP Gaussian models

— RCOP models are less numerous than RCON and

RCOR models
32



PART 2
P. Graczyk, H. Ishi, B. Kotodziejek, H. Massam
Model selection in the space of Gaussian models

invariant by symmetry, submitted 2020

https://arxiv.org/abs/2004.03503

The open problems we adress are motivated by
Bayesian Model Selection on RCOP models (G,IN)

33



We consider an n-sample of X ~ Ny(¢, X = K1), a
Gaussian character in RP. The density of X is

P2, K) = (21)~P/2(det K)1/2e—(@ — ) K(z —€)/2 —
(2m)~P/2(det K)1/2e 3t (Kw)

where v = (z — &) (x — &)7.

In Bayesian statistics, the parameter K is random.

The formula for f(xz, K) suggests using as an a priori
law of K (prior distribution of K) the law with density

(DetK)3e 3T KO ke sT(g)t & Pg,

15 (s,0)

where 6 € Sr(g)+. This is a Diaconis-Ylvisaker conju-
gate prior for the precision matrix K.
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The constant normalizes the above function to

1
I; (s,6)
the probability density, with

S 1
15 (s,0) = Pr(detK)ie_itr(KQ)dK.
g

Computation of this Laplace-type integral Ig'_(s,e) may
be, in general, very difficult (or hopeless...),
because of the complicated structure of the matrix cone
Pl

g



The a priori law on K

s _1 df
1o,y (DO (T =7

is called a (G,)-Wishart law on the matrix cone P,
with parameters s, 6, denoted W}, (s, 0).

This is a matrix analog of KHI? law x2 sur RT.

35



Bayesian Model Selection on RCOP models (G,IN)

Without loss of generality, suppose the centered case
& = 0. We assume a uniform prior distribution on the
space of RCOP models (G,IN) of cardinal g.

The likelihood function of the sample
xM) . x(®) ¢ RP equals:

f(zV 2K =

= ¢ [Ip—1{(2m)P/?(det K)1/2 exp(—z®" K2k /2)}
= L(2m)=P/2(det K)"/2 exp(—5tr(Ku(z)))

where u(z) = X7, MOMOY equals the empirical

sample covariance xn.
36



In order to get the joint distribution of (X,G,IN), we
integrate with respect to the prior Wishart law of K:

f(:c(l)7 s 7$(n)1 g) r) —
Lam) /2 [ (det K)"/2 exp(~tr(Ku))awg (s, 6)(K)
g

(s+n,0 4+ u(x))
Igr(s,e)

Il_
pd %(27‘(‘)_77’]7/2 g

1
D, amy)
the posterior distribution f(G,I'| X = x) of (G,I") given
the observation z = (z(1), ... z("),

This is proportional (with factor

37



We apply the Bayesian paradigm, as described for non-

colored graphical models in [Handbook of Graphical
Models, 2018]:

In a Bayesian framework, the classical approach for
choosing between two models Mg ry and Mg/ rry is to
compute their posterior probability density and choose
the model with the highest posterior probability.

38



The Bayes factor equals the ratio of the posterior dis-
tributions of two compared models

B 15 (s + n, 0 + u(2))IL, (s,0)
(G,M),(g',I") — F(S Q)Ir'(8_|_n 0+ u(x))

Knowing the Bayes factors B ry (g/ ), We travel through
the space of RCOP models (G, ") using the Metropolis-
Hastings algorithm.

39



Metropolis-Hastings algorithm over cyclic permu-
tation groups

Starting from a permutation o9 € G, repeat the fol-
lowing two steps for t =1,2,...:

1. Sample ¢+ uniformly from the set 7 of all transpo-
sitions and set o/ = 04_1 o xy;

2. Accept the move o; = ¢’ with probability
iy Loy (st 0+ u(@) L, ) (s,0)
L1y (5,0) L1y, y(s+n,0 +u(z)) |

If the move is rejected, set or = o04_1.

40



Simulations

LLet the covariance matrix 2= be the symmetric circulant
matrix

(co ¢1 ... ¢ cl\
cp ¢cg €1 ... €
> =|: ¢c1 cg - i |,
co Ll e
\cl co ... cC1 co)

with cop=141/pandc¢,=1—k/pfork=1,...,|p/2].
It is easily seen that this matrix belongs to P« with
of = (172,---,]3_ 17p)

41



We performed on Python:

T' = 100000 steps of M-H Algorithm with o9 = id,
p =100, n =200, s=3 and 0 = I1p.

Let us note that for p = 100, there are about 4 - 1012
cyclic subgroups and this is the number of models we
consider in our model search.
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The highest estimated posterior probability was ob-
tained for c¢* := (™), where

o* =(1,2,3,4)(6,8,15)(7,10,9)(11,16,12)(13,17,14)(18, 19,20,22,21)(23, 26)
(24, 42,28, 44)(25,31,30,32)(27,34)(29,37)(33, 45)(35, 39, 36, 40)
(38,47,41,48)(43,51,46,49)(50,52,53,54)(56,58,57)(59, 66, 67)

(60, 65,63)(61,62,64)(68,71,72,70,69)(73,93)(74,77)(75,98,81,100)
(76,84,78,83)(79,85)(80,94,82,91)(86,92,87,90)(88, 96,89, 97)(95, 99).

The estimate of the posterior probability = is equal
to 37%.

The order of ¢* is |c*| = 60.
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MODELS INVARIANT BY SYMMETRY 29

960084 TR 7266 605448 4236 0241812 6 O
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FIG 3. Heat map of matrix ¥ (a) and matrix U /n (b) and projection of U/n onto Zc-.

v
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z

o
=
=

Steps

FIG 4. Number of “effective” steps (red) and number of “effective” accepted steps (blue).

(76,84, 78,83)(79,85)(80, 94, 82,91) (86,92, 87,90)(88, 96, 89, 97) (95, 99).

The order of ¢* is |¢*| = 60 and ®(c*) = 16. The estimate of the posterior probability .- is

equal to (recall (47))
T
5] Lot Le—(o) 23615
T 1 ~
St ST 6381.5
The true covariance matrix X, the data matrix U /n and the projection I .- (U/n) are illus-

trated in Fig. 3.
We visualize the performance of the algorithm on Fig 4. In red color, a sequence

~37%.

(Zf: 1 m) . is depicted, which can be thought of as an “effective” number of steps of the

algorithm (for an explanation, see the paragraph at the end of Subsection 4.1.2). In blue, we

present a sequence (Zle ml(at#@_l)) K which represents the number of weighted

accepted steps, where the weight of the kth step equals T (im) - We restricted the plot to steps

k=1,...,10000, because after 10000 steps, the Markov chain (o)10000<t<100000 changed
its state only 9 times. For k£ = 100000, the value of the blue curve is 25.75, while the value
of red one is 6 381.5.

The model suffers from poor acceptance rate, which could be improved by an appropriate
choice of the hyper-parameter D or by allowing the Markov chain to do bigger steps.

Acknowledgements. The authors would like to thank Steffen Lauritzen for his interest
and encouragements.



The computation of the normalizing constants

s _ 1
15 (s,0) = /Pr(DetK)2e Str(K0) g
G
is essential for the computation of the Bayes factor and

for the M-H Algorithm.
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We need to compute the integral

s _ 1
15 (s,0) = /7> (detK)3e 3T KN g

G
This is a generalized Gamma Integral.

Recall Gamma integral. For s > 0

o0 1
/O e W tde =T (s)y™ °
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Gamma Integrals on the cone of positive definite
symmetric matrices S = Sym™(n,R)

Crucial in multivariate statistics, first computed by Wishart
and Ingham 1928-1935.

n(n 1)

Gamma function of S{f. for s > 2L and ¢, = (27)

n

—tr(z) g—ntl s g—1
I_S_|_(3) — /S""e (detx) 2 dx = cp H r(S—?)
n 1=1

Gamma-Siegel integral
n—1
for s > 5

n+1
[y e T (deta) ™S de = Ty (s)(dety)
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Gamma integrals over the irreducible symmetric
cones ;, = Herm(r;, K;)T, K, € {R,C, H}.

Let d; = dimp K, € {1,2,4}.
Let N; = rﬁ—%di denote the dimension of Herm(r;, K;)

/Q et 7Y (det ) Ni/Ti 4y = Mg (M) (det y) ™

(r; — 1)d;
A >
(>

where ;. denotes the Gamma function associated to
the symmetric cone 2, given by (see [Faraut-Koranyi])

Fo,(\) = o)Wimrd2r()r(A—d;/2) ... T (A= (ri—1)d;/2).



Our main result:

Computing normalizing constant of the Wishart
distribution in RCOP model for the full(saturated)
graph g.

Such explicit formulas were not known before.

Method: the representation theory (over R) of a finite
group.

Application. Bayesian Model selection: selecting the
best coloring subgroup I' of &y, for a Gaussian vector
X € RP with no information on conditional indepen-
dence of X;'s (saturated model)

In progress. The case when ¢ is a decomposable
graph.
48



From now on, G is a complete graph with p vertices
and all edges.

For a subgroup I' C G,, we define the colored matrix
vector space

zh = {x € Sym(p,R) | ;5 = z4(3)0(4) For all o € r}’

We need to compute Gamma integrals on the cone

Pl = zZ" nsym™(p,R)
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Theorem 1. Crucial property: reduction of colored
saturated models to bloc diagonal models

Any matrix X € Z' (so also when X € Pr) can be
written as

(Mg, (1) ® Iy, 0 0 0 \
dy
0 Mg, (z2) ® Iy, O 0
X =Ur 2
0 0 . 0
0 0 0 MKL(CBL) &) Ik_L
\ dL)
where: e Ur is an orthogonal (change of basis) ma-

trix independent on X ¢ ZI,

° MKZ-(%') IS a real matrix representation of a Hermitian
r; X r; matrix x; with entries in K; =R, C or H.

The maps X — x; are linear Z2' — Herm(r;,K;)

e k;,d;,r; k;/d;;i =1,...,L are integer constants

50



Theorem 1 says that in an adequate basis of RP, any
-colored matrix X € Z' can be written as a bloc di-
agonal matrix.

Recall that both Herm(r; C) and Herm(r; H) can be re-
alized as real symmetric matrices, but of bigger dimen-
sion (2r and 4r, respectively).

b a
function M¢ is a matrix representation of C.

For z = a4+ bi € C define Mc(z) = (a’ _b>. The

Similarly, any r x r complex matrix can be realized as
a (2r) x (2r) real matrix. Hermitian complex matrix
becomes a real symmetric matrix. Positive definiteness
IS preserved.
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Analogous real 4 x 4 matrix realization is available for
quaternions H.



Example. For p =3, [ = &3, the cone Pr of positive
definite matrices X invariant under [, that is such that
X’L] = Xa(i)a(j) forall o el is

Pr = la >0 and b€ (—a/2,a)

S o0
Qo
Q o

The bloc diagonal realization of Pr and

a b b a -+ 2b 0 0
b a b| =Ur 0O a—-b 0 |,
a a b 0 0 a—2>b

Here L 2, K, =R, r; = 1,2 = 1,2 and the constants
k1 =d1 =1,kx=2,dp=1,k1/dy = 1,kp/d> = 2.
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This bloc diagonal realization is obtained choosing
Ur .= (vgl) Uél) v:gl)) c O(3) with

1/V3 J/2/3 0
vgl) = (1/\@) : vgl) =1 -1/V6 | vgl) = (1/\5) .
1/v3 ~1/v6 ~1V2
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Proof of Theorem 1.

Let R(o) be the matrix of a permutation o seen as a
linear map on RP.

We apply a decomposition

R = @Z-L:lﬂ'.@ri

1

of the natural representation

>0+ R(oc) € GL(p,R)

of the group I on R? into irreducible real representations

m; over V; = Rk, where:  k; = dimg m;
and r; is the multiplicity of m; in the decomposition of
R(o). ]
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Theorem 2.
If Y € Prand s > maX;—1 . {—%}, then

I(s5,Y)= | Det’Xe " Xqx =
Pr
L :
dim €2;
— ¢~ Ars—Br 1l Fa (kis + » Z) Det *Y o (Y)
1=1 ¢

where A = ZiLzl r; kil0g k;,
Br =3yl (dim Q) (logky),

or(Y) = [Tk, (det ¢;(y)) ~ dimS2i/ri,
with natural projections ¢; : Zr 3 X — z; € Herm(r;; K;).
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STATISTICAL AND NUMERICAL
APPLICATIONS OF Theorem 2

In order to compute the normalizing constants I(s,0)
on P', and the Bayes factors,
we have to:

— find the constants k;,d;,r;,i=1,...,L
— find the polynomials det ¢;(X)

Doing so for every [ visited during the model selection
process is computationally heavy.

For important classes of subgroups I' we can find U
and the constants k;,d;,r;,e = 1,...,L:
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e cyclic (generated by one permutation) subgroups I
(model selection done with R for p = 100)

e Abelian subgroups I



Without restrictions on ' and for small to mod-
erate dimensions p < 8, we can obtain the constants
ki, d;,ri,i=1,...,L as well as the expression of Det (X)
and ¢r(X) without having to compute U, in the fol-
lowing way.

We use the packages of factorization of multivariate
polynomials available on either Mathematica or Python.

Fact. Det (X) admits a unique irreducible factorization
of the form

L
Det (X) = [] Det (Mg, (z;)
1=1

)'“’L'/di (X € 20). (1)



On the other hand, Mathematica or Python provide a
unique irreducible factorization of the form

L/
Det (X) = ][] f;(X)% (X € Zr). (2)
j=1
where each a; is a positive integer, each f;(X) is an
irreducible polynomial of X € Zr, and f; = f; if ¢ & j.

The constants k;, d;, r;, as well as det ¢;,(X) = det Mg (z;)
are obtained by identification of the two expressions of
Det (X) in (1) and (2).



APPLICATION. Permutation Coloured (RCOP)
saturated graphical models with four vertices

We will give explicitely constants (d;, m;,n;) for all pos-
sible colorings on full graph with four vertices.

Every subgroup of the symmetric group G4 is conjugate
to one of the groups I, £k = 1,...,11 given below.
Namely, if [ is a subgroup of G4, then there exists
ke{l,...,11} and o € &4 such that

I_::arka_y

We write (o1,09,...,0n) fOr the group generated by
01,02,...,0n.

(7115 ...1n) denotes the cyclic permutation

11— 10— ... > 1lp —>11.
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10.

11.

. 1 = Bg,
. F2=1((123),(12)(34)) = Aa,

. T3 = ((1324), (12)) ~ D,

M4 =((123),(12)) ~ &3,

. s = ((1324)) ~ Z/4Z,

. Te = ((12)(34), (13)(24)) ~ Z/2Z x 7./2Z,
. T7=((12),(34)) ~ Z/27Z x Z/2Z,

. g = ((123)) ~ 7/3Z,

| Te = ((12)(34)) ~ 727,

|_10 = <(12)> ~ Z/QZ,

M1 = {e}.
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Let us number all decreasing sequences of (I';)x:
1. 1 DlM>2DleDlM9g DI,

2. M1 DIM>2DlMgDl11

3. N1 DI3DlsDlMg DIy,

4. 1 DIF3DleDlo DI,

5. 11 D0I3DI7D>010D M1,

6. M1 DlM4>DlMgDIl11,

7. 1 D07Ma2D0M10D 1011,



Below we present a Hasse diagram of the lattice of subgroups (I'y) with
the partial order relation being set inclusion.

}%\
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-

Gehrmann s list of full RCOPs, p = 4

K%%Eﬁ

sk g’?

>|<

r2 = (12

%Eﬁ

** GLS

PU—

18 = 12)

*

24

123;

* gli **

F14 = {(14)( 23‘

rq_

124)

* glu *

}XHXHE

1234

EQEQ

) Tig =

I‘20*

((14) (23

F4 = ((14))

* glO *

Ga1

Iy =

((12)(34), (14)(23))

I's =
* gll *

}Eﬁ

NP (234

4* g17*3

1 2
* *
Iir = ((1324))

Gaa

Ty =

(24

>|<>|< G2 **

%

Flg ={(12) (34
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The main goal is to compute Gamma integral over
Pl = 2zl nsym™T(4,R).

We will explicit the block diagonalizations of ZI.

Let us define

Zl =(pixp: x ez,
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where P is a common ON basis, chosen for 7 decreasing
sequences of (IMy)x, seen before, as follows

1/2 1/2 1/2 1/2
12 12 —1/2 —1)2
PO.@.@ = |12 —172 172 -1/2
1/2 —1/2 —1/2 1/2
(1/2 1/vV12 1/vV6 1/V2)
p 12 1/v/12  1/v6 —1/4/2
(2,6).(") ~ 11/2 1/y/12 -2/vV/6 0
\1/2 -3/v12 0 0
(1/2 1/2 0  1/v2)
b |12 1/2 0 —1/V2
)™ 112 —~1/2 1/v/2 0
\1/2 -1/2 -1/v¥2 0 )

It can be shown that




. Z'1 = {diag(A,B,B,B): A, B € R},
k=1(1,3),d=(1,1), r = (1,1),

. Z'2 = {diag(A, B,B,B): A, B € R},
k=(1,3),d=(1,1), r=(1,1),

. Z's = {diag(A, B,C,C): A,B,C € R},
k=(1,1,2),d=(1,1,1), r =(1,1,1),

p

A
5 C

C )
_ZI_4:< B

A, B,C,D eR

~~
~

D

\ D
k=(1,2),d=(1,1), r=(2,1),



. Zl's = {diag(A, B,C,C): A,B,C € R},
k=(1,1,2),d=(1,1,2), r =(1,1,1),

. Zl'e = {diag(A,B,C,D): A,B,C,D € R},
k=1(1,1,1,1), d=(1,1,1,1), r = (1,1,1,1).

( A C 3
2T = ¢ B N - A,B,C,D,E € R,
E

k=(1,1,1), d=(1,1,1), r= (2,1,1),

/



10.

_Zr9:<

/

A C )
5 C B

A, B,C,D €R

~~
~

D

\ D
k=1(1,2),d=(1,2), r=(2,1),

)

A C )
5 C B

- A,B,C,D,E,FcR

Ve
~

D F
\ F E
k= (1,1), d=(1,1), r = (2,2),

/

Rl cy e
Q>

F
Zh10 =« g . A,B,C,D,E,F,G €R

\ D
k=(1,1),d=(1,1), r =(3,1),

~~
~




11. ZM'11 = Sym(4,R)
k= (1), d= (1), r = (4).



Application: Frets Heads (1921)
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Table 5.1.]1 The measurements on the first and second adult sons in a sample of
25 families. (Data from Frets, 1921.)

First son Second son

Head Head Head Head

length breadth length breadth
191 155 179 145
195 149 201 152
181 148 185 149
183 153 188 149
176 144 171 142
208 157 192 152
189 1350 190 149
197 159 189 152
188 152 197 159
192 150 187 151
179 158 186 148
183 147 174 147
174 150 185 152
190 159 195 157
188 151 187 158
163 137 161 130
195 155 183 158
186 153 173 148
181 145 182 146
175 140 165 137
192 154 185 152
174 143 178 147
176 139 176 143
197 167 200 158

190 163 187 150




Below we present the list of 12 best fitting models for Frets’
heads, selected in former literature.

L1 L2 L1 L2 L1 L2 L1 L2
*— L ®
Crm——0 ® ®
B1 B2 Bl B2 BI B2 Bl B2
(a) (b) (c) (d)

L1 L2 L1 L2 L1 L2 L1 L2
B1 B2 Bl1 B2 Bl B2 Bli B2
(e) 49] (g (h)

L1 L2 L1 L2 L1 L2 L1 L2
® o0 Q @ L ] [ ]

® e *r————0 L ®
B1 B2 Bl B2 Bl B2 BI B2
(i) )] (k) 1))

Fig. 7. Possible colored graphs supported by Fret's heads

data. L1: The head length of the eldest son; B1: The head

breadth of the eldest son; L2: The head length of the second
son; B2: The head breadth of the second son.

68



Model (a) comes from Whittaker(1990) and is the small-
est non-decomposable graph (4.

Models (b,c) are selected by Hgjsgaard-Lauritzen(2008),
by likelihood ratio test comparing each model to the
saturated one.

Models (d)-(l) are the 9 minimally accepted models se-
lected by Gehrman(2011) by Edwards-Havranek algo-
rithm. The lowest BIC value is represented by the last

graph ().
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All 12 models were considered by Massam-Li-Gao(2012)
who applied to them Bayes Model selection based on
prior G-Wishart distributions W, p and on an approxi-
mative (MC type) method of computation of constants
I;(s, D).

For parameters s = 3 or s = 10 and for D = Id4, the
models with highest posterior probability were, respec-

tively, (k),(b),(l) and (1),(k),(b).
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Choice of the best model among all complete RCOP
models for 4 variables

The 22 complete RCOP models for 4 variables are
shown on a previous slide, we use here the numbering

of Gehrman.

We used as priors for K the Wishart laws Wer with
s=1and D = 1Ida
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With Mathematica we obtained maximal posterior prob-
ability pp for the models:

|_19 :pp = 0.4294

|_13 cpp = 0.2273

g pp=0.1793

|_22 - pp = 0.0495

I_16 . pp = 0.0329

All the other 17 models represent altogether pp = 0.08.

Note that the only complete RCOP model [ selected
by Gehrman by Edwards-Havranek algorithm among the
9 minimally accepted models (d)-(1) has pp = 0.0081
which is 50 times less than 9.
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