Piotr Graczyk (Angers, France) ERASMUS LECTURE

Politechnika Wrocławska, February 2021

Part 1. Graphical and Colored

Graphical Models in statistics

Part 2. Model Selection of colored Gaussian models

Piotr Graczyk(Angers), Hideyuki Ishi(Osaka), Bartosz Kołodziejek(Warsaw), Hélène Massam(Toronto)

GRAPHICAL MODELS IN STATISTICS:

coding conditional independence by a graph
(mathematical and statistical theory started
by S. Lauritzen and collaborators, 1980's)

Simpson paradox

A university has 48000 students
Half boys(24 000), half girls(24 000)

At the final exams: 10000 boys and 14000 girls fail Feminist organizations threaten to close the university, girl students want to lynch the president!

However, the president of the university proves that the results R of the exams are conditionally independent of the sex S of a student, knowing the department D (notation $R \Perp S \mid D$)

3 departments

A(literature, history, languages),
B(law),
C(sciences)
16000 students each

A	Succ.	Fail	B Succ.	Fail	C Succ.	Fail
Girls	3	9	4	4	3	1
Boys 1	3	4	4	9	3	

Actually $R \Perp S \mid D=d$ for $d=\mathbf{A}, \mathbf{B}, \mathbf{C}$

The notion of the conditional independence is necessary to understand the Simpson paradox.

Graphical coding of conditional independence

Let \mathcal{G} be a graph with vertices v_{i}. If 2 vertices v_{i}, v_{j} are connected by an (undirected) edge, we write $v_{i} \sim v_{j}$.
$R \Perp S \mid D$ will be coded by $R \nsim S$ no edge between R and S

Results depend on Department (knowing Sex): $R \sim D$ S depends on D (knowing Results): $S \sim D$

Remark. D separates R from S
(any path from R to S goes through D. Direct route from R to S impossible.)

We consider undirected graphs $\mathcal{G}=(V, E)$ where:

- the vertex (node) set $V=\{1, \ldots, n\}$
- the edge set $E \subset\{F \subset V \mid \operatorname{card}(F)=2\}$

Any 2 -element set $\{i, j\} \in E$ will be called an edge. Then we write $i \sim j$.

Consider a system of random variables X_{1}, \ldots, X_{p} on the same probability space (Ω, \mathcal{T}, P).

The information on conditional independence between the X_{i} 's is schematized by an undirected graph $\mathcal{G}=(V, E)$ such that

$$
X_{l} \Perp X_{m} \mid X_{V \backslash\{l, m\}} \Longleftrightarrow l \nsim m .
$$

The graph \mathcal{G} is called the dependence graph of the system of random variables X_{1}, \ldots, X_{p}.

Conditional Independence in a Gaussian vector

Let $X=\left(X_{1}, \ldots, X_{p}\right)$ be a Gaussian vector on \mathbb{R}^{p}, with law $N_{p}(\xi, \Sigma)$ and invertible Σ.

The matrix $K=\Sigma^{-1}$ is called the precision matrix of the Gaussian vector X.
(K is also called concentration matrix)

This is the precision matrix $K=\left(\kappa_{i j}\right)_{i, j \leq p}$ that appears in the Gaussian density

$$
f(x)=(2 \pi)^{-p / 2}(\operatorname{det} K)^{1 / 2} e^{-(x-\xi)^{T} K(x-\xi) / 2}
$$

Proposition. Let X be a Gaussian vector in \mathbb{R}^{p}. Denote $V=\{1, \ldots, p\}$ the index set. Let $l, m \in V$ and $l \neq m$.

The marginals X_{l}, X_{m} are conditionally independent w.r. to all the other variables $X_{V \backslash\{l, m\}}$

$$
X_{l} \Perp X_{m} \mid X_{V \backslash\{l, m\}}
$$

if and only if

$$
\kappa_{l m}=0
$$

i.e. the $l m$-term of the precision matrix K is equal 0.

Proof in dim 3.

$X \sim N(0, \Sigma), X_{1} \Perp X_{2} \mid X_{3} \quad K=\left(\kappa_{i j}\right)_{i, j \leq 3}=\Sigma^{-1}$
Factorization Property of the joint density:
$X_{1} \Perp X_{2} \mid X_{3} \Leftrightarrow f\left(x_{1}, x_{2}, x_{3}\right)=g\left(x_{1}, x_{3}\right) h\left(x_{2}, x_{3}\right)$
(analogous to $X_{1} \Perp X_{2} \Leftrightarrow f\left(x_{1}, x_{2}\right)=g\left(x_{1}\right) h\left(x_{2}\right)$)
$f\left(x_{1}, x_{2}, x_{3}\right)=\frac{(\operatorname{det} K)^{1 / 2}}{(2 \pi)^{3 / 2}} \times$
$e^{-\left(\kappa_{11} x_{1}^{2}+\kappa_{22} x_{2}^{2}+\kappa_{33} x_{3}^{2}+2 \kappa_{12} x_{1} x_{2}+2 \kappa_{13} x_{1} x_{3}+2 \kappa_{23} x_{2} x_{3}\right) / 2}$

Suppose $X_{1} \Perp X_{2} \mid X_{3} \Leftrightarrow f\left(x_{1}, x_{2}, x_{3}\right)=g\left(x_{1}, x_{3}\right) h\left(x_{2}, x_{3}\right)=C \times$
$e^{-\left(\kappa_{11} x_{1}^{2}+\kappa_{22} x_{2}^{2}+\kappa_{33} x_{3}^{2}+2 \kappa_{12} x_{1} x_{2}+2 \kappa_{13} x_{1} x_{3}+2 \kappa_{23} x_{2} x_{3}\right) / 2}$

Obligatorily $2 \kappa_{12} x_{1} x_{2}=0 \Leftrightarrow \kappa_{12}=0$.

GAUSSIAN GRAPHICAL MODELS

Let $V=\{1, \ldots, p\}$ and let $\mathcal{G}=(V, E)$ be an undirected graph. Let

$$
\mathcal{S}(\mathcal{G})=\left\{Z \in \operatorname{Sym}(n \times n) \mid i \nsim j \Rightarrow Z_{i j}=0\right\},
$$

the space of symmetric matrices with obligatory zero terms $Z_{i j}=0$ for $i \nsim j$.

Definition. The GAUSSIAN GRAPHICAL MODEL governed by the graph \mathcal{G} is the set of all random Gaussian vectors $X=\left(X_{v}\right)_{v \in V} \sim N(\xi, \Sigma)$, with precision matrix $K=\Sigma^{-1} \in \mathcal{S}(\mathcal{G})$.

Remark. The complete graph \mathcal{G} (i.e. \mathcal{G} containing all possible edges) defines Gaussian graphical model containing all Gaussian vectors supported by \mathbb{R}^{p}, with no constraint. Such model is called saturated.

Precision matrix $K=\Sigma^{-1}$ of a Gaussian vector contains:

- information on conditional independence:
$X_{l} \Perp X_{m} \mid X_{V \backslash\{l, m\}} \Longleftrightarrow \kappa_{l m}=0$
- conditional precision matrices ($K_{X_{A} \mid X_{B}}=K_{A A}$) where $A \cup B=V, A \cap B=\emptyset$
- in practice, we use conditional correlation
$\rho_{l m \mid V \backslash\{l, m\}}=\frac{\operatorname{Cov}\left(X_{l}, X_{m} \mid X_{V \backslash\{l, m\}}\right)}{\operatorname{Var}\left(X_{l} \mid X_{V \backslash\{l, m\}}\right)^{\frac{1}{2}} \operatorname{Var}\left(X_{m} \mid X_{V \backslash\{l, m\}}\right)^{\frac{1}{2}}}=-\tilde{\kappa}_{l m}$
where $\tilde{\kappa}_{l m} \stackrel{\text { df }}{=} \frac{\kappa_{l m}}{\sqrt{\kappa_{l l}} \sqrt{\kappa_{m m}}}$ is an element of the so-called scaled precision matrix \widetilde{K}.

Intuitively,
$\rho_{l m \mid V \backslash\{l, m\}}=-\tilde{\kappa}_{l m} \approx 0 \Rightarrow X_{l} \Perp X_{m} \mid X_{V \backslash\{l, m\}}$.
The matrix R with terms $\rho_{l m \mid V \backslash\{l, m\}}$ is called partial correlation matrix.

For off-diagonal terms, $R_{l m}=-\tilde{\kappa}_{l m}$.

Example. Marks of 88 students in 5 exams: $N_{5}(\xi, \Sigma)$
Table 1.1.1: Marks in five mathematics exams for 88 students. From Mardia, Kent and Bibby (1979). [WHITTAKER]

me	ve	al	an	st	me	ve	al	an	st	me	ve	al	an	st
77	82	67	67	81	30	69	50	52	45	62	44	36	22	42
63	78	80	70	81	46	49	53	59	37	48	38	41	44	33
75	73	71	66	81	40	27	54	61	61	34	42	50	47	29
55	72	63	70	68	31	42	48	54	68	18	51	40	56	30
63	63	65	70	63	36	59	51	45	51	35	36	46	48	29
53	61	72	64	73	56	40	56	54	35	59	53	37	22	19
51	67	65	65	68	46	56	57	49	32	41	41	43	30	33
59	70	68	62	56	45	42	55	56	40	31	52	37	27	40
62	60	58	62	70	42	60	54	49	33	17	51	52	35	31
64	72	60	62	45	40	63	53	54	25	34	30	50	47	36
52	64	60	63	54	23	55	59	53	44	46	40	47	29	17
55	67	59	62	44	48	48	49	51	37	10	46	36	47	39
50	50	64	55	63	41	63	49	46	34	46	37	45	15	30
65	63	58	56	37	46	52	53	41	40	30	34	43	46	18
31	55	60	57	73	46	61	46	38	41	13	51	50	25	31
60	64	56	54	40	40	57	51	52	31	49	50	38	23	9
44	69	53	53	53	49	49	45	48	39	18	32	31	45	40
42	69	61	55	45	22	58	53	56	41	8	42	48	26	40
62	46	61	57	45	35	60	47	54	33	23	38	36	48	15
31	49	62	63	62	48	56	49	42	32	30	24	43	33	25
44	61	52	62	46	31	57	50	54	34	3	9	51	47	40
49	41	61	49	64	17	53	57	43	51	7	51	43	17	22
12	58	61	63	67	49	57	47	39	26	15	40	43	23	18
49	53	49	62	47	59	50	47	15	46	15	38	39	28	17
54	49	56	47	53	37	56	49	28	45	5	30	44	36	18
54	53	46	59	44	40	43	48	21	61	12	30	32	35	21
44	56	55	61	36	35	35	41	51	50	5	26	15	20	20
18	44	50	57	81	38	44	54	47	24	0	40	21	9	14
46	52	65	50	35	43	43	38	34	49					
32	45	49	57	64	39	46	46	32	43					

Mathematics marks

Examination marks of 88 students in 5 different mathematical subjects. The empirical concentrations (on or above diagonal) and partial correlations (below diagonal) are

	Mechanics	Vectors	Algebra	Analysis	Statistics
Mechanics	5.24	-2.44	-2.74	0.01	-0.14
Vectors	0.33	10.43	-4.71	-0.79	-0.17
Algebra	0.23	0.28	26.95	-7.05	-4.70
Analysis	-0.00	0.08	0.43	9.88	-2.02
Statistics	0.02	0.02	0.36	0.25	6.45

Graphical model for mathmarks

This analysis is from Whittaker (1990). We have An, Stats \Perp Mech, Vec \mid Alg.

A well-known reference on Graphical Models in statistics is the book:
S.L. Lauritzen, Graphical Models, Oxford 1996.

A very recent reference on Graphical Models in statistics is the book:

Maathuis, M.,Drton, M., Lauritzen, S. and Wainwright, M. editors ,

Handbook of Graphical Models,
Chapman and Hall - CRC Handbooks of Modern Statistical Methods, Chapman and Hall, 2018, 536 p.

COLORED GRAPHICAL GAUSSIAN MODELS

In order to make Graphical Gaussian Models a viable modeling tool in the modern Big Data Science, i.e. when the number of variables outgrows the number of observations, $p \gg n$,
Højsgaard and Lauritzen introduced in 2008 models which impose equality restrictions on certain entries of precision matrix K or partial correlation matrix R.

Such models can be represented by colored graphs:
the same color edges of the graph encode the equal entries of the matrix

Exemple. $p=3$

The complete graph (saturated model). dim =

A colored complete graph. \quad dim $=$

Exemple. $p=3$

The linear graph (Simpson paradox model). dim $=$

A colored linear graph. $\quad \operatorname{dim}=$

Three types of restriction on graphical Gaussian models are introduced by Højsgaard and Lauritzen :

- RCON models:
equality among specified elements of the concentration matrix, (R for Restriction, CON for concentration $=$ RCON)
- RCOR models: equality among specified partial(conditional) variances $\kappa_{l l}$ and partial correlations $R_{l m}$,
- RCOP models: restrictions on concentrations and partial correlations generated by a subgroup of the group of permutations

RCOP models (\mathcal{G},\ulcorner)
(Permutation invariant coloured models)

Consider a Gaussian graphical model on \mathbb{R}^{p} governed by graph \mathcal{G}.
Permutation-generated colourings are done according to a subgroup

$$
\Gamma \subset \operatorname{Aut}(\mathcal{G}) \subset \mathfrak{S}_{p}
$$

of the permutation (symmetric) group \mathfrak{S}_{p}.

Aut(G) denotes permutations which are automorphisms of the graph \mathcal{G}, mapping edges to edges

$$
\sigma(\alpha) \sim \sigma(\beta) \Leftrightarrow \alpha \sim \beta \quad \text { if } \sigma \in \Gamma .
$$

Exemple. $p=3$
The linear graph (Simpson paradox model).
$\operatorname{Aut}(\mathcal{G})=$

By definition, permutation invariant colouring (\mathcal{V}, \mathcal{E}) of \mathcal{G} according to Γ is given by the orbits of Γ in V and E respectively.

Two vertices $\alpha, \beta \in V$ have the same colour whenever there exists $\sigma \in \Gamma$ mapping α to β, and similarly for the edges.

Exemple. $p=3$
The linear graph (Simpson paradox model).
$\operatorname{Aut}(\mathcal{G})=\{\mathrm{id},(1,3)\}$
2 possible subgroups $\Gamma \subset \operatorname{Aut}(\mathcal{G})$:
$\Gamma=\{i d\}$: no coloring
$\Gamma=\operatorname{Aut}(\mathcal{G})$

For a subgroup $\Gamma \subset \mathfrak{S}_{p}$, we define the space of symmetric matrices invariant under Γ, or the colored matrix space,

$$
\mathcal{Z}_{\Gamma}:=\left\{x \in \operatorname{Sym}(p ; \mathbb{R}) \mid x_{i j}=x_{\sigma(i) \sigma(j)} \text { for all } \sigma \in \Gamma\right\}
$$

and the cone of positive definite matrices in \mathcal{Z}_{Γ},

$$
\mathcal{P}_{\Gamma}:=\mathcal{Z}_{\Gamma} \cap \operatorname{Sym}^{+}(p ; \mathbb{R})
$$

Equivalently,
$\mathcal{Z}_{\Gamma}=\{x \in \operatorname{Sym}(p ; \mathbb{R}) \mid R(\sigma) \cdot x=x \cdot R(\sigma)$ for all $\sigma \in \Gamma\}$, where $R(\sigma)$ denotes the (permutation) matrix of σ.

Example. $p=3, \sigma=(1,3)$

$$
R(\sigma)=? \quad R(\sigma)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
v_{3} \\
v_{2} \\
v_{1}
\end{array}\right)
$$

In RCOP Gaussian models $N(0, \Sigma)$, we have, equivalently, equalities in the covariance matrix Σ :

For any $\sigma \in \Gamma_{, ~}, \Sigma_{i j}=\Sigma_{\sigma(i) \sigma(j)}$
Proof.
RCOP invariance of the concentration matrix of a Gaussian model is equivalent to

$$
R(\sigma) K R(\sigma)^{t}=K
$$

for all $\sigma \in \Gamma$.
Take the inverse matrix.

We get $R(\sigma) \Sigma R(\sigma)^{t}=\Sigma$ for all $\sigma \in \Gamma$.

Summary. RCOP model (\mathcal{G},\ulcorner) means two properties:
(i) $\quad K \in \mathcal{S}(\mathcal{G})$

Zeros are disposed in K according to missing edges in \mathcal{G}
(ii) For any $\sigma \in \Gamma, K_{i j}=K_{\sigma(i) \sigma(j)}$
" Clusters" (colors) of equal terms are disposed in K according to the orbits of Γ

We denote by $\mathcal{S}\ulcorner(\mathcal{G})$ the symmetric matrices satisfying the constraints (i) and (ii) imposed by the RCOP model (\mathcal{G}, Γ).

Relations between coloured graphical model types

Fig. 10. Relations between symmetry models. Models given by permutation symmetry (RCOP) have similar symmetries for concentrations (RCON) and partial correlations (RCOR). RCON models are not necessarily RCOR and vice versa but a model can be simultaneously RCON and RCOR without being RCOP.

Example of an RCOP model from [Højsgaard and Lauritzen]:

Table 6. Fitted concentrations $\times 1000$ (on and above diagonal) and fitted partial correlations (below diagonal) for the examination marks in five mathematical subjects assuming the RCOP model with coloured graph as in Figure 8.

	Mechanics	Vectors	Algebra	Analysis	Statistics
Mechanics	5.75	-2.28	-3.70	0	0
Vectors	0.30	9.96	-6.44	0	0
Algebra	0.29	0.39	27.4	-6.44	-3.70
Analysis	0	0	0.39	9.79	-2.28
Statistics	0	0	0.29	0.30	5.75

This colored graph is invariant by the group containing two permutations:
$\Gamma=\{i d,(A n, V e) \circ(M e, S t)\}$
This group Γ is generated by one permutation $\sigma=(A n, V e) \circ(M e, S t)$ (note that $\sigma^{-1}=\sigma$)

Groups with one generator are called cyclic groups.

Advantages of RCOP models

- We believe that there are permutation symetries in the nature. RCOP models are colored according to groups of permutations
- A deep mathematical tool:
theory of groups of permutations and of finite groups
- RCOP models have good statistical properties:

Højsgaard-Lauritzen, Gehrmann-Lauritzen: developed MLE theory of K and Σ for RCOP Gaussian models

- RCOP models are less numerous than RCON and RCOR models

PART 2

P. Graczyk, H. Ishi, B. Kołodziejek, H. Massam Model selection in the space of Gaussian models invariant by symmetry, submitted 2020
https://arxiv.org/abs/2004.03503

The open problems we adress are motivated by Bayesian Model Selection on RCOP models (\mathcal{G},\ulcorner)

We consider an n-sample of $X \sim N_{p}\left(\xi, \Sigma=K^{-1}\right)$, a Gaussian character in \mathbb{R}^{p}. The density of X is $f(x, K)=(2 \pi)^{-p / 2}(\operatorname{det} K)^{1 / 2} e^{-(x-\xi)^{T} K(x-\xi) / 2}=$ $(2 \pi)^{-p / 2}(\operatorname{det} K)^{1 / 2} e^{-\frac{1}{2} \operatorname{tr}(K u)}$
where $u=(x-\xi)(x-\xi)^{T}$.
In Bayesian statistics, the parameter K is random.

The formula for $f(x, K)$ suggests using as an a priori law of K (prior distribution of K) the law with density

$$
K \rightarrow \frac{1}{I_{\mathcal{G}}^{\Gamma}(s, \theta)}(\operatorname{Det} K)^{\frac{s}{2}} e^{-\frac{1}{2} \operatorname{tr}(K \theta)}, \quad K \in \mathcal{S}^{\Gamma}(\mathcal{G})^{+} \stackrel{\mathrm{df}}{=} \mathcal{P}_{\mathcal{G}}^{\ulcorner }
$$

where $\theta \in \mathcal{S}^{\left\ulcorner(\mathcal{G})^{+}\right.}$. This is a Diaconis-Ylvisaker conjugate prior for the precision matrix K.

The constant $\frac{1}{I_{\mathcal{G}}^{\Gamma}(s, \theta)}$ normalizes the above function to the probability density, with

$$
I_{\mathcal{G}}^{\Gamma}(s, \theta)=\int_{\mathcal{P}_{\mathcal{G}}^{\Gamma}}(\operatorname{det} K)^{\frac{s}{2}} e^{-\frac{1}{2} \operatorname{tr}(K \theta)} d K
$$

Computation of this Laplace-type integral $I_{\mathcal{G}}^{\Gamma}(s, \theta)$ may be, in general, very difficult (or hopeless...), because of the complicated structure of the matrix cone $\mathcal{P}_{\mathcal{G}}^{\Gamma}$.

The a priori law on K

$$
K \rightarrow \frac{1}{I_{\mathcal{G}}^{\Gamma}(s, \theta)}(\operatorname{Det} K)^{\frac{s}{2}} e^{-\frac{1}{2} \operatorname{tr}(K \theta)}, \quad K \in \mathcal{S}^{\ulcorner }(\mathcal{G})+\stackrel{\text { df }}{=} \mathcal{P}_{\mathcal{G}}^{\ulcorner },
$$

is called a $\left(\mathcal{G},\ulcorner)\right.$-Wishart law on the matrix cone $\mathcal{P}{ }_{\mathcal{G}}$, with parameters s, θ, denoted $W_{\mathcal{G}}^{\Gamma}(s, \theta)$.

This is a matrix analog of KHI^{2} law χ_{s}^{2} sur \mathbb{R}^{+}.

Bayesian Model Selection on RCOP models (\mathcal{G},\ulcorner)
Without loss of generality, suppose the centered case $\xi=0$. We assume a uniform prior distribution on the space of RCOP models (\mathcal{G},\ulcorner) of cardinal g.

The likelihood function of the sample $X^{(1)}, \ldots, X^{(n)} \in \mathbb{R}^{p}$ equals:
$f\left(x^{(1)}, \ldots, x^{(n)} ; K ; \mathcal{G},\ulcorner)=\right.$
$=\frac{1}{g} \prod_{k=1}^{n}\left\{(2 \pi)^{-p / 2}(\operatorname{det} K)^{1 / 2} \exp \left(-x^{(k)^{T}} K x^{(k)} / 2\right)\right\}$
$=\frac{1}{g}(2 \pi)^{-n p / 2}(\operatorname{det} K)^{n / 2} \exp \left(-\frac{1}{2} \operatorname{tr}(K u(x))\right)$
where $u(x)=\sum_{k=1}^{n} x^{(k)} x^{(k)^{T}}$ equals the empirical sample covariance $\times n$.

In order to get the joint distribution of (X, \mathcal{G}, Γ), we integrate with respect to the prior Wishart law of K :
$f\left(x^{(1)}, \ldots, x^{(n)} ; \mathcal{G},\ulcorner)=\right.$
$\frac{1}{g}(2 \pi)^{-n p / 2} \int_{\mathcal{P}_{\mathcal{G}}^{\Gamma}}(\operatorname{det} K)^{n / 2} \exp \left(-\frac{1}{2} \operatorname{tr}(K u)\right) d W_{\mathcal{G}}^{\Gamma}(s, \theta)(K)$
$=\frac{1}{g}(2 \pi)^{-n p / 2} \frac{I_{\mathcal{G}}^{\Gamma}(s+n, \theta+u(x))}{I_{\mathcal{G}}^{\Gamma}(s, \theta)}$
This is proportional (with factor $\frac{1}{f\left(x^{(1)}, \ldots, x^{(n)}\right)}$) to the posterior distribution $f(\mathcal{G}, \Gamma \mid X=x)$ of (\mathcal{G},\ulcorner) given the observation $x=\left(x^{(1)}, \ldots, x^{(n))}\right.$.

We apply the Bayesian paradigm, as described for noncolored graphical models in [Handbook of Graphical Models, 2018]:

In a Bayesian framework, the classical approach for choosing between two models $\mathcal{M}_{(\mathcal{G}, \Gamma)}$ and $\mathcal{M}_{\left(\mathcal{G}^{\prime}, \Gamma^{\prime}\right)}$ is to compute their posterior probability density and choose the model with the highest posterior probability.

The Bayes factor equals the ratio of the posterior distributions of two compared models

$$
B_{(\mathcal{G}, \Gamma),\left(\mathcal{G}^{\prime}, \Gamma^{\prime}\right)}=\frac{I_{\mathcal{G}}^{\Gamma}(s+n, \theta+u(x)) I_{\mathcal{G}^{\prime}}^{\Gamma^{\prime}}(s, \theta)}{I_{\mathcal{G}}^{\Gamma}(s, \theta) I_{\mathcal{G}^{\prime}}^{\Gamma^{\prime}}(s+n, \theta+u(x))}
$$

Knowing the Bayes factors $B_{(\mathcal{G}, \Gamma),\left(\mathcal{G}^{\prime}, \Gamma^{\prime}\right)}$, we travel through the space of RCOP models (\mathcal{G}, Γ) using the MetropolisHastings algorithm.

Metropolis-Hastings algorithm over cyclic permutation groups

Starting from a permutation $\sigma_{0} \in \mathfrak{S}_{p}$, repeat the following two steps for $t=1,2, \ldots$:

1. Sample x_{t} uniformly from the set \mathcal{T} of all transpositions and set $\sigma^{\prime}=\sigma_{t-1} \circ x_{t}$;
2. Accept the move $\sigma_{t}=\sigma^{\prime}$ with probability

$$
\min \left\{1, \frac{I_{\left\langle\sigma^{\prime}\right\rangle}(s+n, \theta+u(x)) I_{\left\langle\sigma_{t-1}\right\rangle}(s, \theta)}{I_{\left\langle\sigma^{\prime}\right\rangle}(s, \theta) I_{\left\langle\sigma_{t-1}\right\rangle}(s+n, \theta+u(x))}\right\}
$$

If the move is rejected, set $\sigma_{t}=\sigma_{t-1}$.

Simulations

Let the covariance matrix Σ be the symmetric circulant matrix

$$
\Sigma=\left(\begin{array}{ccccc}
c_{0} & c_{1} & \ldots & c_{2} & c_{1} \\
c_{1} & c_{0} & c_{1} & \ldots & c_{2} \\
\vdots & c_{1} & c_{0} & \ddots & \vdots \\
c_{2} & & \ddots & \ddots & c_{1} \\
c_{1} & c_{2} & \ldots & c_{1} & c_{0}
\end{array}\right)
$$

with $c_{0}=1+1 / p$ and $c_{k}=1-k / p$ for $k=1, \ldots,\lfloor p / 2\rfloor$. It is easily seen that this matrix belongs to $\mathcal{P}_{\left\langle\sigma^{*}\right\rangle}$ with $\sigma^{*}=(1,2, \ldots, p-1, p)$.

We performed on Python:
$T=100000$ steps of $\mathrm{M}-\mathrm{H}$ Algorithm with $\sigma_{0}=\mathrm{id}$, $p=100, n=200, s=3$ and $\theta=I_{100}$.

Let us note that for $p=100$, there are about $4 \cdot 10^{155}$ cyclic subgroups and this is the number of models we consider in our model search.

The highest estimated posterior probability was obtained for $c^{*}:=\left\langle\sigma^{*}\right\rangle$, where

$$
\begin{aligned}
\sigma^{*}= & (1,2,3,4)(6,8,15)(7,10,9)(11,16,12)(13,17,14)(18,19,20,22,21)(23,26) \\
& (24,42,28,44)(25,31,30,32)(27,34)(29,37)(33,45)(35,39,36,40) \\
& (38,47,41,48)(43,51,46,49)(50,52,53,54)(56,58,57)(59,66,67) \\
& (60,65,63)(61,62,64)(68,71,72,70,69)(73,93)(74,77)(75,98,81,100) \\
& (76,84,78,83)(79,85)(80,94,82,91)(86,92,87,90)(88,96,89,97)(95,99) .
\end{aligned}
$$

The estimate of the posterior probability $\pi_{c^{*}}$ is equal to 37%.

The order of c^{*} is $\left|c^{*}\right|=60$.

FIG 3. Heat map of matrix $\Sigma(a)$ and matrix $U / n(b)$ and projection of U / n onto $\mathcal{Z}_{c^{*}}$.

FIG 4. Number of "effective" steps (red) and number of "effective" accepted steps (blue).
$(76,84,78,83)(79,85)(80,94,82,91)(86,92,87,90)(88,96,89,97)(95,99)$.
The order of c^{*} is $\left|c^{*}\right|=60$ and $\Phi\left(c^{*}\right)=16$. The estimate of the posterior probability $\pi_{c^{*}}$ is equal to (recall (47))

$$
\frac{\frac{1}{\Phi\left(c^{*}\right)} \sum_{t=1}^{T} \mathbf{1}_{c^{*}=\left\langle\sigma_{t}\right\rangle}}{\sum_{t=1}^{T} \frac{1}{\Phi\left(\left\langle\sigma_{t}\right\rangle\right)}} \approx \frac{2361.5}{6381.5} \approx 37 \%
$$

The true covariance matrix Σ, the data matrix U / n and the projection $\Pi_{c^{*}}(U / n)$ are illustrated in Fig. 3.

We visualize the performance of the algorithm on Fig 4. In red color, a sequence $\left(\sum_{t=1}^{k} \frac{1}{\Phi\left(\left\langle\sigma_{t}\right\rangle\right)}\right)_{k}$ is depicted, which can be thought of as an "effective" number of steps of the algorithm (for an explanation, see the paragraph at the end of Subsection 4.1.2). In blue, we present a sequence $\left(\sum_{t=1}^{k} \frac{1}{\Phi\left(\left\langle\sigma_{t}\right\rangle\right)} \mathbf{1}_{\left\langle\sigma_{t}\right\rangle \neq\left\langle\sigma_{t-1}\right\rangle}\right)_{k}$, which represents the number of weighted accepted steps, where the weight of the k th step equals $\frac{1}{\Phi\left(\left\langle\sigma_{k}\right\rangle\right)}$. We restricted the plot to steps $k=1, \ldots, 10000$, because after 10000 steps, the Markov chain $\left(\sigma_{t}\right)_{10000 \leq t \leq 100000}$ changed its state only 9 times. For $k=100000$, the value of the blue curve is 25.75 , while the value of red one is 6381.5 .

The model suffers from poor acceptance rate, which could be improved by an appropriate choice of the hyper-parameter D or by allowing the Markov chain to do bigger steps.

Acknowledgements. The authors would like to thank Steffen Lauritzen for his interest and encouragements.

The computation of the normalizing constants

$$
I_{\mathcal{G}}^{\Gamma}(s, \theta)=\int_{\mathcal{P}_{\mathcal{G}}}(\operatorname{Det} K)^{\frac{s}{2}} e^{-\frac{1}{2} \operatorname{tr}(K \theta)} d K
$$

is essential for the computation of the Bayes factor and for the $\mathrm{M}-\mathrm{H}$ Algorithm.

We need to compute the integral

$$
I_{\mathcal{G}}^{\Gamma}(s, \theta)=\int_{\mathcal{P}_{\mathcal{G}}^{\Gamma}}(\operatorname{det} K)^{\frac{s}{2}} e^{-\frac{1}{2} \operatorname{tr}(K \theta)} d K .
$$

This is a generalized Gamma Integral.

Recall Gamma integral. For $s>0$

$$
\int_{0}^{\infty} e^{-x y} x^{s-1} d x=\Gamma(s) y^{-s}
$$

Gamma Integrals on the cone of positive definite symmetric matrices $S_{n}^{+}=S y m^{+}(n, \mathbb{R})$
Crucial in multivariate statistics, first computed by Wishart and Ingham 1928-1935.

Gamma function of $S_{n}^{+}:$for $s>\frac{n-1}{2}$ and $c_{n}=(2 \pi)^{\frac{n(n-1)}{4}}$
$\Gamma_{S_{n}^{+}}(s)=\int_{S_{n}^{+}} e^{-\operatorname{tr}(x)}(\operatorname{det} x)^{s-\frac{n+1}{2}} d x=c_{n} \prod_{j=1}^{n} \Gamma\left(s-\frac{j-1}{2}\right)$

Gamma-Siegel integral
for $s>\frac{n-1}{2}$

$$
\int_{S_{n}^{+}} e^{-\operatorname{tr}(x y)}(\operatorname{det} x)^{s-\frac{n+1}{2}} d x=\Gamma_{S_{n}^{+}}(s)(\operatorname{det} y)^{-s}
$$

Gamma integrals over the irreducible symmetric cones $\Omega_{i}=\operatorname{Herm}\left(r_{i}, \mathbb{K}_{i}\right)^{+}, \mathbb{K}_{i} \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$ 。

Let $d_{i}=\operatorname{dim}_{\mathbb{R}} \mathbb{K}_{i} \in\{1,2,4\}$.
Let $N_{i}=r_{i}+\frac{r_{i}\left(r_{i}-1\right)}{2} d_{i}$ denote the dimension of $\operatorname{Herm}\left(r_{i}, \mathbb{K}_{i}\right)$

$$
\begin{aligned}
\int_{\Omega_{i}} e^{-\operatorname{tr} x y}(\operatorname{det} x)^{\lambda-N_{i} / r_{i}} d x & =\Gamma_{\Omega_{i}}(\lambda)(\operatorname{det} y)^{-\lambda} \\
& \left(\lambda>\frac{\left(r_{i}-1\right) d_{i}}{2}, y \in \Omega_{i}\right)
\end{aligned}
$$

where $\Gamma_{\Omega_{i}}$ denotes the Gamma function associated to the symmetric cone Ω_{i} given by (see [Faraut-Koranyi])

$$
\Gamma_{\Omega_{i}}(\lambda)=(2 \pi)^{\left(N_{i}-r_{i}\right) / 2} \Gamma(\lambda) \Gamma\left(\lambda-d_{i} / 2\right) \ldots \Gamma\left(\lambda-\left(r_{i}-1\right) d_{i} / 2\right)
$$

Our main result:

Computing normalizing constant of the Wishart distribution in RCOP model for the full(saturated) graph \mathcal{G}.
Such explicit formulas were not known before.

Method: the representation theory (over \mathbb{R}) of a finite group.

Application. Bayesian Model selection: selecting the best coloring subgroup Γ of \mathfrak{S}_{p}, for a Gaussian vector $X \in \mathbb{R}^{p}$ with no information on conditional independence of X_{i} 's (saturated model)

In progress. The case when \mathcal{G} is a decomposable graph.

From now on, \mathcal{G} is a complete graph with p vertices and all edges.

For a subgroup $\Gamma \subset \mathfrak{S}_{p}$, we define the colored matrix vector space

$$
\mathcal{Z}\left\ulcorner:=\left\{x \in \operatorname{Sym}(p, \mathbb{R}) \mid x_{i j}=x_{\sigma(i) \sigma(j)} \text { for all } \sigma \in \Gamma\right\},\right.
$$

We need to compute Gamma integrals on the cone

$$
\mathcal{P}^{\ulcorner }=\mathcal{Z}^{\left\ulcorner\cap \operatorname{Sym}^{+}(p, \mathbb{R})\right.}
$$

Theorem 1. Crucial property: reduction of colored saturated models to bloc diagonal models Any matrix $X \in \mathcal{Z} \Gamma$ (so also when $X \in \mathcal{P}_{\Gamma}$) can be written as
$X=U_{\Gamma}\left(\begin{array}{cccc}M_{\mathbb{K}_{1}}\left(x_{1}\right) \otimes I_{k_{1}} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & & M_{\mathbb{K}_{2}}\left(x_{2}\right) \otimes I_{k_{2}} & \mathbf{0} \\ 0 & \mathbf{0} & 0 \\ d_{2} & \ddots & \mathbf{0} \\ 0 & 0 & 0 & M_{\mathbb{K}_{L}}\left(x_{L}\right) \otimes I_{\frac{k_{L}}{d_{L}}}\end{array}\right) U_{\Gamma}^{T}$
where: • U_{Γ} is an orthogonal (change of basis) matrix independent on $X \in \mathcal{Z}$,

- $M_{\mathbb{K}_{i}}\left(x_{i}\right)$ is a real matrix representation of a Hermitian $r_{i} \times r_{i}$ matrix x_{i} with entries in $\mathbb{K}_{i}=\mathbb{R}, \mathbb{C}$ or \mathbb{H}.
The maps $X \rightarrow x_{i}$ are linear $\mathcal{Z}\left\ulcorner\rightarrow \operatorname{Herm}\left(r_{i}, \mathbb{K}_{i}\right)\right.$
- $k_{i}, d_{i}, r_{i}, k_{i} / d_{i}, i=1, \ldots, L$ are integer constants

Theorem 1 says that in an adequate basis of \mathbb{R}^{p}, any Γ-colored matrix $X \in \mathcal{Z}^{\Gamma}$ can be written as a bloc diagonal matrix.

Recall that both $\operatorname{Herm}(r ; \mathbb{C})$ and $\operatorname{Herm}(r ; \mathbb{H})$ can be realized as real symmetric matrices, but of bigger dimension ($2 r$ and $4 r$, respectively).

For $z=a+b i \in \mathbb{C}$ define $M_{\mathbb{C}}(z)=\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$. The function $M_{\mathbb{C}}$ is a matrix representation of \mathbb{C}.

Similarly, any $r \times r$ complex matrix can be realized as a $(2 r) \times(2 r)$ real matrix. Hermitian complex matrix becomes a real symmetric matrix. Positive definiteness is preserved.

Analogous real 4×4 matrix realization is available for quaternions \mathbb{H}.

Example. For $p=3, \Gamma=\mathfrak{S}_{3}$, the cone \mathcal{P}_{Γ} of positive definite matrices X invariant under Γ, that is such that $X_{i j}=X_{\sigma(i) \sigma(j)}$ for all $\sigma \in \Gamma$, is

$$
\mathcal{P}_{\Gamma}=\left\{\left.\left(\begin{array}{lll}
a & b & b \\
b & a & b \\
b & b & a
\end{array}\right) \right\rvert\, a>0 \text { and } b \in(-a / 2, a)\right\}
$$

The bloc diagonal realization of \mathcal{P}_{Γ} and

$$
\left(\begin{array}{ccc}
a & b & b \\
b & a & b \\
a & a & b
\end{array}\right)=U_{\Gamma}\left(\begin{array}{ccc}
a+2 b & 0 & 0 \\
0 & a-b & 0 \\
0 & 0 & a-b
\end{array}\right){ }^{\mathrm{t}} U_{\Gamma}
$$

Here $L=2, \mathbb{K}_{i}=\mathbb{R}, r_{i}=1, i=1,2$ and the constants $k_{1}=d_{1}=1, k_{2}=2, d_{2}=1, k_{1} / d_{1}=1, k_{2} / d_{2}=2$.

This bloc diagonal realization is obtained choosing

$$
\begin{aligned}
& U_{\Gamma}:=\left(\begin{array}{ll}
v_{1}^{(1)} & v_{2}^{(1)}
\end{array} v_{3}^{(1)}\right) \in O(3) \text { with } \\
& v_{1}^{(1)}:=\left(\begin{array}{l}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right), \quad v_{2}^{(1)}:=\left(\begin{array}{c}
\sqrt{2 / 3} \\
-1 / \sqrt{6} \\
-1 / \sqrt{6}
\end{array}\right), \quad v_{3}^{(1)}:=\left(\begin{array}{c}
0 \\
1 / \sqrt{2} \\
-1 \sqrt{2}
\end{array}\right) .
\end{aligned}
$$

Proof of Theorem 1.

Let $R(\sigma)$ be the matrix of a permutation σ seen as a linear map on \mathbb{R}^{p}.

We apply a decomposition

$$
R=\oplus_{i=1}^{L} \pi_{i}^{\oplus r_{i}}
$$

of the natural representation

$$
\ulcorner\ni \sigma \mapsto R(\sigma) \in G L(p, \mathbb{R})
$$

of the group Γ on \mathbb{R}^{p} into irreducible real representations π_{i} over $V_{i}=\mathbb{R}^{k_{i}}$, where: $\quad k_{i}=\operatorname{dim}_{\mathbb{R}} \pi_{i}$ and r_{i} is the multiplicity of π_{i} in the decomposition of $R(\sigma)$.

Theorem 2.

If $Y \in \mathcal{P}_{\Gamma}$ and $s>\max _{i=1, \ldots, L}\left\{-\frac{1}{k_{i}}\right\}$, then

$$
\begin{aligned}
& I(s, Y)=\int_{\mathcal{P}_{\ulcorner }} \operatorname{Det}^{s} X e^{-\operatorname{Tr} Y \cdot X} d X= \\
& =e^{-A_{\ulcorner } s-B_{\ulcorner }} \prod_{i=1}^{L} \Gamma_{\Omega_{i}}\left(k_{i} s+\frac{\operatorname{dim} \Omega_{i}}{r_{i}}\right) \operatorname{Det}^{-s} Y \varphi_{\Gamma}(Y)
\end{aligned}
$$

where $A_{\Gamma}:=\sum_{i=1}^{L} r_{i} k_{i} \log k_{i}$,
$B_{\Gamma}:=\frac{1}{2} \sum_{i=1}^{L}\left(\operatorname{dim} \Omega_{i}\right)\left(\log k_{i}\right)$,
$\varphi_{\Gamma}(Y)=\prod_{i=1}^{L}\left(\operatorname{det} \phi_{i}(Y)\right)^{-\operatorname{dim} \Omega_{i} / r_{i}}$,
with natural projections $\phi_{i}: \mathcal{Z}_{\Gamma} \ni X \mapsto x_{i} \in \operatorname{Herm}\left(r_{i} ; \mathbb{K}_{i}\right)$.

STATISTICAL AND NUMERICAL APPLICATIONS OF Theorem 2

In order to compute the normalizing constants $I(s, \theta)$ on $\mathcal{P}\ulcorner$, and the Bayes factors, we have to:

- find the constants $k_{i}, d_{i}, r_{i}, i=1, \ldots, L$
- find the polynomials $\operatorname{det} \phi_{i}(X)$

Doing so for every Γ visited during the model selection process is computationally heavy.

For important classes of subgroups Γ we can find U_{Γ} and the constants $k_{i}, d_{i}, r_{i}, i=1, \ldots, L$:

- cyclic (generated by one permutation) subgroups Γ (model selection done with R for $p=100$)
- Abelian subgroups 「

Without restrictions on Γ and for small to moderate dimensions $p \leq 8$, we can obtain the constants $k_{i}, d_{i}, r_{i}, i=1, \ldots, L$ as well as the expression of $\operatorname{Det}(X)$ and $\varphi_{\Gamma}(X)$ without having to compute U_{Γ}, in the following way.

We use the packages of factorization of multivariate polynomials available on either Mathematica or Python.

Fact. Det (X) admits a unique irreducible factorization of the form

$$
\begin{equation*}
\operatorname{Det}(X)=\prod_{i=1}^{L} \operatorname{Det}\left(M_{\mathbb{K}_{i}}\left(x_{i}\right)\right)^{k_{i} / d_{i}} \quad\left(X \in \mathcal{Z}_{\Gamma}\right) \tag{1}
\end{equation*}
$$

On the other hand, Mathematica or Python provide a unique irreducible factorization of the form

$$
\begin{equation*}
\operatorname{Det}(X)=\prod_{j=1}^{L^{\prime}} f_{j}(X)^{a_{j}} \quad\left(X \in \mathcal{Z}_{\Gamma}\right) \tag{2}
\end{equation*}
$$

where each a_{j} is a positive integer, each $f_{j}(X)$ is an irreducible polynomial of $X \in \mathcal{Z}_{\Gamma}$, and $f_{i} \neq f_{j}$ if $i \neq j$.

The constants k_{i}, d_{i}, r_{i}, as well as $\operatorname{det} \phi_{i}(X)=\operatorname{det} M_{\mathbb{K}_{i}}\left(x_{i}\right)$ are obtained by identification of the two expressions of Det (X) in (1) and (2).

APPLICATION. Permutation Coloured (RCOP) saturated graphical models with four vertices

We will give explicitely constants $\left(d_{i}, m_{i}, n_{i}\right)$ for all possible colorings on full graph with four vertices.

Every subgroup of the symmetric group \mathfrak{S}_{4} is conjugate to one of the groups $\Gamma_{k}, k=1, \ldots, 11$ given below. Namely, if Γ is a subgroup of \mathfrak{S}_{4}, then there exists $k \in\{1, \ldots, 11\}$ and $\sigma \in \mathfrak{S}_{4}$ such that

$$
\Gamma=\sigma \Gamma_{k} \sigma^{-1}
$$

We write $\left\langle\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\rangle$ for the group generated by $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$.
($i_{1} i_{2} \ldots i_{n}$) denotes the cyclic permutation $i_{1} \rightarrow i_{2} \rightarrow \ldots \rightarrow i_{n} \rightarrow i_{1}$.

1. $\Gamma_{1}=\mathfrak{S}_{4}$,
2. $\Gamma_{2}=\langle(123),(12)(34)\rangle=A_{4}$,
3. $\Gamma_{3}=\langle(1324),(12)\rangle \simeq D_{4}$,
4. $\Gamma_{4}=\langle(123),(12)\rangle \simeq \mathfrak{S}_{3}$,
5. $\Gamma_{5}=\langle(1324)\rangle \simeq \mathbb{Z} / 4 \mathbb{Z}$,
6. $\Gamma_{6}=\langle(12)(34),(13)(24)\rangle \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$,
7. $\Gamma_{7}=\langle(12),(34)\rangle \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$,
8. $\Gamma_{8}=\langle(123)\rangle \simeq \mathbb{Z} / 3 \mathbb{Z}$,
9. $\Gamma_{9}=\langle(12)(34)\rangle \simeq \mathbb{Z} / 2 \mathbb{Z}$,
10. $\Gamma_{10}=\langle(12)\rangle \simeq \mathbb{Z} / 2 \mathbb{Z}$,
11. $\Gamma_{11}=\{e\}$.

Let us number all decreasing sequences of $\left(\Gamma_{k}\right)_{k}$:

1. $\Gamma_{1} \supset \Gamma_{2} \supset \Gamma_{6} \supset \Gamma_{9} \supset \Gamma_{11}$,
2. $\Gamma_{1} \supset \Gamma_{2} \supset \Gamma_{8} \supset \Gamma_{11}$
3. $\Gamma_{1} \supset \Gamma_{3} \supset \Gamma_{5} \supset \Gamma_{9} \supset \Gamma_{11}$,
4. $\Gamma_{1} \supset \Gamma_{3} \supset \Gamma_{6} \supset \Gamma_{9} \supset \Gamma_{11}$,
5. $\Gamma_{1} \supset \Gamma_{3} \supset \Gamma_{7} \supset \Gamma_{10} \supset \Gamma_{11}$,
6. $\Gamma_{1} \supset \Gamma_{4} \supset \Gamma_{8} \supset \Gamma_{11}$,
7. $\Gamma_{1} \supset \Gamma_{4} \supset \Gamma_{10} \supset \Gamma_{11}$.

Below we present a Hasse diagram of the lattice of subgroups $\left(\Gamma_{k}\right)$ with the partial order relation being set inclusion.

Gehrmann's list of full RCOPs, $p=4$

The main goal is to compute Gamma integral over $\mathcal{P}\left\ulcorner=\mathcal{Z}\left\ulcorner\cap \operatorname{Sym}^{+}(4, \mathbb{R})\right.\right.$.

We will explicit the block diagonalizations of $\mathcal{Z} \Gamma$.
Let us define

$$
\tilde{\mathcal{Z}}\left\ulcorner=\left\{P^{-1} X P: X \in \mathcal{Z}\ulcorner \}\right.\right.
$$

where P is a common ON basis, chosen for 7 decreasing sequences of $\left(\Gamma_{k}\right)_{k}$, seen before, as follows

$$
\begin{aligned}
P_{(1),(3),(4)} & =\left(\begin{array}{cccc}
1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & -1 / 2 & -1 / 2 \\
1 / 2 & -1 / 2 & 1 / 2 & -1 / 2 \\
1 / 2 & -1 / 2 & -1 / 2 & 1 / 2
\end{array}\right) \\
P_{(2),(6),(7)} & =\left(\begin{array}{cccc}
1 / 2 & 1 / \sqrt{12} & 1 / \sqrt{6} & 1 / \sqrt{2} \\
1 / 2 & 1 / \sqrt{12} & 1 / \sqrt{6} & -1 / \sqrt{2} \\
1 / 2 & 1 / \sqrt{12} & -2 / \sqrt{6} & 0 \\
1 / 2 & -3 / \sqrt{12} & 0 & 0
\end{array}\right) \\
P_{(5)} & =\left(\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 1 / \sqrt{2} \\
1 / 2 & 1 / 2 & 0 & -1 / \sqrt{2} \\
1 / 2 & -1 / 2 & 1 / \sqrt{2} & 0 \\
1 / 2 & -1 / 2 & -1 / \sqrt{2} & 0
\end{array}\right)
\end{aligned}
$$

It can be shown that

1. $\tilde{\mathcal{Z}} \Gamma^{1}=\{\operatorname{diag}(A, B, B, B): A, B \in \mathbb{R}\}$,

$$
k=(1,3), d=(1,1), r=(1,1),
$$

2. $\tilde{\mathcal{Z}} \Gamma_{2}=\{\operatorname{diag}(A, B, B, B): A, B \in \mathbb{R}\}$,

$$
k=(1,3), d=(1,1), r=(1,1),
$$

3. $\tilde{\mathcal{Z}} \Gamma^{3}=\{\operatorname{diag}(A, B, C, C): A, B, C \in \mathbb{R}\}$,

$$
k=(1,1,2), d=(1,1,1), r=(1,1,1),
$$

4. $\tilde{\mathcal{Z}}^{\Gamma}=\left\{\left(\begin{array}{llll}A & C & & \\ C & B & & \\ & & D & \\ & & & D\end{array}\right): A, B, C, D \in \mathbb{R}\right\}$,

$$
k=(1,2), d=(1,1), r=(2,1)
$$

$$
\text { 5. } \begin{aligned}
& \tilde{\mathcal{Z}}^{\Gamma}=\{\operatorname{diag}(A, B, C, C): A, B, C \in \mathbb{R}\}, \\
& k=(1,1,2), d=(1,1,2), r=(1,1,1)
\end{aligned}
$$

6. $\tilde{\mathcal{Z}} \Gamma^{6}=\{\operatorname{diag}(A, B, C, D): A, B, C, D \in \mathbb{R}\}$, $k=(1,1,1,1), d=(1,1,1,1), r=(1,1,1,1)$.
7. $\tilde{\mathcal{Z}}\left\ulcorner_{7}=\left\{\left(\begin{array}{llll}A & C & & \\ C & B & & \\ & & D & \\ & & & E\end{array}\right): A, B, C, D, E \in \mathbb{R}\right\}\right.$, $k=(1,1,1), d=(1,1,1), r=(2,1,1)$,

$$
\begin{aligned}
& \text { 8. } \tilde{\mathcal{Z}} \Gamma_{8}=\left\{\left(\begin{array}{llll}
A & C & & \\
C & B & & \\
& & D & \\
& & & D
\end{array}\right): A, B, C, D \in \mathbb{R}\right\} \text {, } \\
& k=(1,2), d=(1,2), r=(2,1) \text {, } \\
& \text { 9. } \tilde{\mathcal{Z}} \Gamma_{9}=\left\{\left(\begin{array}{llll}
A & C & & \\
C & B & & \\
& & D & F \\
& & F & E
\end{array}\right): A, B, C, D, E, F \in \mathbb{R}\right\} \text {, } \\
& k=(1,1), d=(1,1), r=(2,2) \text {, } \\
& \text { 10. } \tilde{\mathcal{Z}}\left\ulcorner_{10}=\left\{\left(\begin{array}{cccc}
A & E & F \\
E & B & G \\
F & G & C & \\
& & & D
\end{array}\right): A, B, C, D, E, F, G \in \mathbb{R}\right\}\right. \text {, } \\
& k=(1,1), d=(1,1), r=(3,1) \text {, }
\end{aligned}
$$

$$
\text { 11. } \begin{aligned}
& \tilde{\mathcal{Z}}{ }^{\Gamma_{11}}=\operatorname{Sym}(4, \mathbb{R}) \\
& k=(1), d=(1), r=(4)
\end{aligned}
$$

Application: Frets Heads (1921)

Table 5.1.1 The measurements on the first and second adult sons in a sample of 25 families. (Data from Frets, 1921.)

Head length	First son	$\overbrace{$ Head length breadth }$^{\substack{\text { Second son } \\ \text { Head } \\ \text { breadth }}}$	
191	155	179	145
195	149	201	152
181	148	185	149
183	153	188	149
176	144	171	142
208	157	192	152
189	150	190	149
197	159	189	152
188	152	197	159
192	150	187	151
179	158	186	148
183	147	174	147
174	150	185	152
190	159	195	157
188	151	187	158
163	137	161	130
195	155	183	158
186	153	173	148
181	145	182	146
175	140	165	137
192	154	185	152
174	143	178	147
176	169	176	143
197	163	200	158
190		187	150

Below we present the list of 12 best fitting models for Frets' heads, selected in former literature.

Model (a) comes from Whittaker(1990) and is the smallest non-decomposable graph C_{4}.

Models (b,c) are selected by Højsgaard-Lauritzen(2008), by likelihood ratio test comparing each model to the saturated one.

Models (d)-(I) are the 9 minimally accepted models selected by Gehrman(2011) by Edwards-Havranek algorithm. The lowest BIC value is represented by the last graph (I).

All 12 models were considered by Massam-Li-Gao(2012) who applied to them Bayes Model selection based on prior G-Wishart distributions $W_{s, D}$ and on an approximative (MC type) method of computation of constants $I_{\mathcal{G}}^{\Gamma}(s, D)$.

For parameters $s=3$ or $s=10$ and for $D=I d_{4}$, the models with highest posterior probability were, respectively, (k),(b),(I) and (I),(k),(b).

Choice of the best model among all complete RCOP models for 4 variables

The 22 complete RCOP models for 4 variables are shown on a previous slide, we use here the numbering of Gehrman.

We used as priors for K the Wishart laws $W_{s, D}^{\Gamma}$ with $s=1$ and $D=I d_{4}$

With Mathematica we obtained maximal posterior probability $p p$ for the models:
$\Gamma_{19}: p p=0.4294$
$\Gamma_{13}: p p=0.2273$
$\Gamma_{8}: p p=0.1793$
$\Gamma_{22}: p p=0.0495$
$\Gamma_{16}: p p=0.0329$
All the other 17 models represent altogether $p p=0.08$.

Note that the only complete RCOP model Γ_{10} selected by Gehrman by Edwards-Havranek algorithm among the 9 minimally accepted models (d)-(I) has $p p=0.0081$ which is 50 times less than Γ_{19}.

