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GRAPHICAL MODELS IN STATISTICS:

coding conditional independence by a graph

(mathematical and statistical theory started

by S. Lauritzen and collaborators, 1980’s)
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Simpson paradox

A university has 48 000 students

Half boys(24 000), half girls(24 000)

At the final exams: 10 000 boys and 14 000 girls fail

Feminist organizations threaten to close the university,

girl students want to lynch the president!

However, the president of the university proves that the

results R of the exams are conditionally independent

of the sex S of a student, knowing the department

D (notation R ⊥⊥ S|D)
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3 departments

A(literature, history, languages),

B(law),

C(sciences)

16 000 students each

A Succ. Fail B Succ. Fail C Succ. Fail

Girls 3 9 4 4 3 1

Boys 1 3 4 4 9 3

Actually R ⊥⊥ S |D = d for d =A,B,C

The notion of the conditional independence

is necessary to understand the Simpson paradox.
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Graphical coding of conditional independence

Let G be a graph with vertices vi. If 2 vertices vi, vj are

connected by an (undirected) edge, we write vi ∼ vj .

R ⊥⊥ S|D will be coded by R 6∼ S no edge between

R and S

Results depend on Department (knowing Sex): R ∼ D
S depends on D (knowing Results): S ∼ D

R D S

Remark. D separates R from S

(any path from R to S goes through D. Direct route

from R to S impossible.)
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We consider undirected graphs G = (V,E) where:

• the vertex (node) set V = {1, . . . , n}
• the edge set E ⊂ {F ⊂ V | card(F ) = 2}

Any 2-element set {i, j} ∈ E will be called an edge.

Then we write i ∼ j.
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Consider a system of random variables X1, . . . , Xp on

the same probability space (Ω, T , P ).

The information on conditional independence between

the Xi’s is schematized by an undirected graph

G = (V,E) such that

Xl ⊥⊥ Xm |XV \{l,m} ⇐⇒ l 6∼ m.
The graph G is called the dependence graph of the

system of random variables X1, . . . , Xp.
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Conditional Independence in a Gaussian vector

Let X = (X1, . . . , Xp) be a Gaussian vector on Rp, with

law Np(ξ,Σ) and invertible Σ.

The matrix K = Σ−1 is called the precision matrix of

the Gaussian vector X.

(K is also called concentration matrix)
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This is the precision matrix K = (κij)i,j≤p that appears

in the Gaussian density

f(x) = (2π)−p/2(detK)1/2e−(x− ξ)TK(x− ξ)/2
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Proposition. Let X be a Gaussian vector in Rp. De-

note V = {1, . . . , p} the index set. Let l,m ∈ V and

l 6= m.

The marginals Xl, Xm are conditionally independent

w.r. to all the other variables XV \{l,m}

Xl ⊥⊥ Xm |XV \{l,m}
if and only if

κlm = 0

i.e. the lm-term of the precision matrix K is equal

0.
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Proof in dim 3.

X ∼ N(0,Σ), X1 ⊥⊥ X2|X3 K = (κij)i,j≤3 = Σ−1

Factorization Property of the joint density:

X1 ⊥⊥ X2|X3 ⇔ f(x1, x2, x3) = g(x1, x3)h(x2, x3)

(analogous to X1 ⊥⊥ X2 ⇔ f(x1, x2) = g(x1)h(x2))

f(x1, x2, x3) = (detK)1/2

(2π)3/2 ×

e−(κ11x
2
1 + κ22x

2
2 + κ33x

2
3 + 2κ12x1x2 + 2κ13x1x3 + 2κ23x2x3)/2

Suppose X1 ⊥⊥ X2|X3 ⇔ f(x1, x2, x3) = g(x1, x3)h(x2, x3) =C×

e−(κ11x
2
1 + κ22x

2
2 + κ33x

2
3 + 2κ12x1x2 + 2κ13x1x3 + 2κ23x2x3)/2

Obligatorily 2κ12x1x2 = 0 ⇔ κ12 = 0 .
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GAUSSIAN GRAPHICAL MODELS

Let V = {1, . . . , p} and let G = (V,E) be an undirected

graph. Let

S(G) = {Z ∈ Sym(n× n)| i 6∼ j ⇒ Zij = 0},
the space of symmetric matrices with obligatory zero

terms Zij = 0 for i 6∼ j.

Definition. The GAUSSIAN GRAPHICAL MODEL

governed by the graph G is the set of all random

Gaussian vectors X = (Xv)v∈V ∼ N(ξ,Σ), with preci-

sion matrix K = Σ−1 ∈ S(G).
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Remark. The complete graph G (i.e. G containing all

possible edges) defines Gaussian graphical model con-

taining all Gaussian vectors supported by Rp, with no

constraint. Such model is called saturated.
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Precision matrix K = Σ−1 of a Gaussian vector

contains:

• information on conditional independence:

Xl ⊥⊥ Xm |XV \{l,m} ⇐⇒ κlm = 0

• conditional precision matrices (KXA|XB = KAA)

where A ∪B = V,A ∩B = ∅
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• in practice, we use conditional correlation

ρlm|V \{l,m} =
Cov(Xl,Xm|XV \{l,m})

V ar(Xl|XV \{l,m})
1
2V ar(Xm|XV \{l,m})

1
2

= −κ̃lm

where κ̃lm
df
= κlm√

κll
√
κmm

is an element of the so-called

scaled precision matrix K̃.

Intuitively,

ρlm|V \{l,m} = −κ̃lm ≈ 0 ⇒ Xl ⊥⊥ Xm |XV \{l,m}.

The matrix R with terms ρlm|V \{l,m} is called partial

correlation matrix.

For off-diagonal terms, Rlm = −κ̃lm.
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Example. Marks of 88 students in 5 exams: N5(ξ,Σ)
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Basic definitions
Basic properties

Gaussian likelihoods
The Wishart distribution

Gaussian graphical models

Definition
Examples

Mathematics marks

Examination marks of 88 students in 5 different mathematical
subjects. The empirical concentrations (on or above diagonal) and
partial correlations (below diagonal) are

Mechanics Vectors Algebra Analysis Statistics
Mechanics 5.24 −2.44 −2.74 0.01 −0.14
Vectors 0.33 10.43 −4.71 −0.79 −0.17
Algebra 0.23 0.28 26.95 −7.05 −4.70
Analysis −0.00 0.08 0.43 9.88 −2.02
Statistics 0.02 0.02 0.36 0.25 6.45

Steffen Lauritzen University of Oxford Gaussian Graphical Models



Basic definitions
Basic properties

Gaussian likelihoods
The Wishart distribution

Gaussian graphical models

Definition
Examples

Graphical model for mathmarks

Mechanics

Vectors

Algebra

Analysis

Statistics

��
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c
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This analysis is from Whittaker (1990).
We have An, Stats⊥⊥Mech,Vec |Alg.

Steffen Lauritzen University of Oxford Gaussian Graphical Models



A well-known reference on Graphical Models in statis-
tics is the book:

S.L. Lauritzen, Graphical Models, Oxford 1996.

A very recent reference on Graphical Models in statis-
tics is the book:

Maathuis, M.,Drton, M., Lauritzen, S. and Wainwright,
M. editors ,
Handbook of Graphical Models,
Chapman and Hall - CRC Handbooks of Modern Sta-
tistical Methods, Chapman and Hall, 2018, 536 p.
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COLORED GRAPHICAL GAUSSIAN MODELS

In order to make Graphical Gaussian Models a viable
modeling tool in the modern Big Data Science, i.e.
when the number of variables outgrows the number of
observations, p >> n ,
Højsgaard and Lauritzen introduced in 2008 models
which impose equality restrictions on certain entries

of precision matrix K or partial correlation matrix

R.

Such models can be represented by colored graphs:

the same color edges of the graph encode

the equal entries of the matrix
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Exemple. p = 3

The complete graph (saturated model). dim =

A colored complete graph. dim =
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Exemple. p = 3

The linear graph (Simpson paradox model). dim =

A colored linear graph. dim =
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Three types of restriction on graphical Gaussian models
are introduced by Højsgaard and Lauritzen :

• RCON models:
equality among specified elements of
the concentration matrix,
(R for Restriction, CON for concentration = RCON)

• RCOR models:
equality among specified partial(conditional)
variances κll and partial correlations Rlm ,

• RCOP models:
restrictions on concentrations and partial correla-
tions generated by a subgroup of the group of
permutations
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RCOP models (G,Γ)

(Permutation invariant coloured models)

Consider a Gaussian graphical model on Rp governed

by graph G.

Permutation-generated colourings are done according

to a subgroup

Γ ⊂ Aut(G) ⊂ Sp

of the permutation (symmetric) group Sp.

Aut(G) denotes permutations which are automorphisms

of the graph G, mapping edges to edges

σ(α) ∼ σ(β)⇔ α ∼ β if σ ∈ Γ.
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Exemple. p = 3

The linear graph (Simpson paradox model).

Aut(G)=
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By definition, permutation invariant colouring (V, E) of

G according to Γ is given by the orbits of Γ in V and

E respectively.

Two vertices α, β ∈ V have the same colour whenever

there exists σ ∈ Γ mapping α to β, and similarly for the

edges.
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Exemple. p = 3

The linear graph (Simpson paradox model).

Aut(G) = {id, (1,3)}

2 possible subgroups Γ ⊂ Aut(G):

Γ = {id}: no coloring

Γ = Aut(G)
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For a subgroup Γ ⊂ Sp, we define the space of symmet-

ric matrices invariant under Γ, or the colored matrix

space,

ZΓ :=
{
x ∈ Sym(p;R) |xij = xσ(i)σ(j) for all σ ∈ Γ

}
,

and the cone of positive definite matrices in ZΓ,

PΓ := ZΓ ∩ Sym+(p;R).

Equivalently,

ZΓ = {x ∈ Sym(p;R) |R(σ) · x = x ·R(σ) for all σ ∈ Γ } ,
where R(σ) denotes the (permutation) matrix of σ.
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Example. p = 3, σ = (1,3)

R(σ) =? R(σ)



v1
v2
v3


 =



v3
v2
v1
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In RCOP Gaussian models N(0,Σ), we have,

equivalently,

equalities in the covariance matrix Σ:

For any σ ∈ Γ,Σij = Σσ(i)σ(j)

Proof.

RCOP invariance of the concentration matrix of a Gaus-

sian model is equivalent to

R(σ)KR(σ)t = K

for all σ ∈ Γ.

Take the inverse matrix.

We get R(σ)ΣR(σ)t = Σ for all σ ∈ Γ.
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Summary. RCOP model (G,Γ) means two properties:

(i) K ∈ S(G)

Zeros are disposed in K according to missing edges in

G

(ii) For any σ ∈ Γ, Kij = Kσ(i)σ(j)
”Clusters”(colors) of equal terms are disposed in K ac-

cording to the orbits of Γ

We denote by SΓ(G) the symmetric matrices satisfying

the constraints (i) and (ii) imposed by the RCOP model

(G,Γ).
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Relations between coloured graphical model types
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Example of an RCOP model from [Højsgaard and Lau-

ritzen]:
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This colored graph is invariant by the group containing
two permutations:

Γ = {id, (An, V e) ◦ (Me, St)}

This group Γ is generated by one permutation
σ = (An, V e) ◦ (Me, St)
(note that σ−1 = σ)

Groups with one generator are called cyclic groups.



Advantages of RCOP models

– We believe that there are permutation symetries in

the nature. RCOP models are colored according to

groups of permutations

– A deep mathematical tool:

theory of groups of permutations and of finite groups

– RCOP models have good statistical properties:

Højsgaard-Lauritzen, Gehrmann-Lauritzen: developed

MLE theory of K and Σ for RCOP Gaussian models

– RCOP models are less numerous than RCON and

RCOR models
32



PART 2

P. Graczyk, H. Ishi, B. Ko lodziejek, H. Massam

Model selection in the space of Gaussian models

invariant by symmetry, submitted 2020

https://arxiv.org/abs/2004.03503

The open problems we adress are motivated by

Bayesian Model Selection on RCOP models (G,Γ)
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We consider an n-sample of X ∼ Np(ξ,Σ = K−1), a

Gaussian character in Rp. The density of X is

f(x,K) = (2π)−p/2(detK)1/2e−(x− ξ)TK(x− ξ)/2 =

(2π)−p/2(detK)1/2e−
1
2tr(Ku)

where u = (x− ξ)(x− ξ)T .

In Bayesian statistics, the parameter K is random.

The formula for f(x,K) suggests using as an a priori

law of K (prior distribution of K) the law with density

K → 1

IΓ
G (s, θ)

(DetK)
s
2e−

1
2tr(Kθ), K ∈ SΓ(G)+ df

= PΓ
G ,

where θ ∈ SΓ(G)
+

. This is a Diaconis-Ylvisaker conju-

gate prior for the precision matrix K.
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The constant 1
IΓ
G (s,θ)

normalizes the above function to

the probability density, with

IΓ
G (s, θ) =

∫

PΓ
G

(detK)
s
2e−

1
2tr(Kθ)dK.

Computation of this Laplace-type integral IΓ
G (s, θ) may

be, in general, very difficult (or hopeless...),

because of the complicated structure of the matrix cone

PΓ
G .



The a priori law on K

K → 1

IΓ
G (s, θ)

(DetK)
s
2e−

1
2tr(Kθ), K ∈ SΓ(G)+ df

= PΓ
G ,

is called a (G,Γ)-Wishart law on the matrix cone PΓ
G ,

with parameters s, θ, denoted WΓ
G (s, θ).

This is a matrix analog of KHI2 law χ2
s sur R+.
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Bayesian Model Selection on RCOP models (G,Γ)

Without loss of generality, suppose the centered case

ξ = 0. We assume a uniform prior distribution on the

space of RCOP models (G,Γ) of cardinal g.

The likelihood function of the sample

X(1), . . . , X(n) ∈ Rp equals:

f(x(1), . . . , x(n);K;G,Γ) =

= 1
g

∏n
k=1{(2π)−p/2(detK)1/2 exp(−x(k)TKx(k)/2)}

= 1
g(2π)−np/2(detK)n/2 exp(−1

2tr(Ku(x)))

where u(x) =
∑n
k=1 x

(k)x(k)T equals the empirical

sample covariance ×n.
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In order to get the joint distribution of (X,G,Γ), we

integrate with respect to the prior Wishart law of K:

f(x(1), . . . , x(n);G,Γ) =
1
g(2π)−np/2

∫

PΓ
G

(detK)n/2 exp(−1

2
tr(Ku))dWΓ

G (s, θ)(K)

= 1
g(2π)−np/2

IΓ
G (s+ n, θ + u(x))

IΓ
G (s, θ)

This is proportional (with factor
1

f(x(1), . . . , x(n))
) to

the posterior distribution f(G,Γ| X = x) of (G,Γ) given

the observation x = (x(1), . . . , x(n)).
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We apply the Bayesian paradigm, as described for non-

colored graphical models in [Handbook of Graphical

Models, 2018]:

In a Bayesian framework, the classical approach for

choosing between two models M(G,Γ) and M(G′,Γ′) is to

compute their posterior probability density and choose

the model with the highest posterior probability.
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The Bayes factor equals the ratio of the posterior dis-

tributions of two compared models

B(G,Γ),(G′,Γ′) =
IΓ
G (s+ n, θ + u(x))IΓ′

G′(s, θ)

IΓ
G (s, θ)IΓ′

G′(s+ n, θ + u(x))

Knowing the Bayes factors B(G,Γ),(G′,Γ′), we travel through

the space of RCOP models (G,Γ) using the Metropolis-

Hastings algorithm.
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Metropolis-Hastings algorithm over cyclic permu-

tation groups

Starting from a permutation σ0 ∈ Sp, repeat the fol-

lowing two steps for t = 1,2, . . .:

1. Sample xt uniformly from the set T of all transpo-

sitions and set σ′ = σt−1 ◦ xt;

2. Accept the move σt = σ′ with probability

min



1,

I〈σ′〉(s+ n, θ + u(x)) I〈σt−1〉(s, θ)

I〈σ′〉(s, θ) I〈σt−1〉(s+ n, θ + u(x))



 .

If the move is rejected, set σt = σt−1.
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Simulations

Let the covariance matrix Σ be the symmetric circulant

matrix

Σ =




c0 c1 . . . c2 c1
c1 c0 c1 . . . c2
... c1 c0

. . . ...
c2

. . . . . . c1
c1 c2 . . . c1 c0



,

with c0 = 1 + 1/p and ck = 1− k/p for k = 1, . . . , bp/2c.
It is easily seen that this matrix belongs to P〈σ∗〉 with

σ∗ = (1,2, . . . , p− 1, p).
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We performed on Python:

T = 100 000 steps of M-H Algorithm with σ0 = id,

p = 100, n = 200, s = 3 and θ = I100.

Let us note that for p = 100, there are about 4 · 10155

cyclic subgroups and this is the number of models we

consider in our model search.
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The highest estimated posterior probability was ob-
tained for c∗ := 〈σ∗〉, where

σ∗ =(1,2,3,4)(6,8,15)(7,10,9)(11,16,12)(13,17,14)(18,19,20,22,21)(23,26)

(24,42,28,44)(25,31,30,32)(27,34)(29,37)(33,45)(35,39,36,40)

(38,47,41,48)(43,51,46,49)(50,52,53,54)(56,58,57)(59,66,67)

(60,65,63)(61,62,64)(68,71,72,70,69)(73,93)(74,77)(75,98,81,100)

(76,84,78,83)(79,85)(80,94,82,91)(86,92,87,90)(88,96,89,97)(95,99).

The estimate of the posterior probability πc∗ is equal

to 37%.

The order of c∗ is |c∗| = 60.
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MODELS INVARIANT BY SYMMETRY 29

(a) (b) (c)

FIG 3. Heat map of matrix Σ (a) and matrix U/n (b) and projection of U/n onto Zc∗ .

FIG 4. Number of “effective” steps (red) and number of “effective” accepted steps (blue).

(76,84,78,83)(79,85)(80,94,82,91)(86,92,87,90)(88,96,89,97)(95,99).

The order of c∗ is |c∗|= 60 and Φ(c∗) = 16. The estimate of the posterior probability πc∗ is
equal to (recall (47))

1
Φ(c∗)

∑T
t=1 1c∗=〈σt〉∑T

t=1
1

Φ(〈σt〉)
≈ 2 361.5

6 381.5
≈ 37%.

The true covariance matrix Σ, the data matrix U/n and the projection Πc∗(U/n) are illus-
trated in Fig. 3.

We visualize the performance of the algorithm on Fig 4. In red color, a sequence(∑k
t=1

1
Φ(〈σt〉)

)
k

is depicted, which can be thought of as an “effective” number of steps of the
algorithm (for an explanation, see the paragraph at the end of Subsection 4.1.2). In blue, we
present a sequence

(∑k
t=1

1
Φ(〈σt〉)1〈σt〉6=〈σt−1〉

)
k
, which represents the number of weighted

accepted steps, where the weight of the kth step equals 1
Φ(〈σk〉) . We restricted the plot to steps

k = 1, . . . ,10 000, because after 10 000 steps, the Markov chain (σt)10000≤t≤100000 changed
its state only 9 times. For k = 100000, the value of the blue curve is 25.75, while the value
of red one is 6 381.5.

The model suffers from poor acceptance rate, which could be improved by an appropriate
choice of the hyper-parameter D or by allowing the Markov chain to do bigger steps.

Acknowledgements. The authors would like to thank Steffen Lauritzen for his interest
and encouragements.



The computation of the normalizing constants

IΓ
G (s, θ) =

∫

PΓ
G

(DetK)
s
2e−

1
2tr(Kθ)dK

is essential for the computation of the Bayes factor and

for the M-H Algorithm.
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We need to compute the integral

IΓ
G (s, θ) =

∫

PΓ
G

(detK)
s
2e−

1
2tr(Kθ)dK.

This is a generalized Gamma Integral.

Recall Gamma integral. For s > 0
∫ ∞

0
e−xyxs−1dx = Γ(s)y−s

46



Gamma Integrals on the cone of positive definite

symmetric matrices S+
n = Sym+(n,R)

Crucial in multivariate statistics, first computed by Wishart
and Ingham 1928-1935.

Gamma function of S+
n : for s > n−1

2 and cn = (2π)
n(n−1)

4

Γ
S+
n

(s) =
∫

S+
n

e−tr(x)(detx)s−
n+1

2 dx = cn
n∏

j=1

Γ(s− j − 1

2
)

Gamma-Siegel integral

for s > n−1
2

∫

S+
n

e−tr(xy)(detx)s−
n+1

2 dx = Γ
S+
n

(s)(det y)−s

47



Gamma integrals over the irreducible symmetric

cones Ωi = Herm(ri,Ki)+, Ki ∈ {R,C,H}.

Let di = dimRKi ∈ {1,2,4}.
Let Ni = ri+

ri(ri−1)
2 di denote the dimension of Herm(ri,Ki)

∫

Ωi

e−tr xy(detx)λ−Ni/ri dx = ΓΩi
(λ)(det y)−λ

(
λ >

(ri − 1)di
2

, y ∈ Ωi

)

where ΓΩi
denotes the Gamma function associated to

the symmetric cone Ωi given by (see [Faraut-Koranyi])

ΓΩi
(λ) = (2π)(Ni−ri)/2Γ(λ)Γ(λ−di/2) . . .Γ(λ−(ri−1)di/2).



Our main result:

Computing normalizing constant of the Wishart

distribution in RCOP model for the full(saturated)

graph G.

Such explicit formulas were not known before.

Method: the representation theory (over R) of a finite
group.

Application. Bayesian Model selection: selecting the
best coloring subgroup Γ of Sp, for a Gaussian vector
X ∈ Rp with no information on conditional indepen-
dence of Xi’s (saturated model)

In progress. The case when G is a decomposable
graph.
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From now on, G is a complete graph with p vertices

and all edges.

For a subgroup Γ ⊂ Sp, we define the colored matrix

vector space

ZΓ :=
{
x ∈ Sym(p,R) |xij = xσ(i)σ(j) for all σ ∈ Γ

}
,

We need to compute Gamma integrals on the cone

PΓ = ZΓ ∩ Sym+(p,R)
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Theorem 1. Crucial property: reduction of colored
saturated models to bloc diagonal models
Any matrix X ∈ ZΓ (so also when X ∈ PΓ) can be
written as

X = UΓ




MK1
(x1)⊗ Ik1

d1

0 0 0

0 MK2
(x2)⊗ Ik2

d2

0 0

0 0 . . . 0
0 0 0 MKL(xL)⊗ IkL

dL




UTΓ

where: • UΓ is an orthogonal (change of basis) ma-
trix independent on X ∈ ZΓ,
• MKi(xi) is a real matrix representation of a Hermitian
ri × ri matrix xi with entries in Ki = R,C or H.
The maps X → xi are linear ZΓ → Herm(ri,Ki)
• ki, di, ri, ki/di, i = 1, . . . , L are integer constants
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Theorem 1 says that in an adequate basis of Rp, any

Γ-colored matrix X ∈ ZΓ can be written as a bloc di-

agonal matrix.

Recall that both Herm(r;C) and Herm(r;H) can be re-

alized as real symmetric matrices, but of bigger dimen-

sion (2r and 4r, respectively).

For z = a + b i ∈ C define MC(z) =

(
a −b
b a

)
. The

function MC is a matrix representation of C.

Similarly, any r × r complex matrix can be realized as

a (2r) × (2r) real matrix. Hermitian complex matrix

becomes a real symmetric matrix. Positive definiteness

is preserved.
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Analogous real 4 × 4 matrix realization is available for

quaternions H.



Example. For p = 3, Γ = S3, the cone PΓ of positive

definite matrices X invariant under Γ, that is such that

Xij = Xσ(i)σ(j) for all σ ∈ Γ, is

PΓ =







a b b
b a b
b b a


 | a > 0 and b ∈ (−a/2, a)




.

The bloc diagonal realization of PΓ and


a b b
b a b
a a b


 = UΓ



a+ 2b 0 0

0 a− b 0
0 0 a− b


 tUΓ,

Here L = 2,Ki = R, ri = 1, i = 1,2 and the constants

k1 = d1 = 1, k2 = 2, d2 = 1, k1/d1 = 1, k2/d2 = 2.
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This bloc diagonal realization is obtained choosing

UΓ :=
(
v

(1)
1 v

(1)
2 v

(1)
3

)
∈ O(3) with

v
(1)
1 :=




1/
√

3
1/
√

3
1/
√

3


 , v

(1)
2 :=




√
2/3

−1/
√

6
−1/
√

6


 , v

(1)
3 :=




0
1/
√

2
−1
√

2


 .
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Proof of Theorem 1.

Let R(σ) be the matrix of a permutation σ seen as a

linear map on Rp.

We apply a decomposition

R = ⊕Li=1π
⊕ri
i

of the natural representation

Γ 3 σ 7→ R(σ) ∈ GL(p,R)

of the group Γ on Rp into irreducible real representations

πi over Vi = Rki, where: ki = dimR πi
and ri is the multiplicity of πi in the decomposition of

R(σ). �
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Theorem 2.

If Y ∈ PΓ and s > maxi=1,...,L

{
− 1
ki

}
, then

I(s, Y ) =
∫

PΓ

DetsXe−TrY ·XdX =

= e−AΓs−BΓ
L∏

i=1

ΓΩi

(
ki s+

dim Ωi

ri

)
Det−sY ϕΓ(Y )

where AΓ :=
∑L
i=1 ri ki log ki,

BΓ := 1
2
∑L
i=1(dim Ωi)(log ki),

ϕΓ(Y ) =
∏L
i=1(detφi(Y ))−dim Ωi/ri,

with natural projections φi : ZΓ 3 X 7→ xi ∈ Herm(ri;Ki).
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STATISTICAL AND NUMERICAL

APPLICATIONS OF Theorem 2

In order to compute the normalizing constants I(s, θ)
on PΓ, and the Bayes factors,
we have to:

– find the constants ki, di, ri, i = 1, . . . , L

– find the polynomials detφi(X)

Doing so for every Γ visited during the model selection
process is computationally heavy.

For important classes of subgroups Γ we can find UΓ
and the constants ki, di, ri, i = 1, . . . , L:
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• cyclic (generated by one permutation) subgroups Γ

(model selection done with R for p = 100)

• Abelian subgroups Γ



Without restrictions on Γ and for small to mod-

erate dimensions p ≤ 8, we can obtain the constants

ki, di, ri, i = 1, . . . , L as well as the expression of Det (X)

and ϕΓ(X) without having to compute UΓ, in the fol-

lowing way.

We use the packages of factorization of multivariate

polynomials available on either Mathematica or Python.

Fact. Det (X) admits a unique irreducible factorization

of the form

Det (X) =
L∏

i=1

Det
(
MKi(xi)

)ki/di (X ∈ ZΓ). (1)



On the other hand, Mathematica or Python provide a

unique irreducible factorization of the form

Det (X) =
L′∏

j=1

fj(X)aj (X ∈ ZΓ). (2)

where each aj is a positive integer, each fj(X) is an

irreducible polynomial of X ∈ ZΓ, and fi 6= fj if i 6= j.

The constants ki, di, ri, as well as detφi(X) = detMKi(xi)

are obtained by identification of the two expressions of

Det (X) in (1) and (2).



APPLICATION. Permutation Coloured (RCOP)

saturated graphical models with four vertices

We will give explicitely constants (di,mi, ni) for all pos-
sible colorings on full graph with four vertices.

Every subgroup of the symmetric group S4 is conjugate
to one of the groups Γk, k = 1, . . . ,11 given below.
Namely, if Γ is a subgroup of S4, then there exists
k ∈ {1, . . . ,11} and σ ∈ S4 such that

Γ = σ Γk σ
−1.

We write 〈σ1, σ2, . . . , σn〉 for the group generated by
σ1, σ2, . . . , σn.
(i1i2 . . . in) denotes the cyclic permutation
i1 → i2 → . . .→ in → i1.
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1. Γ1 = S4,

2. Γ2 = 〈(123), (12)(34)〉 = A4,

3. Γ3 = 〈(1324), (12)〉 ' D4,

4. Γ4 = 〈(123), (12)〉 ' S3,

5. Γ5 = 〈(1324)〉 ' Z/4Z,

6. Γ6 = 〈(12)(34), (13)(24)〉 ' Z/2Z× Z/2Z,

7. Γ7 = 〈(12), (34)〉 ' Z/2Z× Z/2Z,

8. Γ8 = 〈(123)〉 ' Z/3Z,

9. Γ9 = 〈(12)(34)〉 ' Z/2Z,

10. Γ10 = 〈(12)〉 ' Z/2Z,

11. Γ11 = {e}.
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Let us number all decreasing sequences of (Γk)k:

1. Γ1 ⊃ Γ2 ⊃ Γ6 ⊃ Γ9 ⊃ Γ11,

2. Γ1 ⊃ Γ2 ⊃ Γ8 ⊃ Γ11

3. Γ1 ⊃ Γ3 ⊃ Γ5 ⊃ Γ9 ⊃ Γ11,

4. Γ1 ⊃ Γ3 ⊃ Γ6 ⊃ Γ9 ⊃ Γ11,

5. Γ1 ⊃ Γ3 ⊃ Γ7 ⊃ Γ10 ⊃ Γ11,

6. Γ1 ⊃ Γ4 ⊃ Γ8 ⊃ Γ11,

7. Γ1 ⊃ Γ4 ⊃ Γ10 ⊃ Γ11.
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Gehrmann’s list of full RCOPs, p = 4
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The main goal is to compute Gamma integral over

PΓ = ZΓ ∩ Sym+(4,R).

We will explicit the block diagonalizations of ZΓ.

Let us define

Z̃Γ = {P−1XP : X ∈ ZΓ},
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where P is a common ON basis, chosen for 7 decreasing

sequences of (Γk)k, seen before, as follows

P(1),(3),(4) =




1/2 1/2 1/2 1/2
1/2 1/2 −1/2 −1/2
1/2 −1/2 1/2 −1/2
1/2 −1/2 −1/2 1/2




P(2),(6),(7) =




1/2 1/
√

12 1/
√

6 1/
√

2
1/2 1/

√
12 1/

√
6 −1/

√
2

1/2 1/
√

12 −2/
√

6 0
1/2 −3/

√
12 0 0




P(5) =




1/2 1/2 0 1/
√

2
1/2 1/2 0 −1/

√
2

1/2 −1/2 1/
√

2 0
1/2 −1/2 −1/

√
2 0




It can be shown that



1. Z̃Γ1 = {diag(A,B,B,B): A,B ∈ R},
k = (1,3), d = (1,1), r = (1,1),

2. Z̃Γ2 = {diag(A,B,B,B): A,B ∈ R},
k = (1,3), d = (1,1), r = (1,1),

3. Z̃Γ3 = {diag(A,B,C,C): A,B,C ∈ R},
k = (1,1,2), d = (1,1,1), r = (1,1,1),

4. Z̃Γ4 =








A C
C B

D
D


 : A,B,C,D ∈ R





,

k = (1,2), d = (1,1), r = (2,1),



5. Z̃Γ5 = {diag(A,B,C,C): A,B,C ∈ R} ,

k = (1,1,2), d = (1,1,2), r = (1,1,1),

6. Z̃Γ6 = {diag(A,B,C,D): A,B,C,D ∈ R},
k = (1,1,1,1), d = (1,1,1,1), r = (1,1,1,1).

7. Z̃Γ7 =








A C
C B

D
E


 : A,B,C,D,E ∈ R





,

k = (1,1,1), d = (1,1,1), r = (2,1,1),



8. Z̃Γ8 =








A C
C B

D
D


 : A,B,C,D ∈ R





,

k = (1,2), d = (1,2), r = (2,1),

9. Z̃Γ9 =








A C
C B

D F
F E


 : A,B,C,D,E, F ∈ R





,

k = (1,1), d = (1,1), r = (2,2),

10. Z̃Γ10 =








A E F
E B G
F G C

D


 : A,B,C,D,E, F,G ∈ R





,

k = (1,1), d = (1,1), r = (3,1),



11. Z̃Γ11 = Sym(4,R)

k = (1), d = (1), r = (4).



Application: Frets Heads (1921)
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Below we present the list of 12 best fitting models for Frets’

heads, selected in former literature.
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Model (a) comes from Whittaker(1990) and is the small-

est non-decomposable graph C4.

Models (b,c) are selected by Højsgaard-Lauritzen(2008),

by likelihood ratio test comparing each model to the

saturated one.

Models (d)-(l) are the 9 minimally accepted models se-

lected by Gehrman(2011) by Edwards-Havranek algo-

rithm. The lowest BIC value is represented by the last

graph (l).
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All 12 models were considered by Massam-Li-Gao(2012)

who applied to them Bayes Model selection based on

prior G-Wishart distributions Ws,D and on an approxi-

mative (MC type) method of computation of constants

IΓ
G (s,D).

For parameters s = 3 or s = 10 and for D = Id4, the

models with highest posterior probability were, respec-

tively, (k),(b),(l) and (l),(k),(b).
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Choice of the best model among all complete RCOP

models for 4 variables

The 22 complete RCOP models for 4 variables are

shown on a previous slide, we use here the numbering

of Gehrman.

We used as priors for K the Wishart laws WΓ
s,D with

s = 1 and D = Id4
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With Mathematica we obtained maximal posterior prob-

ability pp for the models:

Γ19 : pp = 0.4294

Γ13 : pp = 0.2273

Γ8 : pp = 0.1793

Γ22 : pp = 0.0495

Γ16 : pp = 0.0329

All the other 17 models represent altogether pp = 0.08.

Note that the only complete RCOP model Γ10 selected

by Gehrman by Edwards-Havranek algorithm among the

9 minimally accepted models (d)-(l) has pp = 0.0081

which is 50 times less than Γ19.
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