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(c) Short description of the scientific aim of the habilitation paper and obtained results:

Piecewise-smooth dynamical systems are mathematical models of systems of relevance to applications,
which can be described by means of a combination of continuous and discrete evolution. Such a model
formulation leads to the presence of discontinuities. The presence of discontinuities, in turn, may
trigger qualitative changes in the structure of phase space under some parameter variations, which are
not observed in differentiable systems. See for example [95, 11, 21, 18, 19, 17, 37, 99, 46, 33, 12, 13, 25,
98, 2, 26, 15, 20, 63, 64, 94, 51, 24, 29] among other works. These structural changes have been termed
as discontinuity induced bifurcations, DIBs for short (see, for example [35, 34, 81] among other works).
The work which I present here, which forms the basis of the habilitation paper, concerns the theory of
local one- and two-parameter DIBs in piecewise-smooth dynamical systems (PWS). In Chapter 3 of
Section VI., where the results which are the subject of this habilitation are presented, I start with the
presentation of one-parameter normal form maps for sliding bifurcations, which were first derived in
[KO1]. I rederived them using a different technique and presented in the monograph [K4]. There are
still open problems for one-parameter DIBs. One of these concerns the classification of the dynamics
around a given DIB. In [K2,K3], we present the classification of the dynamics in 3D Filippov type flows
around a one-parameter grazing-sliding bifurcation. In particular, we show how one can reduce a 3D
Filippov type flow to a one-dimensional discontinuous map locally around a grazing limit cycle, and
explain bifurcations which lead to the creation of a multiple number of stable limit cycles emanating
from a single limit cycle. Such a bifurcation cannot occur in differentiable vector fields. Another
question related to one-parameter DIBs, raised in [K1], concerns the type of perturbations which may
lead to a DIB. In particular, in [K1], I unfold the dynamics of a one-parameter DIB, different from
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all other cases of DIBs considered in [K2-K8], in that in [K1], it is the perturbation to the structure
of the switching manifold which serves as a variation parameter. In so doing, I unfold a novel class of
a supercritical Hopf-like bifurcation in a 3-zone planar Filippov type system.

The results presented in [K6] lay the foundations of the theory for two-parameter DIBs of PWS
systems out, which is related to the classification strategy for co-dimension two bifurcations in smooth
dynamical systems. One-parameter normal forms for DIBs are then used in [K5,K8] to unfold different
cases of two-parameter sliding bifurcations of limit cycles in Filippov systems. In [K5] in [K7] I derived
normal forms for other cases of two-parameter DIBs of limit cycles in piecewise-smooth systems
(Filippov systems).

(d) My contribution to main results included in publications which make up the habilitation paper:

My contribution (in terms of percentage) to each of the articles, which have more than one author,
is indicated in the enclosed documents, and is conformed by the statements from the co-authors. My
main specialised contribution concerns DIBs of limit cycles in Filippov systems (it is Chapter 8 in
the monograph [K4]). In particular, my entire contribution (unless specified otherwise in terms of
percentage) includes:

• Theorem 1 - normal forms for one-parameter sliding bifurcations rederived for the monograph;

• Theorem 2 - normal form derivations for two-parameter degenerate crossing-sliding bifurcation;

• Theorem 3 - unfolding of the two-parameter grazing-sliding bifurcation of nonhyperbolic limit
cycles (50% contribution);

• Theorem 4 - unfolding of the two-parameter bifurcation of a simultaneous occurrence of a
grazing-sliding and an adding-sliding bifurcation;

• Theorems 5 i 6 - reduction of a three-dimensional Filippov flow to a one-dimensional mapping
with discontinuities; classification of a one-parameter grazing-sliding bifurcations leading to
multiple attractor bifurcations (40% contribution);

• Theorem 7 - the analysis of a novel Hopf-like bifurcation in a planar Filippov type system with
three zones and a symmetry.
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VI. A detailed description of the results which make up the habilitation paper as well
as other scientific results is presented in the following sections. Description of scientific
achievements which make up the habilitation paper: Sections 1-3. Description of other
scientific achievements: Section 4.

1 Introduction

On the macroscopic scale, models of systems characterised by an interaction of continuous and discrete
evolution - that is hybrid dynamical systems, or piecewise smooth dynamical systems (PWS) - abound
in everyday life. To give just a few examples: an aircraft, whose position evolves continuously in time
is controlled by microprocessors which operate on discrete inputs; similarly a power plant, a modern
car, or a train all are controlled by microprocessors. Another example from outside of the field of
engineering is growth and division of biological cells. Growth is a continuous process, but division is
a discrete transition. In the control and mechanical engineering literature, the modelling and control
design by means of systems with discontinuous nonlinearities has been used for already some decades,
see for example [7, 4, 9, 10, 6, 1, 2, 79].

To understand the dynamics of differentiable systems, e.g. vector fields or maps, a highly successful
tool, which is commonly used for such purpose, is numerical and analytical bifurcation analysis. Bi-
furcations, in the context of differentiable vector fields (smooth systems), give information on changes
in the structural stability of systems as functions of system parameters, which translates onto changes
in the number and stability of invariant sets, such as equilibrium points, limit cycles and chaotic at-
tractors, see for example [54, 83, 62]. Even planar piecewise linear systems with two zones present rich
dynamics, e.g. [46, 20], and so it comes as no surprise that much effort has been devoted to introduce
some framework to systematically describe and analyse state space transitions in piecewise-smooth
systems. It turns out that PWS systems, due to the presence of discontinuous nonlinearities, may
exhibit structural changes, under some parameter variations, which do not occur in smooth systems,
see for example [95, 11, 21, 18, 19, 17, 37, 99, 46, 33, 12, 13, 25, 98, 2, 26, 15, 20, 63, 64, 94, 51, 24, 29]
among other works. These structural changes have been termed as discontinuity induced bifurcations,
DIBs for short (see, for example [35, 34, 81] among other works). Discontinuity induced bifurcations
may lead to an abrupt change in a system’s behaviour. For instance, due to the so-called grazing-
sliding bifurcation an abrupt transition from a stable oscillatory motion to a robust chaotic attractor
may occur [KO2,KO3]. It was shown that a DIB may cause an emergence of multiple stable states
from a single attractor [12, 77], which incidence can occur only in hybrid systems. The state space
of systems of relevance to applications is, firstly, multidimensional [65, 100], and secondly, the struc-
ture of state space transitions may be understood better if two-parameter bifurcation diagrams are
obtained, e.g [71, 76, 91, 73, 97, 59].

The work which I present here, which forms the habilitation document, concerns the theory of local
one- and two-parameter DIBs in piecewise-smooth dynamical systems (PWS). It is important to point
out that there is no generally agreed definition of a bifurcation or a co-dimension of a bifurcation for
PWS systems. Hence, the term one- and two-parameter Discontinuity Induced Bifurcations will be
used which often, but not always, may lead to the loss of stability of an invariant set involved in a DIB.
For a definition of a DIB and different cases of one-parameter DIBs in planar Filippov systems, that is
systems with discontinuous vector fields, see for example [63]. In Sec. 2, I present the definitions which
spell out the different classes of nonsmooth systems as well as introduce the basic tools, the so-called
Zero time Discontinuity Mapping (ZDM) and Poincaré Section Discontinuity mapping (PDM), which
will be used to unfold one- and two-parameter DIBs of limit cycles in different classes of nonsmooth
systems.

In Section 3, where the results which are the subject of this habilitaion are presented, I start with
the presentation of one-parameter normal form maps for sliding bifurcations, which were first derived
in [KO1]. I rederived them using a different technique and presented in the monograph [K4]. These
normal forms are used in [K5,K7,K8] to unfold different cases of two-parameter sliding bifurcations
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of limit cycles in Filippov systems. The results presented in [K6] lay the foundations of the theory
for two-parameter DIBs of PWS systems out, which is related to the classification strategy for co-
dimension two bifurcations in smooth dynamical systems. Namely, we consider 1. a nondegenarcy
in normal form maps for one-parameter DIBs, 2. nonhyperbolicity of a limit cycle exhibiting so-
called grazing contact and 3. simultaneous occurrence of two independent grazing contacts. In [K6],
numerical examples representing each distinct type of a two-parameter DIB is shown. Except for one
scenario, the system models, which are presented, are models of mechanical oscillators. In [K7], we
present a methodology for unfolding two-parameter DIBs of nonhyperbolic limit cycles exhibiting the
so-called grazing contact (see Sec. 2). The results, spelled out in Theorem 3, on the existence of the
bifurcation curves emanating from the co-dimension-two point in a two-parameter space, are given.
The unfolding is then illustrated using a dry-friction oscillator model, which is an example of a Filippov
system, where a two-parameter DIB of type 2 is unfolded and the dynamics around a co-dimension-
two point, in a two-parameter space, is rigorously explained. The unfolding strategy presented in
[K7] may be used to unfold other cases of DIBs of type 2 in different classes of PWS systems. In
[K8], we present conditions for the four cases of two-parameter degenerate sliding bifurcations of limit
cycles in Filippov systems. We also uncover a two-parameter degenerate crossing-sliding bifurcation
in a model system, which is a Filippov type dry-friction oscillator model (however, other than the
one in [K7]). The theoretical unfolding of the two-parameter degenerate crossing-sliding bifurcation
is then carried out in [K5] by means of the ZDM mapping. The results are spelled out in Theorem
2. In [K5], we also present a theoretical unfolding of type 3 DIB of a simultaneous occurrence of
two one-parameter sliding bifurcations. The theoretical results are again illustrated by numerically
unfolding the dynamics around a co-dimension two point in two-parameter space in a Filippov type
system of relevance to applications in mechanical engineering. It is important to point out that the
framework for developing a theory of two-parameter DIBs, and the unfoldings which illustrate each
distinct type of a two-parameter DIB as presented in [K6], allows one to develop efficient numerical
schemes for two-parameter continuation of DIB curves, which is an important part of bifurcation
theory, e.g. [41, 32, 31, 52, 82].

Setting out the framework for two-parameter DIBs as presented here does not imply that the
theory of one-parameter DIBs is complete. This issue is taken up in [K5,K6,K7]. In particular, in
[K2,K3], we present the classifcation of the dynamics in 3D Filippov type flows around a one-parameter
grazing-sliding bifurcation. In particular, we show how one can reduce a 3D Filippov type flow to
a one-dimensional discontinuous map locally around a grazing limit cycle, and explain bifurcations
which lead to the creation of a multiple number of stable limit cycles emanating from a single limit
cycle. Such a bifurcation cannot occur in differentiable vector fields. A first example of a Filippov type
flow exhibiting this type of a grazing-sliding bifurcation is then constructed and shown in [K2]. The
results in [K2,K3] suggest new research directions. In particular, by means of the ZDM a reduction
of the system and the ensuing dynamics, locally about a bifurcating limit cycle, depends on both,
the system dimension and its structure at the bifurcation. It then follows that one could attempt to
classify DIBs from different classes of PWS systems having different dimensions depending on resulting
dynamics. In particular, one may ask a question of developing a unified theory of one-parameter DIBs
leading to multiple number of stable limit cycles born from one attractor.

Another question related to one-parameter DIBs, raised in [K1], concerns the type of perturbations
which may lead to a DIB. In particular, in [K1], we unfold the dynamics of a one-parameter DIB,
different from all other cases of DIBs considered in [K2-K8], in that in [K1], it is the perturbation to
the structure of the switching manifold which serves as a variation parameter. In so doing, I unfold a
novel class of a supercritical Hopf-like bifurcation in a 3-zone planar Filippov type system of relevance
to modelling in control engineering and macroscopic modelling of neromuscular control. Again, one
may ask a question whether there is a general theory of certain classes of PWS systems which imply
the same type of a supercritical Hopf-like bifurcation. In particular in [K1], I also show numerically
that the same type of a DIB takes place when a different perturbation such as an introduction of a time
delay in the switching function produces equivalent supercritical Hopf-like bifurcation. Interestingly,
these two qualitatively different types of perturbations lead to two different classes of PWS systems,
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but the dynamics observed under the perturbations appears equivalent. Hence, similarly as in the
former case, one may attempt to develop a unified theory of supercritical one-parameter Hopf-like
bifurcations in different classes of nonsmooth systems. For different types of Hopf-like bifurcations in
Filippov systems, see for example [66, 101, 76, 5].

2 Piecewise-smooth systems of interest

2.1 Basic definitions

Definition 1 A piecewise-smooth flow is given by a finite set of ODEs

ẋ = Fi(x, µ), for x ∈ Si, (1)

where ∪iSi = D ⊂ Rn and each Si has a non-empty interior. The intersection Σij := S̄i ∩ S̄j is either
an R(n−1) dimensional manifold included in the boundaries ∂Sj and ∂Si, or is the empty set. Each
vector field Fi is sufficiently smooth in both - state x and parameter µ, and it defines a corresponding
smooth flow, say Φi(x, t), within any open set Si. However, each flow Φi is well-defined in all of D.

A non-empty border between two regions Σij will be called a discontinuity set, discontinu-
ity boundary or, sometimes, a switching manifold. We suppose that each piece of Σij is of
codimension-one, i.e. it is an (n − 1)-dimensional smooth manifold (something locally diffeomorphic
to Rn−1) embedded within the n-dimensional phase space. Moreover, we demand that each such Σij
is itself piecewise-smooth. That is, it is composed of finitely many pieces that are as smooth as the
flow.

Definition 2 The degree of discontinuity at some point x in switching set Σij of a piecewise-
smooth ODE is the order of the first non-zero partial derivative with respect to t of the difference
between flows Φi(x, t)− Φj(x, t) evaluated at t = 0.

Now, consider an ODE locally to a single discontinuity set Σ12 that can be written as

ẋ =

{
F1(x, µ), x ∈ S1,
F2(x, µ), x ∈ S2,

(2)

where F1 generates flow Φ1 and F2 flow Φ2. We have

∂Φi(x, t)

∂t

∣∣∣∣
t=0

= Fi(x)

∂2Φi(x, t)

∂t2

∣∣∣∣
t=0

=
∂Fi
∂t

=
∂Fi
∂Φi

∂Φi
∂t

= Fi,xFi(x),

where subscript x means partial differentiation with respect to x. Similarly

∂3Φi(x, t)

∂t3

∣∣∣∣
t=0

= Fi,xxF
2
i + F 2

i,xFi,

etc. So, if vector fields F1 and F2 differ in an mth partial derivative with respect to state x, we find
that flows Φ1 and Φ2 differ in their (m+ 1)st partial derivative with respect to t.

Therefore if F1(x) 6= F2(x) we have the degree of discontinuity 1 at point x ∈ Σ12. Systems with
discontinuity degree 1 are said to be of Filippov type.

Definition 3 A discontinuity boundary Σij is said to be uniformly discontinuous in some domain
D if the degree of discontinuity of the system is the same for all points x ∈ Σij ∩D. Furthermore, we
say that the discontinuity is uniform with degree m if the first non-zero partial derivative of Fi−Fj
evaluated on Σij is of order m− 1. Furthermore the degree of discontinuity is 1 if Fi(x)− Fj(x) 6= 0
for x ∈ Σij ∩ D.
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2.2 Filippov systems

The case of systems with uniform degree of discontinuity 1 must be treated with great care since we
have to allow the possibility of sliding motion. In order to define sliding, it is useful to think of a
piecewise-smooth system local to a single discontinuity boundary between two regions defined by the
zero set of some smooth function, say H(x) = 0. Specifically, consider now an ODE (2) defined in
some region D ⊂ Rn, which is charcterised by a single discontinuity set, say Σ12 = Σ. That is, we
have

ẋ =

{
F1(x, µ), H(x, µ) > 0,
F2(x, µ), H(x, µ) < 0,

(3)

where F1 generates flow Φ1 and F2 flow Φ2; F1, F2 are sufficiently smooth vector functions, and H(x, µ)
is some smooth scalar function, which depend on the system’s state x ∈ Rn and parameter µ ∈ Rm.
Region D is split into two subspaces, S1 and S2, in which the dynamics is smooth and continuous.
We assume that the discontinuity boundary Σ, between S1 and S2, is a smooth hyperplane, so that

S1 := {x ∈ Rn : H(x, µ) > 0}, (4)

S2 := {x ∈ Rn : H(x, µ) < 0}, (5)

Σ := {x ∈ Rn : H(x, µ) = 0}. (6)

The resulting topology admits the possibility of evolution on Σ. That is, depending on the di-
rection of vector fields Fi (i = 1, 2) with respect to Σ, one may construct the system’s flow either
by concatenating the flow solutions (when the vector fields point in the same direction with respect
to Σ) or, in the case when the vector fields point in the opposite direction with respect to Σ, the
system’s evolution will take place on Σ. In the latter case, a definition of the vector field governing
the flow on Σ is required. Define the directional derivative of H(x) in some vector field F as HxF .
Then, ∀x ∈ Σ where the product (HxF1)(HxF2) > 0, the flow solution of Filippov system (3) switches
between vector fields F1 and F2 upon reaching Σ. On the other hand, ∀x ∈ Σ where the product
(HxF1)(HxF2) < 0, the systems’s flow follows evolution on Σ. There are different formalisms which
allow one to define the flow - termed as sliding flow - on Σ. The vector field generating the sliding
flow will be termed as sliding vector field. We will use so-called Filippov’s convex method to define
the sliding vector field. Filippov’s method takes a convex combination of the two vector fields

F12 = (1− α)F1 + αF2 (7)

with 0 ≤ α ≤ 1, where

α(x) = − HxF1

Hx(F2 − F1)
. (8)

Sometimes, when there is no ambiguity, we will write

Fij := Fs

to represent the sliding vector field.
Using α we may define a region on Σ where sliding is possible. Namely

Σ̂ := {x ∈ Σ : 0 < α(x) < 1}

defines the sliding region. We may define the boundaries of the sliding region as

∂Σ̂+ := {x ∈ Σ : α(x) = 1},

and
∂Σ̂− := {x ∈ Σ : α(x) = 0}.

We assume that on Σ̂∪∂Σ̂+∪∂Σ̂−, Hx(F2−F1) > 0, which implies the existence of so-called attracting
sliding. That is both vector fields, F1 and F2, for x in a sufficiently small neighbourhood of Σ̂ point
toward Σ.
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2.3 Hybrid systems

Definition 4 A piecewise-smooth hybrid system comprises a set of ODEs

ẋ = Fi(x, µ), if x ∈ Si, (9)

plus a set of reset maps
x 7→ Rij(x, µ), if x ∈ Σij := S̄i ∩ S̄j . (10)

Here ∪iSi = D ⊂ Rn and each Si has a non-empty interior. Each Σij is either an R(n−1)-dimensional
manifold included in the boundary ∂Sj and ∂Si, or is the empty set. Each Fi and Rij are assumed to
be smooth and well defined in open neighborhoods around Si and Σij respectively.

A special type of hybrid systems, in the context of mechanical engineering, is used to describe
so-called impact oscillators. In such models surfaces Σij act as hard constraints, so that the resets
map points in Σij back to itself.

Definition 5 An impacting hybrid system is a piecewise-smooth hybrid system for which Rij :
Σij → Σij, and the flow is constrained locally to lie on one side of the boundary, that is in Si = Si∪Σij.

We often refer to the reset map Rij in this context as being the impact law or impact rule. The
discontinuity boundaries Σij are referred to as impact surfaces and the event of a trajectory intersecting
Σij as an impacting event or just an impact.

2.4 Discontinuity map

Definition 6 The discontinuity map Q for the transverse crossing of a discontinuity set Σij in a
piecewise smooth flow (or hybrid system) is the extra mapping that the flow maps Φi and Φj must be
composed with in order to get a description of the piecewise smooth (hybrid) flow. Thus if Σ is crossed
in the sense of passing from region Si to Sj say, the correct flow map is Φj ◦ Q ◦ Φi. The Jacobian
derivative Qx of Q is called the Saltation matrix.

Example 1 Crossing a two-zone Filippov system outside the sliding set. For a trajectory in a Filippov
system where crossing of the switching manifold takes place outside of the sliding region, from region
S1 to S2, the saltation matrix is given by the expression

Qx = I +
(F2 − F1)Hx

HxF1
, (11)

where I is the identity matrix. This expression was first derived in [3].

Example 2 Crossing a two-zone Filippov system within the sliding set. Saltation matrices also apply
to trajectories of Filippov systems that undergo a transition into sliding. The saltation matrix for the
case of switching from S1 into sliding region Σ̂ is given by

I +
(F12 − F1)Hx

HxF1
,

where F12 is the sliding vector field defined by (7).
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Figure 1: A local illustration of the ZDM and PDM close to a grazing contact. In this figure the solid line
represents the actual flow of the hybrid system, and the dashed line the extended flow. The ZDM is the map
x1 7→ x4 and the PDM is the map x1 → x5.

2.5 Non-transversal (grazing) intersections

The discontinuity mappings in examples 1 and 2 were derived under the condition of tranversality,
namely that HxF1 6= 0. So-called grazing occurs when a trajectory becomes tangent to the disconti-
nuity surface Σ. This occurs precisely when HxF1 6= 0 is violated, that is when v = Hx(x∗)F1(x∗) = 0
(see later Definition 10).

We illustrate the situation close to a grazing for a general hybrid system in Fig. 1. In this figure,
we show a distinguished trajectory (which we suppose to be part of a periodic orbit) locally lying
entirely in S1. This trajectory we assume to graze with the discontinuity boundary Σ at the point x∗

at time t∗.
To construct the discontinuity mapping, in the case of grazing contact, we need to know the fate of

two different types of trajectories with initial conditions close to x∗. Some trajectories do not cross Σ
locally, for these, the discontinuity mapping is the identity. In contrast, the discontinuity mapping will
be nontrivial for the trajectory illustrated in Fig. 1 that passes through the point x0 close to Σ at time
t0, hits Σ at the point x2 at time t2 = t∗+ δ, is mapped to the point x3 by the map Φ2(R(x2), t3− t2)
and continues in S1 from this point. Note that we allow here for both the impacting hybrid system
case, in which Φ2 is the identity, or the piecewise smooth flow case, where R is the identity. In the
latter case, t3 − t2 is the time of flight of the trajectory until its second impact with Σ.

We describe two different ways of defining the nontrivial part of the discontinuity map. These are
constructed either, like the DM for transversal trajectories defined above, such that the total elapsed
time is zero — a so-called zero-time discontinuity mapping (ZDM) — or are defined with respect
to a local Poincaré section — a Poincaré-section discontinuity mapping (PDM). Our treatment is
inspired by the analysis of n-dimensional impacting systems by [45], which extends earlier results in
[84, 96, 75, 55]. Both these constructions allow to reformulate the problem of finding the local map
which encapsulates the effect of grazing contact on system trajectories, sufficiently close to the grazing
trajectory, using a suitably chosen variables which measure the clossness to grazing trajectory.

To explain the difference between the ZDM and the PDM, consider in more detail the trajectory
in Fig. 1 that passes through x0. It intersects Σ at x2, is mapped to x3 where it subsequently evolves
back to starting point x0. By extending the smooth vector field F1(x) defined in the region H(x) > 0
(which is the region above Σ in S1) to the region H(x) < 0 (so that the trajectories may be extened
below Σ ) we may continue the trajectory forward from x2 under the action of the flow map Φ1, or
equally backward from x3. As the point x0 is close to x∗, then the smooth trajectory carried forward
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from x2 under the action of Φ1 will intersect the Poincaré surface

ΠN = {x : v = Hx(x)F1(x) = 0}

at a point x1 close to x∗ = 0. Similarly, the backward continuation of the flow from x3 will intersect
the set ΠN at the point x5. The mapping that takes x1 to x5 is the Poincaré Discontinuity Mapping
(PDM). Such a reformulation of the problem allows us to use the Implicit Function Theorem to find
the functional form for a PDM which depends on the local properties of the vector fields with respect
to the switching surface Σ.

Definition 7 The Poincaré-section discontinuity mapping (PDM) near a grazing orbit is the
discontinuity mapping defined on a suitable surface ΠN transversal to the flow, which contains the
grazing set and intersects Σ transversally, that takes initial conditions on ΠN back to themselves.
There is no requirement that this map takes zero time.

The same trajectory starting from x2 can also be continued forward to x1 and then backward from
x3 for the same time as it takes to get from x2 to x1. Say that the time of flight from x2 to x1 under
the action of the flow Φ1 is δ. Then we flow from x3 using Φ1 by −δ until a point x4 is reached. We
then define the ZDM as the map from x0 to x4.

Definition 8 The zero-time discontinuity mapping (ZDM) near a grazing orbit is the discon-
tinuity mapping in a neighborhood of the grazing point, say x∗, which takes zero time. That is, when
this map is composed with the flow map of the non-impacting/non-switching system in order to define
a trajectory of the full system, the time taken is the same as for the flow map alone.

The zero time condition allows the ZDM to be incorporated into a natural way as part of the
calculation of a fixed time-T Poincaré map, say PS , sometimes called a stroboscopic map. For example,
for a grazing periodic orbit that is contained entirely within region S1, the stroboscopic map can be
written as

PS = P2oZDMoP1,

where P1 describes the evolution with flow Φ1 through time t1 and P2 describes the evolution with
flow Φ1 through time T − t1.

The PDM may be preferable to use as an analytical tool for studying behaviour of grazing limit
cycles in autonomous systems. In contrast, it is natural to apply the ZDM for T−periodically forced
nonautonomous ones.

The leading order terms of the ZDM and PDM, generically, have the same power, but the PDM
correction takes non-zero time.

To decribe the dynamics of limit cycles (periodic solutions) exhibiting grazing incidence, locally
about grazing, the ZDM or PDM map is composed with an affine map which describes the dynamics
of a grazing limit cycle ignoring the presence of grazing. Without loss of generality, we assume that
the grazing limit cycle is hyperbolic if grazing contact is ignored.

To simplify the presentation of the results in the following section, we will make use of operator
notation. For this purpose let us introduce the Lie derivative.

Definition 9 The Lie derivative is the total derivative of some smooth scalar function h along the
direction of the flow governed by some vector field f . Specifically, if f and g are smooth vector fields
and h is a smooth scalar function, then we have

Lfh(x) = ∂h
∂x
f(x),

LgLfh(x) =
∂(Lfh)
∂x

g(x),

LgLkfh(x) =
∂(Lk−1f h)

∂x
g(x).
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For example, using the already introduced notation, we have

Lfh(x) = hxf(x),

and
L2
fh(x) = (hxf(x))xf(x).

3 Description of the results

3.1 One- and two-parameter Discontinuity Induced Bifurcations

A bulk of the results, which we present here, concerns state space transitions which we will term as
Discontinuity Induced Bifurcations (DIBs for short). DIBs involve a non-trivial interaction between a
limit cycle and a switching manifold.

Let us consider a two-zone Filippov system. Let us suppose that there exists a limit cycle that
lives either in one of the subspaces S1 or S2, or is built of distinct segments generated by vector fields
F1, F2 and Fs. In the latter case the cycle includes switchings between S1, S2 and Σ̂. Further, let
us assume that the points at which switchings occur depend on some parameter µ. Variation of this
parameter may cause that an intersection point reaches one of the boundaries ∂Σ̂±. If the parameter
µ is varied further the intersection point might move onto Σ̂ (or outside of it). This scenario describes
a one parameter event. Consider some point x where the system switches between two vector fields.
Call the flow approaching the point of switching, say x, as the incoming flow, and the flow which
generates the trajectory after switching occurs as the outgoing flow. If at x either of the two vector
fields generating the outgoing or incoming flow is tangent to Σ then we say that the system exhibits
grazing contact at x.

Definition 10 If at some point x, one of the two vector fields which generate an incoming or an
outgoing flow is tangent to Σ, or ∂Σ̂± when the evolution containing the tangent point is on Σ, we then
say that at point x the Filippov system is characterised by the grazing contact with the discontinuity
set or with the boundary of the sliding region.

Definition 11 Suppose that there exists a hyperbolic limit cycle L(x, µ) in the Filippov system (3),
where µ ∈ R is a parameter and x is a point on the limit cycle. If for some µ∗ a limit cycle L∗ at
x∗ = x(µ∗) exhibits a single grazing contact with the boundary of the sliding region ∂Σ̂−, and the

µ-dependence on x∗ is nondegenerate, that is 〈dx
dµ
,Hx〉(x∗, µ∗) 6= 0 and 〈dx

dµ
, (HxF1)x〉(x∗, µ∗) 6= 0 ,

we say that the limit cycle undergoes a one-parameter Discontinuity Induced Bifurcation of a sliding
type, where 〈, 〉 denotes the dot product.

We should remark here that in phase space the dot product is not defined, but since the theory
presented here is local, we consider the dot product on the tangent space. Also, in all the definitions of
one and two parameter DIBs presented here, to ensure that µ is an appropriate unfolding parameter,
without loss of generality, we assume that in the local coordinates x∗ = 0.

3.1.1 Normal form maps for one-parameter sliding bifurcations

We start by giving analytical conditions which define each of the four one-parameter sliding bifurcation
scenarios, along with appropriate non-degeneracy assumptions. In all four cases, the critical trajectory
involved in the bifurcation event has a point of intersection with the boundary of the sliding region
∂Σ̂−. Suppose this point of intersection occurs at x = x∗(µ∗) (where µ is the bifurcation parameter),
then in all four cases we have the following defining conditions

H(x∗) = 0, Hx(x∗) 6= 0, (12)

11



α(x∗) = 0 (which implies Fs(x
∗) = F1(x∗) and LF1

H(x∗) = 0). (13)

The first condition (12) states that the point x∗ belongs to the switching manifold which is well
defined; whereas the second condition (13) states that x∗ is on the boundary of the sliding region
(which without loss of generality we assume to be ∂Σ̂−).

Now let us turn to non-degeneracy conditions for each of the four sliding bifurcations. The first is
that in a neighbourhood of x∗, the vector field F2 is not grazing and points towards Σ. That is

HxFd(x
∗) > 0, (14)

where F ∗d = F ∗2 − F ∗1 . Other considerations involve the tangency of the sliding flow with respect to

the boundary ∂Σ̂−.
The crossing-sliding and grazing-sliding cases require the sliding flow to evolve locally towards ∂Σ̂−

(see Fig. 2). Hence we require
∂α(Φs(x

∗, 0))

∂t

∣∣∣∣
t=0

< 0.

Where Φs is the flow operator corresponding to the sliding flow generated by the vector field Fs.
However, we have that Fs = F1 at x∗ by (13), hence Φs(x

∗, 0) = Φ1(x∗, 0). Moreover

∂α(Φ1(x∗, 0))

∂t
= αxF1(x∗) =: LF1α(x∗)

Therefore the sign of LF1
α(x∗) determines whether the boundary ∂Σ̂− is attracting or repelling

with respect to the sliding flow. Crossing-sliding and grazing-sliding will therefore require the non-
degeneracy condition

LF1α(x∗) < 0, (15)

whereas switching-sliding (top sketch in Fig. 3) requires

LF1
α(x∗) > 0, (16)

so that the sliding flow points away from the boundary.
Adding-sliding (bottom case in Fig. 3) is more subtle. Here we require an additional defining

condition that there is a point of tangency of the sliding flow with ∂Σ̂− at the bifurcation point. That
is

LF1α(x∗) = 0. (17)

Moreover, the sliding flow must reach a local minimum of α at the bifurcation point. Hence, we also
require

∂2α(Φs(x
∗, 0))

∂2t
> 0,

that is
L2
F1
α(x) := αxF1xF1 + αxxF

2
1 > 0. (18)

We can now state the following Theorem on the form of the ZDM at each of the four sliding bifurca-
tions. The ZDM in this case describes the correction that must be made to trajectories near grazing
trajectory b (see Fig. 2 and 3) in order to account for the acquisition (or loss) of an additional short
segment making up the limit cycle for µ sufficiently close to µ∗.

Theorem 1 Suppose a piecewise smooth system of the form (3) undergoes a sliding bifurcation at
point x∗, defined by the conditions (12) and (13) under the nondegeneracy assumption (14). Then we
have the following four cases:

12



Figure 2: A schematic representation of the crossing-sliding (top) and grazing-sliding (bottom) bifurcations.

crossing-sliding; under the additional nondegeneracy condition (15) the ZDM for trajectories start-
ing in a sufficiently small neighbourhood of x∗ may be written as

x 7→

 x if LF1H(x) ≤ 0,

x+ (LF1
H(x))2

F2(x)− F1(x)
2LF2

H(x)L2
F1
H(x)

+O((x− x∗)3) if LF1
H(x) > 0; (19)

grazing-sliding; also under the additional non-degeneracy condition (15) the ZDM for trajectories
starting in a sufficiently small neighbourhood of x∗ may be written as

x 7→

{
x if H(x) ≥ 0,

x− H(x)(F2(x)− F1(x))
LF2

H(x)
+O((x− x∗)3/2) if H(x) < 0;

(20)

switching-sliding; under the additional non-degeneracy assumption (16), the ZDM for trajectories
starting in a sufficiently small neighbourhood of x∗ may be written as

x 7→


x if LF1H(x) ≤ 0,

x+ 2
3

(LF1
H(x))3

(LF2
H(x))2(L2

F1
H(x))2

Q+O((x− x∗)4) if LF1
H(x) > 0,

(21)

where
Q = LF2

H(x)(F1xFd − FdxF1)− L(F1xFd−FdxF1)H(x)Fd,

and Fd = F2 − F1;

adding-sliding; under the additional defining conditino (17) and the non-dengeneracy assumption
(18), the ZDM for trajectories starting on Σ̂ in a sufficiently small neighbourhood of x∗ may be
written as

x 7→


x if LF1H(x) ≥ 0,

x− 9
2

(LF1H(x))2

(LF2H(x))2L3
F1
H(x)

Q+O((x− x∗)5/2) if LF1
H(x) < 0,

(22)
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Figure 3: A schematic representation of the switching-sliding (top) and adding-sliding (bottom) bifurcations.

with Q defined as above.

The dynamics of a Filippov system, locally about a limit cycle undergoing a one-parameter sliding
bifurcation, may be understood by investigating the dynamics of the related piecewise-smooth ZDM.
The type of discontinuity for corresponding PDMs is the same as for the given ZDMs. The functional
forms for the PDM for one-parameter sliding bifurcations have been also derived and are presented
together with the proofs in [K4]. Later we will show how one can use the ZDMs presented here to
unfold two parameter sliding bifurcations in Filippov systems. We will also present the application of
the ZDMs/PDMs as a tool for the classification of the dynamics near a sliding bifurcation.

3.2 Two-parameter Discontinuity Induced Bifurcations of limit cycles

3.2.1 Classification

In [K6], we propose that the possible two parameter Discontinuity Induced Bifurcatios of limit cycles
of periodic orbits in piecewise-smooth flows can be put into one of the following three types:

Type I Degenerate DIBs; i.e. there is a degeneracy of one of the analytical conditions determining
the properties of the vector fields local to the grazing event. This is likely to influence the leading
order term of the normal form map derived via the discontinuity mapping.

Type II DIBs of non-hyperbolic cycles, i.e. bifurcations where the linear part of the PWS
normal form map capturing the dynamics of the limit cycle undergoing the bifurcation contains
a degeneracy; that is, the cycle is non-hyperbolic. This scenario can be seen as a combination
of a smooth and a non-smooth bifurcation occurring at the same parameter values;

Type III Simultaneous occurrence of two one parameter DIBs at two different points along
the bifurcating orbit.
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3.2.2 Two-parameter degenerate crossing-sliding bifurcation. DIB of Type I

We will first introduce two parameter sliding bifurcations which arise as a result of degeneracy of
conditions (15), or (16) or (18). Thus, we consider additional degeneracy of the outgoing flow only
as this is the flow which exhibits grazing contact in the case of sliding bifurcations. In the case when
the incoming flow is generated by the vector fields F1 or Fs the incoming and outgoing flows have the
same properties with respect to Σ and ∂Σ̂ at the bifurcation point. The results which we present here
are expounded in [K3,K4].

First of the degenerate two-parameter sliding bifurcations which we consider is the degenerate
crossing-sliding scenario. Degeneracy of the outgoing flow Φ1 in this case implies additional tangency
to the the boundary of the sliding region. We also expect the curvature of the vector field such that
the flow Φ1 leaves the switching manifold. Thus, we arrive at the following set of analytical conditions.
Obviously conditions (12) and (13) must hold in this case as well.

Additional tangency of the outgoing flow is expressed by the conidtion

∂(α(Φ1(x, t)))

∂t

∣∣∣∣
t=0

= αxF1 = 0.

Expressing condition above in terms of Hx and F1 yields

∂2(H(Φ1(x, t)))

∂t2

∣∣∣∣
t=0

= HxF1xF1 = 0. (23)

Non-degeneracy condition for the degenerate crossing-sliding Since we require the trajec-
tory to leave the switching manifold, the vector field F1 should exhibit local maximum with respect
to ∂Σ̂−. Thus, the non-degeneracy condition can be written as

∂2(α(Φ1(x, t)))

∂t2

∣∣∣∣
t=0

= αxF1xF1 < 0.

Expressing the condition above in terms of Hx, F1 gives

∂3(α(H(Φ1(x, t)))

∂t3

∣∣∣∣
t=0

= Hx(F1x)2F1 > 0. (24)

Definition 12 Suppose that there exists a hyperbolic limit cycle L(x, µ) in the Filippov system (3),
where µ = (µ1, µ2) ∈ R2 is a parameter and x is a point on the limit cycle. If for some µ∗ a
limit cycle L∗ at x∗ = x(µ∗) exhibits a single degenerate grazing contact with the boundary of the

sliding region ∂Σ̂−, and the µ-dependence on x∗ is nondegenerate, that is 〈 ∂x
∂µi

, Hx〉(x∗, µ∗) 6= 0,

〈 ∂x
∂µi

, (HxF1)x〉(x∗, µ∗) 6= 0 for i = 1, 2, and ∂x
∂µ1

(x∗, µ∗) and ∂x
∂µ2

(x∗, µ∗) are linearly independent,

we say that the limit cycle undergoes a two-parameter degenerate Discontinuity Induced Bifurcation
of a sliding type.

Theorem 2 Assuming that a Filippov system (3) exhibits a two-parameter degenerate crossing-sliding
bifurcation and so it satisfies the defining conditions (12) and (13), the condition (23) for the degen-
erate grazing contact and the non-degeneracy condition (24), a local normal form map which captures
the dynamics of the system in a sufficiently small neighbourhood of the co-dimension two point, to
leading order, has the form:

ZDM(x, y, z) =


x for Vmin ≥ 0, qmin ≥ 0,

x− z3 2
LFd

H(x)L3
F1
H(x)

Fd + z3O(z) for Vmin < 0, qmin ≤ 0,

x− 3y2
L2
F1
H(x)

L3
F1
H(x)LFd

H(x)
Fd + y2O(y) for Vmin > 0, qmin < 0,

(25)

15



where

q(x, t) =
H(φ1(x, t))−H(x)

t

and
y2 + qmin = 0;

qmin denotes a minimum value of the function q attained along a trajectory generated by the flow φ1
starting at some x. In our case q is a small quantity. The variable z is given by

z2 + Vmin = 0,

where Vmin = LF1
H(x) on

{x ∈ Σ : LFs
LF1

H(x) = 0}.

We will elucidate the effect of the ZDM on the existence and stability of the critical limit cycle
exhibiting a degenrate crossing sliding contact at x∗(µ∗). We want to consider the existence and
stability ∀(x, µ) in a sufficiently small neighbourhood of x∗(µ∗). Let us denote by

v = LF1
H(x), a = L2

F1
H(x) and c = L3

F1
H(x),

where v and a are small quantities and c = O(1), ∀(x, µ) in some sufficiently small neighbourhood
of x∗(µ∗). We also use the O symbol to denote all of the higher order terms starting with the order
indicated by the variable in the bracket. In the case of several variables, where the products of small
quantities occur, we alternatively specify the order of the next term (and all of the higher order terms)
in the expression using O(ε) symbol.

Consider now Fig. 4. In the figure T0 refers to the part of the critical cycle that exhibits the
degenerate contact with the boundary of the sliding region ∂Σ̂−. The trajectories that are rooted in
Σ, in a sufficiently small neighbourhood of x∗, in the region labelled as R1 in the figure, do not interact
with the sliding region (see trajectory T1), and thus no correction is applied to these trajectories by the
ZDM. The Implicit Function Theorem guarantees the existence and the stability type corresponding
to that of the degenerate cycle for a limit cycle rooted in R1 in a sufficiently small neighbourhood of
the crossing sliding cycle.

Trajectories that reach the region labelled as R3 in the figure (cf. T3) follow the sliding flow for
some small time, say s, and then leave the switching surface. For these trajectories the correction
term of the ZDM map is of O(z3). Since, z = O(

√
a) and a = O(ε) in R2, it follows by the Impicit

Function Theorem that in a sufficiently small neighbourhood of the crossing-sliding cycle, there exists
a limit cyle rooted in R3 with the stability corresponding to that of the degenerate cycle for some µ
sufficiently close to µ∗.

Finally, the trajectories that reach the regione labelled as R2 in the figure (cf. T2) first follow the
flow in G1 for some small time, say t, and then hit the sliding region and flow in Σ̂ for some time,
to finally leave the switching manifold. This is the most sutble correction of the ZDM. Although
the ZDM correction is of the linear order it is bounded by O(ε2) correction term. The details are
explained in [K5]. Hence, it follows by the Implicit Function Theorem, that in a sufficiently small
neighbourhood of the crossing-sliding cycle, there existsts a limit cyle rooted in R2 with the stability
corresponding to that of the degenerate cycle for some µ sufficiently close to µ∗.

The analysis presented here was used in [K5] to unfold the dynamics of a dry-friction oscillator
model which was shown to exhibit a two-parameter degenerate crossing-sliding bifurcation. Analytical
derivations of two-parameter bifurcation curves with the focus on analysing two-parameter sliding
bifurcations of the same dry-friction oscillator model as in [K5] were undertaken in[71].

The unfolding of the four different degenerate two-parameter sliding bifurcations of limit cycles al-
lows one to develop numerical continuation techniques with appropriate branch switchings as discussed
in [K5].
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Figure 4: Phase space topology around the codimension-two degenerate crossing-sliding point (point labelled
A in the figure). Trajectory labelled as T0 denotes the part of the critical limit cycle that interacts with
the boundary of the sliding set in the two-parameter degenerate crossing-sliding scenario. Small parameter
perturbations result in the existance of limit cycles rooted in regions R1, R2 or R3. This is schematically
depicted by trajectories T1, T2 and T3 (rooted correspondingly in R1, R2 and R3) which differ from T0 by the
number of segments which make up the perturbed limit cycle.

3.2.3 Two parameter DIB of non-hyperbolic cycle. DIB of Type II

We shall now consider a general Filippov system with two zones, that for a parameter value µ∗ has a
grazing orbit of period T ∗ > 0 and where H > 0 along the cycle except at the grazing point x∗.

Define the flow of the vector field F1 to be φ1(x, t, µ), that is

φ1t(x, t, µ) = F1(φ1(x, t, µ), µ) (26)

φ1(x, 0, µ) = x. (27)

By the above we have

φ1(x∗, T ∗, µ∗) = x∗ (28)

H(x∗, µ∗) = 0 (29)

LF1(H)(x∗, µ∗) = 0 (30)

L2
F1

(H)(x∗, µ∗) > 0 (31)

Define the local projection mapping P (x, µ) that maps x the shortest way along a trajectory of F1

into the surface given by LF1(H) = 0. We study the dynamics of the system close to the grazing orbit
through the Poincaré like mapping

PM(x, µ) =

{
P (φ1(x, T ∗, µ), µ) when H(P (φ1(x, T ∗, µ), µ), µ) ≥ 0

g(P (φ1(x, T ∗, µ), µ), µ) when H(P (φ1(x, T ∗, µ), µ), µ) ≤ 0.
(32)

For trajectories that do not involve sliding, the first expression gives the regular Poincaré mapping.
For trajectories involving sliding, the second expression corrects for the presence of sliding through
the zero-time discontinuity mapping given by equation (20). However, for our purposes, we define the
non-identity part of the ZDM for one-parameter grazing-sliding here in the form

g(x, µ) = x+ β(x, µ, y)y2, (33)
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where y =
√
−H(x, µ) and β, H are smooth functions of their arguments. In this form we have

the exact expression for the non-identity part of the ZDM and the leading order term of β(x, µ, y)y2

expanded in x about (x∗, µ∗) is exactely the expression given in (20).
Note that the second expression for PM does not necessarily map points into the section LF1(H) =

0, so PM is not the Poincaré mapping using this section. However, it is locally equivalent to any
Poincaré mapping using a section that does not pass through the grazing point, through a smooth
change of coordinates.

Stability properties of the grazing cycle Let us first note that the cycle of period T ∗ at the
grazing point can be viewed as a cycle that does not contain sliding segments or as a cycle of period
T ∗ that contains a zero length sliding segment (as each graze may or not be regarded as sliding, it may
of course as well be regarded as a cycle of period nT ∗ with m zero-length sliding segments in some
given pattern of sliding/non-sliding). In the former case the linear stability properties of the cycle can
be determined by solving the variational equations. In the later the linear stability can be determined
by combining the variational equations with the discontinuity mapping techniques. In other words,
the stability of these orbits can be determined by considering the limits leading to grazing contact.
Both these limits which determine the stability of grazing cycles without and with zero length sliding
are well-defined but different. (Note that we are only discussing the stability of these limit orbits, not
that of the grazing orbit itself, which is a more involved problem.)

To be more specific, we observe that x∗ is fixed by all of φ1, P , and g. The Jacobians of the
mappings are (as will be shown below)

φ1x(x∗, T ∗, µ∗) = J∗ (34)

Px(x∗, µ∗) = I − F ∗V ∗

V ∗F ∗
(35)

gx(x∗, µ∗) = I −B∗C∗, (36)

where

F ∗ = F1(x∗, µ∗) (37)

V ∗ = LF1
(H)x(x∗, µ∗) (38)

B∗ =
Fd(x

∗, µ∗)

LFd
(H)(x∗, µ∗)

(39)

C∗ = Hx(x∗, µ∗). (40)

When viewed as a cycle without sliding, we have that the linear stability of the cycle is given by

A∗ = (I − (F ∗V ∗)/(V ∗F ∗))J∗ (41)

(apart from the trivial eigenvalue 0). When viewed as a cycle with a zero-length sliding we have the
linear stability determined by the non-trivial eigenvalues of

A∗s = (I −B∗C∗)A∗. (42)

If, while following the branch of the grazing orbits in two-parameter space, we monitor the eigen-
values of A∗, and an eigenvalue lies on the unit circle we come across a two parameter grazing-sliding
event. If, in turn, we monitor the eigenvalues of A∗s, and we detect that it is characterised by an
eigenvalue lying on the unit circle we again encounter a different type of a two parameter event.

In [K7], we unfolded a two parameter grazing-sliding bifurcation in the case where one of the
eigenvalues of A∗s was equal to 1, but the eigenvalues of A∗ were not.
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Existence of limit cycles about the co-dimension two point First consider a branch of non-
sliding periodic orbits emanating from the grazing orbit. All points on an orbit return if we integrate
the vector field F1 for the period time T̄ . To pick out a particular point on an orbit, we pick the point
x̄ where the function H attains its minimum along the orbit. We should also require this minimum
to be non-negative, if it is to correspond to a real orbit of the system.

The equations for this fixed point are

LF1(H)(x̄, µ) = 0 (43)

x̄− φ1(x̄, T̄ , µ) = 0. (44)

At the codimension-two point, when µ = µ∗ we know that x̄ = x∗, T̄ = T ∗ is a solution, and if the
matrix

L∗ =

(
V ∗ 0

I − J∗ −F ∗
)
, (45)

where

J∗ = φ1x(x∗, T ∗, µ∗) (46)

F ∗ = φ1t(x
∗, T ∗, µ∗) = F1(x∗, µ∗) (47)

V ∗ = LF1(H)x(x∗, µ∗), (48)

is non-singular, the implicit functions theorem defines x̄(µ) and T̄ (µ) uniquely for µ near µ∗. The
determinant of this matrix is

det(L∗) = V ∗F ∗ det(I −A∗) (49)

where

A∗ = (I − F ∗V ∗

V ∗F ∗
)J∗ (50)

V ∗F ∗ = L2
F1

(H)(x∗, µ∗) > 0. (51)

Since we have assumed that the grazing orbit, when viewed as non-sliding, does not have an eigenvalue
equal to 1, we find that L∗ is non-singular. Defining

ν0(µ) = H(x̄(µ), µ) (52)

it is clear that x̄ corresponds to a unique non-sliding orbit of period one, if and only if ν0 > 0, but
the function x̄(µ) is nevertheless well defined and smooth for all µ close to µ∗.

Note that A and J have the same eigenvectors, and the same eigenvalues except that the trivial
eigenvalue 1 of J is changed to a trivial eigenvalue 0 of A.

The equations for a branch of sliding orbits of period one emanating from the grazing orbit are

LF1
(H)(x′, µ) = 0 (53)

x′ − φ1(x′′, T ′′, µ) = 0 (54)

x′′ − x′ − β(x′, µ, y, 0)y2 = 0 (55)

y2 +H(x′, µ) = 0. (56)

Disregarding (56) for a moment, and viewing y as an independent variable, we find that x′ = x′′ = x̄,
T ′′ = T̄ is a solution when y = 0 for all µ close to µ∗, and under the same conditions as for the
existence of x̄(µ) we find that x′(µ, y) is a well defined function with

x′(µ, y) = x̄(µ) +
[
Ā(I − Ā)−1

(
B̄ + yB̄1

)
+O(y2)

]
y2, (57)

19



where

Ā(µ) =

(
I − F̄ V̄

V̄ F̄

)
J̄ (58)

J̄(µ) = φ1x(x̄(µ), T̄ (µ), µ) (59)

F̄ (µ) = F1(x̄(µ), µ) (60)

V̄ (µ) = LF1
(H)x(x̄(µ), µ) (61)

B̄(µ) = β(x̄(µ), µ, 0, 0) (62)

B̄1(µ) = βy(x̄(µ), µ, 0, 0) (63)

C̄(µ) = Hx(x̄(µ), µ). (64)

Substituting this into (56) and expanding in y gives

ν0(µ) + ν2(µ)y2 + y3 (ν3(µ) +O(y)) = 0 (65)

y ≥ 0. (66)

where we have introduced

ν2(µ) = 1 + C̄Ā(I − Ā)−1B̄, (67)

ν3(µ) = C̄Ā(I − Ā)−1B̄1. (68)

(69)

Note that at the co-dimension two point µ∗, ν0(µ∗) = ν2(µ∗) = 0 but we will assume ν3(µ∗) 6= 0.
Further we will assume that the µ parameter dependence is non-degenerate, that is ν0µ(µ∗) and
ν2µ(µ∗) are linearly independent.

Theorem 3 Let µ = (ν0, ν2). The limits ν0 → 0 and y → 0 give the grazing-sliding branch in the
two-parameter space ∀µ in a sufficiently small neighbourhood of µ∗. About µ∗ there is a curve of fold
bifurcations given by the expression

ν0(µ) = ν2(µ)3
(
− 4

27ν3(µ)2
+O(ν2)

)
(70)

ν2(µ)

ν3(µ)
< 0, (71)

which is one-sided, and cubically tangent to the grazing curve.

We note that it makes sense to compare ν0 for a non-sliding orbit with −y2 for a sliding orbit,
as they both measure the minimum value of H along the incoming trajectory. Calling this quantity
Hmin, we find from (52) and (65) that

Hmin(sliding)

Hmin(non sliding)
=

1

ν2
(72)

in the limit as ν0 → 0 whenever ν2 6= 0. Since Hmin must be positive for a non-sliding orbit and
negative for a sliding, a positive value of ν2 means that the non-sliding orbit exists for ν0 > 0 and the
sliding for ν0 < 0, whereas a negative value of ν2 means that both orbits exists for ν0 > 0 and not for
ν0 < 0.

The condition for a saddle-node bifurcation on the sliding branch is that (65) should have a double
root y > 0. This means

2ν2(µ) + 3y (ν3(µ) +O(y)) = 0. (73)

Eliminating y from (65) and (73) gives the fold curve in parameter space.
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The above unfolding was presented in [K7]. In this work, we applied the analytical unfolding
to explain the dynamics of a dry-friction oscillator model exhibiting a two-parameter DIB discussed
here. The unfolding allows for numerical continuation of limit cycle solutions in two-parameter space
of Filippov systems of relevance to applications, which was also shown in [K7] using the dry-friction os-
cillator model. Other cases of unfoldings of two-parameter DIBs of limit cycles of type 2 in nonsmooth
systems may be found, for example, in [22, 59, 93].

3.2.4 DIB of Type III

In the current section, we will discuss another type of two-parameter sliding bifurcations, one of which
was unfolded in [K5]. In particular, we will present an unfolding of a two-parameter sliding bifurcation
scenario of limit cycles which is characterised by the occurrence of two independent simultaneous one
parameter sliding bifurcations at two distinct points along a limit cycle.

Consider a limit cycle in Filippov system (3) which at some parameter µ = µ∗ = (µ∗1, µ
∗
2) ∈ R2

exhibits two independent grazing contacts at x∗1 and x∗2, and such that x∗1 6= x∗2. We can now introduce
the following definition.

Definition 13 Suppose that there exists a hyperbolic limit cycle L(x1, x2, µ) in the Filippov system (3),
where µ = (µ1, µ2) ∈ R2 is a parameter and xi (i = 1, 2) are points on the limit cycle such that x1 6= x2.
If for some µ∗ a limit cycle L∗ at x∗1 = x1(µ∗) and x∗2 = x2(µ∗) exhibits two isolated grazing contacts
with the boundary of the sliding region ∂Σ̂−, and the µ dependence on x∗i is nondegenerate, that is

〈∂x1
∂µ1

, Hx〉(x∗1, µ∗) 6= 0, 〈∂x1
∂µ1

, (HxF1)x〉(x∗1, µ∗) 6= 0, 〈∂x2
∂µ2

, Hx〉(x∗2, µ∗) 6= 0, 〈∂x2
∂µ2

, (HxF1)x〉(x∗2, µ∗) 6=

0 , and ∂x
∂µ1

(x∗, µ∗) and ∂x
∂µ2

(x∗, µ∗) are linearly independent, we say that the limit cycle undergoes

a two-parameter Discontinuity Induced Bifurcation of simultaneous sliding type.

To describe the dynamics of the system ∀µ in a sufficiently small neighbourhood of µ∗ one may
use the ZDMs/PDMs for one-parameter sliding bifurcations. Let us suppose that the two-parameter
DIB we are considering is that of a simultaneous occurrence of a grazing-sliding and an adding-sliding
bifurcation as this is the cases unfolded in [K5]. Let us now choose a Poincaré section, say Π, that
is transversal to the vector field generating the critical cycle. In particular, for the purposes of the
analysis, we choose Π such that it is transversal to the limit cycle at either of the two contact points
x∗i (i = 1, 2).

We define Π, ∀x, in a sufficiently small neighbourhood of x∗1 as the zero level set of HxF1(x, µ) = 0,
where we assume x∗1 to be the grazing contact point of one parameter grazing-sliding bifurcation.

Suppose now that x̄ ∈ Π is a periodic point of a limit cycle that exists in a sufficiently small
neighbourhood of the periodic point of the critical cycle x∗1. Then x̄ satisfies

x̄ = f2 ◦ as ◦ f1 ◦ gs(x̄, µ), (74)

where gs(x, µ) and as(x, µ) are the zero-time discontinuity mappings for the GS and the AS bifurca-
tions respectively (see eqs. (20) and (22)), whereas f1 and f2 are some smooth mappings that describe
the dynamics along the segments of trajectory between the points of contact of the limit cycle with
the boundaries of the sliding region ∂Σ̂±.

Note that the effect of the zero time correction due to the AS is contained in higher order terms
and hence fT = f2 ◦ as ◦ f1 is a C1 differentiable mapping. On the other hand, gs is piecewise linear
to leading order. This implies that it is the grazing-sliding bifurcation which is detrimental to system
dynamics. Obviously the critical limit cycle has to satisfy the conditions for the grazing-sliding and
adding-sliding bifurcations, respectively, at x∗1 and x∗2.

Existence of limit cycles around the codimension-two point We can now consider a branch
of orbits that emanate from the critical cycle at the codimension-two point. We first note that a
cycle at grazing can be viewed as a cycle that either contains a zero-length sliding segment or does
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not. Since the gs map is piecewise linear the Floquet multipliers of the critical cycle have distinct
values depending if we consider the critical cycle as characterised by a zero-length sliding segment or
not. We assume, without loss of generality, that the Floquet multipliers of the critical cycle do not
lie on the unit circle of the complex plane, regardless whether we consider the cycle as containing the
zero-length sliding segments or not. Under such assumption, a continuous parameter variation leads
to the creation of cycles with and without ‘short’ sliding segments. Let us first consider the existence
of the family of cycles which do not contain short sliding segments. Without loss of generality, we
assume for these cycles the periodic point x̄ ∈ Π to be such that H(x̄, µ) > 0.

Equations for the fixed point are

HxF1(x̄, µ) = 0, (75)

x̄− fT (x̄, µ) = 0. (76)

Note that for the cycles which do not acquire a sliding portion the gs map is the identity map. If, at
the codimension-two point, where (x̄, µ) = (x∗, µ∗) is a solution of (75) and (76), the matrix

L∗ =

(
V ∗ 0

I − J∗ −F ∗
)

(77)

is non-singular, the implicit function theorem defines x̄(µ) uniquely for all µ near µ∗. The determinant
of the matrix L∗ is non-singular provided that fT x does not have any multipliers on the unit circle
(which is our assumption). Let us define ν0(µ) = H(x̄(µ), µ). From our definition ν0 > 0 corresponds
to a unique orbit with no short sliding segments that emanate from the codimension-two point.

To obtain equations for a branch of sliding orbits of period-one (that is characterised by one
iteration of fT ◦ gs) emanating from the critical orbit we have to include the effect of the gs(x, µ)
map. This yields two additional equations. Therefore, we have that the equations for a branch of
these orbits are

HxF1(x′, µ) = 0, (78)

x′ − fT (x′′, µ) = 0, (79)

x′′ − b(x′, µ, y)y2 = 0, (80)

y2 +H(x′, µ) = 0, (81)

where b denotes the correction terms of all orders of the discontinuity map (20). From (78)–(81) and
under the same condition as for the existence of x̄(µ) we find that x′ = x′′ = x̄ is the solution when
y = 0 for all µ close to µ∗. From the linearisation of (78)–(80), we find that

x′(µ, y) = x̄(µ) + Ā(I − Ā)−1B̄y2 +O(y3), (82)

where

Ā(µ) =

(
I − F̄ P̄

P̄ F̄

)
(fT )x, B̄ = b(x̄(µ), µ, 0), C̄(µ) = Hx(x̄(µ), µ).

We note here that B̄ is the leading order term of the ZDM given in (20). Expanding (81) in y finally
gives

ν0(µ) + ν2(µ)y2 +O(y3) = 0, (83)

with ν2 = 1 + C̄Ā(I − Ā)−1B̄.

Grazing-sliding and adding-sliding branches We may treat ν0 and ν2 as unfolding parameters
and determine the character of the adding-sliding and the grazing-sliding curves in ν0 and ν2 two-
parameter space.
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Theorem 4 Let µ = (ν0, ν2). The limits ν0 → 0 and y → 0 give the grazing-sliding branch in the
two-parameter space ∀µ in a sufficiently small neighbourhood of µ∗. If ν2 > 0 then the adding-sliding
curve, existing ∀µ in a sufficiently small neighbourhood of µ∗, crosses the grazing-sliding branch at
x∗. On the other hand, if ν2 < 0, two branches of adding-sliding emanate from the co-dimension two
point and lie on the same side of the grazing-sliding curve in two-parameter space, in which case one
of the two limit cycles exsiting in the neighbourhood of (x∗, µ∗) must be unstable.

For further details we refer to [K2,K4]. The above unfolding is further explained below.
Grazing-sliding occurs when ν0 → 0 for orbits with no short sliding segments or when y → 0 for

orbits with short sliding segments. Both these limits give the same grazing-sliding (GS) branch in the
two-parameter space. From our discussion we determined that from the codimension-two point at least
two cycles emanate. Since both these cycle at the codimension-two point exhibit the adding-sliding
contact by the continuity argument these cycles must still exhibit the AS contact for ν0 and ν2 in
some neighbourhood of ν0 = 0 and ν2 = ν∗2 , where ‘∗’ denotes the value of ν2 at the codimension-two
point. If both of these cycles exist on one side of the grazing-sliding curve in the two-parameter space
then the adding-sliding (AS) curves terminate at the codimension-two point. On the other hand if
the two orbits exist on either side of the grazing curve then the AS curves that emanate from the
codimension-two point lie on the opposite sides of the grazing curve. In both cases, if we trace a curve
of the AS bifurcations at the codimension-two point the AS curve exhibits a corner type singularity or
we might say that one branch of the AS terminates and we switch continuously to another AS branch.

From (83) we have that if ν2 > 0 then ν0 must be negative for the orbit with the short sliding
segment (note that the orbit with no short sliding segments by the definition exists only for positive
values of ν0). Then it follows that the curves of the adding-sliding bifurcations lie on either side of the
curve of the grazing-sliding bifurcations in the two-parameter space. On the other hand, if ν2 < 0 then
ν0 must be positive for the orbit with the short sliding segment and hence the cycles that emanate
from the grazing curve lie on one side of the grazing-sliding curve. It can be further shown that if
ν2 < 0 one of the two orbits that emanate from the codimension-two point must be unstable.

We can further determine the dynamics around the codimension-two point by inspecting the eigen-
values of A∗ and (I−B∗C∗)A∗. If all the eigenvalues of both matrices and matrix products lie within
the unit circle then the two aforementioned limit cycles are stable for all ν0 and ν2 in a sufficiently
small neighbourhood of ν0 = 0 and ν∗2 , which is the case encountered and unfolded in a dry-friction
oscillator model in [K5].

3.2.5 Discussion on classification and unfolding of two-parameter DIBs

From the results presented and discussed in Sec. 3.2, it follows that the classification and unfolding
of two- parameter DIBs of limit cycles in piecewise smooth systems allows one to determine the
existence of bifurcation curves which emanate from a co-dimension two point, and classify the dynamics
related to the critical limit cycles under crossing of these bifurcation curves in a sufficiently small
neighbourhood of the co-dimension two point in the parameter space. However, we should note
here two facts. Firstly, there is no theory which allows one to determine all the bifurcations curves
which emanate from a particular co-dimension two point in general n−dimensional PWS systems.
Secondly, the classification of the dynamics will depend on the dimension of a particular system under
consideration. So it follows that the unfoldings discussed here hold for general n-dimensional Filippov
systems, but the full dynamics will depend on the dimension of a particular system. We should also
note that in the case of systems of relevance to applications, often, a given system violates some
genericity assumptions. The classiffication startegy and methodology discussed here, even though
applied to Filippov systems, may be applied to other classes of PWS systems. Unfoldings of other
types of two-parameter DIBs in PWS systems are presented in [90, 88, 44, 53].

We will present now the results of numerical unfolding, shown in [K6], of an impact oscillator
of two-parameter DIBs of type II. That is, we consider an example of a system with the degree of
discontinuity 0.
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Figure 5: Two parameter bifurcation diagram around the co-dimension two grazing point at which one of the
Floquet multipliers of the bifurcating cycle is λ = 1 (star). Curve of grazing periodic orbits, with λ < 1 on
“a” and λ > 1 on “b”. Curve of λ = 1 for periodic orbit with no low velocity impacts on “c”.

Example: Forced oscillations in an impacting system Consider a model of a periodically
forced impact oscillator

ẋ1 = v

ẋ2 = − 1

w2
x1 −

2d

w
x2 + a

([
1

w2
− 1

]
cos(x3)− 2d

w
sin(x3)

)
ẋ3 = 1

(84)

with impact at x1 = −1 and with an impact law

x+2 = −rx−2 . (85)

Here x1 is the position, x2 is the velocity x3(mod2π) is the driving phase, d is the nondimensional
damping, w is the driving frequency divided by undamped natural frequency, r is a coefficient of
restitution, and a is a particular solution amplitude. When 0 < a < 1 the system admits the non-
impacting periodic solution

x1 = a cos(x3) (86)

x2 = −a sin(x3) (87)

and the solution is stable if d > 0 and w > 0. Besides this solution, the system may have additional
impacting periodic solutions and chaotic attractors.

Non-hyperbolic grazing solution with (λ = 1) For the parameter values

d = 0.6, w = 4.519798, a = 0.938042, r = 1

there exists a periodic orbit with one non-grazing impact and one grazing, and with one eigenvalue
λ = 1 (if the system is linearised ignoring the grazing impact). One point on the orbit is

(x1, x2, x3) = (−1, 0.315637, 2.787732).

The other eigenvalue is positive and close to 0. The period of the orbit is 8π.
In a parameter diagram where w and a are varied, (Figure 5) we find that several one-parameter

curves meet at the two-parameter point. There is a curve of grazing periodic orbits, and a curve of
saddle-node bifurcations. For this system, there is a stable periodic orbit similar to the two-parameter
orbit in the region between curves “b” and “c”, and at “c” it undergoes a grazing bifurcation leading
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Figure 6: Parameter diagram around the grazing, λ = −1 point (star). Curve of grazing periodic orbit, with
λ > −1 or complex on “a” and λ < −1 on “b”. Curve “c” of λ = −1 for periodic orbit with no low velocity
impacts. Curve “d” of grazing periodic orbits of the double period.

to a chaotic attractor similar to the two-parameter orbit in a small region above curve “b”. Further
increases of the parameter a make the attractor disappear in a boundary crisis. The curve where this
happens is not included in the diagram. Below “c” and below and above “a” there is no attractor
close to the two-parameter orbit.

Non-hyperbolic grazing solution (λ = −1) For the parameter values

d = −0.3, w = 3.729986, a = 0.257040, r = 0.15,

there exists a periodic orbit with one non-grazing impact and one grazing, and with one eigenvalue
λ = −1 (if the system is linearised ignoring the grazing impact).

One point on the orbit is

(x1, x2, x3) = (−1, 0.170869, 5.186351).

The other eigenvalue is negative and about −0.47. The period of the orbit is 6π.
In a parameter diagram where w and a are varied, (Figure 6), we find that several one-parameter

curves meet at the two-parameter point. There is a curve of grazing periodic orbits, and a curve of
supercritical period-doubling bifurcations. For this system, there is a stable periodic orbit similar
to the two-parameter orbit in the region below curves “a” and “c”. At “c” there is a supercritical
period-doubling bifurcation, branching off a stable orbit of twice the period. At “d” this orbit becomes
grazing. The stability characteristics of this orbit changes quite rapidly along the curve “d”. Near
the two-parameter point one eigenvalue must be close to 1, but at the right edge of the diagram, the
eigenvalues are already complex. Similar changes take place on the curve “a”. In this system, the
grazing bifurcation at “d” does not continuously create an attractor.

The numerical resualts presented here can be efficiently generated numerically thanks to the an-
alytical unfolding which gives the conditions on the existence of particular bifurcation curves. The
development of efficient numerical continuation tools for DIBs in different classes of nonsmooth sys-
tems is an ongoing research work. For some available software, see for example [30, 27].

3.3 Multiple attractors in grazing-sliding bifurcations. Classification prob-
lems

In Sec. 3.2, we have presented a methodology which we developed to unfold two parameter DIBs.
In particular, we have presented an example of the unfolding for each of the three types of two
parameter DIBs. However, the beauty and nightmare of analysing DIBs stems from the fact that
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depending on the dimension of phase space different dynamic outcomes may be observed. In the
current section, we present the classification results, which show that a one-parameter grazing-sliding
bifurcation in 3-dimensional Filippov type flows may produce a bifurcation that leads to the creation
of a multiple number of attractors, originating from a single attractor, which bifurcation may not
occur in differentiable vector fields. The possibility of such a scenario in piecewise-smooth systems
was first demonstrated for piecwise smooth maps, e.g. [38], and multistability itself has been observed
in different types nonsmooth systems [100].

Consider a Filippov systems for which the evolution of variable x in some region D ⊆ R3 is
determined by the equations

ẋ(t) =

{
F1(x(t), µ) if H(x(t), µ) > 0

F2(x(t), µ) if H(x(t), µ) < 0,
(88)

where F1, F2 are sufficiently smooth vector functions, F1, F2 : D × R 7→ R3, and H : D × R 7→ R is
some smooth scalar function.

Let us define the boundary Σ as

Σ := {x ∈ D : H(x, µ) = 0}. (89)

The region D is then divided by Σ into two subspaces. Namely, we define

S1 := {x ∈ D : H(x, µ) > 0},

and
S2 := {x ∈ D : H(x, µ) < 0},

where the dynamics is smooth as it is governed by the differentiable vector field F1 or F2 respectively.
Although, F1 and F2 are admissible, respectively, in S1 and S2 only, they are well-defined everywhere
in D. Depending on the direction of the vector fields with respect to Σ those trajectories starting in
S1 and S2 that reach Σ in finite time will either cross or evolve along Σ. (In the latter case following
the sliding flow.) Let σ(x, µ) = 〈Hx, F1〉(x, µ)〈Hx, F2〉(x, µ), where 〈Hx, F1〉 denotes the directional
derivative of H with respect to the vector field F1. (Note that the subscript ‘x’ denotes a differential
operator, and x in other contexts denotes a point in the state space.) The switching surface Σ can be
divided into subsets, say Σc and Σs, defined as

Σc := {x ∈ Σ : σ(x, µ) > 0}, Σs := {x ∈ Σ : σ(x, µ) ≤ 0}.

We will require
〈Hx, (F2 − F1)〉 > 0 (90)

on Σs. When a trajectory generated by F1 (or F2) reaches Σc it switches to F2 (or F1) on Σc. Note
that such a trajectory is continuous, and it is built of segments generated by F1 and F2. If, on the
other hand, Σs is reached from S1 or S2, then the motion follows the sliding flow along Σs, and the
vector field that generates this motion is defined as

Fs = αsF1 + (1− αs)F2, (91)

where αs =
〈Hx, F2〉

〈Hx, (F2 − F1)〉 on Σs, and 0 ≤ αs ≤ 1.

The function αs can be used to define the boundaries of a region where sliding is possible, namely

∂Σs := {x ∈ Σ : αs(x, µ) = 1}, ∂Σ0
s := {x ∈ Σ : αs(x, µ) = 0}.

The condition (90) implies that the interior of Σs is an attracting sliding region, that is the vector
fields point toward Σ from either sides of the switching surface.
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3.3.1 Analytical conditions and Poincaré return map

Let us ignore for the moment the presence of switching and sliding, that is we consider the system
defined by F1 in all of D. Assume that this system for a parameter value µ = µ∗ has a periodic orbit
x(t) of period T ∗ where H(x(t), µ) > 0 for all points on the orbit except at x = x∗ where clearly

H(x∗, µ∗) = 0, (92)

〈Hx, F1〉(x∗, µ∗) = 0, (93)

and the second directional derivative is non-negative. We will restrict ourselves to the case when the
second directional derivative is positive, that is

〈〈Hx, F1〉x, F1〉(x∗, µ∗) > 0. (94)

We will now define a Poincaré section Π, containing x∗, as

Π := {x ∈ D : 〈Hx, F1〉(x∗, µ∗) = 0}.

From (94) it follows that Π is transversal to the periodic orbit and thus defines a first return Poincaré
mapping P : Π × R 7→ Π in a neighbourhood of (x∗, µ∗). The point x∗ is a fixed point for the map
P when µ = µ∗. Assume that the Jacobian of P at (x∗, µ∗) has no eigenvalue equal to 1. By the
Implicit Function Theorem there exists a unique family of fixed points x̂(µ) with x̂(µ∗) = x∗, ∀µ in
some neighbourhood of µ∗. Assume further the unfolding condition

dH(x̂(µ))

dµ

∣∣∣∣
µ=µ∗

6= 0, (95)

which implies that the fixed point x̂ moves with respect to Σ. If H(x̂(µ), µ) ≥ 0 then x̂(µ) lies on a
periodic orbit of the original Filippov system. On the other, if H(x̂(µ), µ) < 0 then x̂(µ) does not
correspond to a periodic solution of the switched Filippov system. At µ∗ we have a grazing periodic
orbit and the systems satisfies the conditions (90), (92), (93), (94) and (95) for a grazing-sliding
bifurcation.

3.3.2 Reduction to a one-dimensional map

Theorem 5 Consider the Filippov system (88) which undergoes a one-parameter grazing-sliding bi-
furcation. Assuming that the inequalties a > 0, b > a2 and γ = −C > 0 are satisfied, the system
dynamics decribing the trajectories which include a sliding segment, ∀x ∈ ∂Σs in a sufficiently small
neighbourhood around the grazing contact x∗, is described by a one-dimensional map ∂Σ̂s 7→ ∂Σ̂s of
the form

wn+1 =

 −γwn − 1 if wn < 0
−(γa+ b)wn + γ − 1 if 0 < wn < 1/a
(γ(b− a2)− ab)wn + γ(a+ 1) + b− 1 if wn > 1/a.

(96)

The reduction of a 3-dimensional flow to the above 1-dimensional discontinuous map is shown
in detail in [K3]. We should note here that such a reduction is possible due to the fact that the
above map describes the dynamics about one-parameter grazing-sliding when all trajectories contain
a sliding segment. However, such a map can exhibit a plethora of dynamical scenarios. In particular,
in [K3] we have proven, for the first time, that the one parameter grazing-sliding bifurcation may
lead to the onset of multiple attractors under the conditions specified in the following theorem. Other
types of attractors, observed in continuous but non-differentiable discrete time maps, which can be
born in grazing-sliding bifurcations and are related to the underlying dimension of the Filippov flow
are analysed in [50]. In the reduced map, the notion of the co-dimension of the so-called border-
collision bifurcation corresponding to grazing-sliding in a flow plays an important role in the number
of multiple stable states involved in the bifurcation, as discussed in [57, 89].
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3.3.3 Classification of the dynamics

Theorem 6 Consider the map (96) subject to the constraints given in Theorem 5. For each (a, γ)
with

γ > 1, a < 1, 0 < a <
γ − 1

γ2 − γ + 1
,

there is a non-trivial interval of b−values such that the map has two stable fixed points, one in (0, 1/a)
and the other in (1/a,∞). For each (a, γ) with

γ > 1,
γ − 1

γ2 + 1
< a <

γ − 1

γ2 − γ + 1
,

there is a non-trivial interval of b−values such that the map has a chaotic attractor in [−1, γ− 1] and
a stable fixed point in (1/a,∞).

The work in [K3] allowed us to create a 3-dimensional Filippov type system, which exhibits one-
parameter grazing-sliding bifurcations leading to multiple attractor grazing-sliding bifurcations. In
particular in [K2], we present a constructed explicit example of a three-dimensional Filippov type
flow where we show the birth of multiple attractors in grazing-sliding bifurcations. To the best of our
knowledge, it is the first such an example of a Filippov type flow where grazing-sliding bifurcation is
shown to trigger birth of multiple attractors, reported in the literature. Three qualitatively different
scenarios are shown; namely, birth of period-two and period-three stable orbits with one sliding
segment, chaotic attractor coexisting with stable period-three orbit characterised by a segment of
sliding motion, and a coexistence of a period-three sliding orbit with two sliding segments and a limit
cycle with no sliding segments. Our work reveals an important feature of the normal form map used
to construct the Filippov flow that would produce the desired dynamics. Namely, due to the fact that
the normal form that we use is valid only locally around the grazing-sliding bifurcations, the scale of
the variation of the bifurcation parameter past the grazing-sliding had to be carefully chosen to see the
dynamics predicted by the map. In other words, sufficiently small neighbourhood where the normal
form is valid, in the context of nonsmooth bifurcations, seems to mean a different order of magnitude
in the range of the bifurcation parameter variation than in the context of smooth bifurcations. We
should add here that even in 3D flows the full dynamics about the grazing-sliding is not understood
as yet. For example in [92], the link between grazing-sliding and the occurrence of Arnold’s tongues
in the bifurcation is explored.

3.4 Diverse new classes of one-parameter Discontinuity Induced Bifurca-
tions

The methodology to classify one- and two-parameter DIBs presented here clearly points out to the
difficulties in presenting a unified theory for DIBs. Firstly, from the results shown here it follows that
depending on the class of a nonsmooth system a definition of a one and two parameter bifurcation has
two be given as well as appriopriate manner of determining the unfolding parameters. Secondly, the
outcomoe of the dynamics depends on the dimension of phase space of the system. Finally, it remains
an open question what type of perturbations are permitted which lead to a DIB in a PWS system,
see for example [23] where a divers types of DIBs are illustared by means of examples. In the current
section, we present a novel class of one-parameter DIB of relevance to application presented in [K1].

In particular, consider a class of systems given by

ẋ = AIx for |Cx| ≤ φ, (97)

ẋ = AOx for |Cx| > φ, (98)

where AI ∈ R2 × R2 is a non-singular matrix with the eigenvalues corresponding to a saddle-node
equilibrium point, and AO ∈ R2 × R2 is a non-singular matrix with the eigenvalues corresponding to
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a stable equilibrium point of the focus type. The product of the state vector x ∈ R2 and the constant
control row vector C ∈ R2 determines the switching between the two linear vector fields for some fixed
and positive value of φ. In what follows, we consider a novel Hopf bifurcation scenario in the above
class of systems under the variation of the control vector from C = C0 to C = Cε0 .

3.4.1 Planar switched systems with dead-zone

Consider switched systems where the bifurcation parameter, say β, is increased from 0 and implies a
change of the control vector C0 from C0 = [−1 0] to Cε0 = [−1 β], where β = O(ε). This variation
is a change from purely positional feedback control law to position-velocity feedback law. Matrices
AI , AO, the state vector x and the width of the dead-zone are given by

AI =

(
0 1
A 0

)
, AO =

(
0 1

A−Kp −Kd

)
, x =

(
θ

θ̇

)
, |C0x| ≤ θ∗, or |Cε0x| ≤ θ∗, (99)

where Kp > A > 0, Kp − A > K2
d/4, Kd > 0 and θ∗ > 0. In this set up the eigenvalues of AI

correspond to the system’s equilibrium point of a saddle type and the eigenvalues of AO correspond
to a stable focus, as assumed earlier. Matrix AI is expressed in so-called controllable canonical form
[14, 16] and this structure can be assumed without loss of generality

3.4.2 Hopf-like one parameter bifurcation

Theorem 7 Consider the Filippov system (97)-(98) with AI and AO as above. Under the O(ε)
perturbation applied to the switching line by means of perturbation from C0 = [−1 0] to Cε0 =
[−1 β], where β = O(ε), the system undergoes a supercritical Hopf-like bifurcation scenario where
a stable pseudo-equilibrium loses its stability and a stable limit cycle, surrounding the now unstable
pseduo-equlibrium, is born in the bifurcation. The amplitude of the limit cycle scales as O(

√
ε) of the

perturbation.

Theorem 7 shows that switched linear systems with dead-zone and purely positional feedback un-
der a small parameter perturbation, from position to position-velocity control, may loose a stable
pseudo-equilibrium state (an equilibrium of the switched system which lies on the switching manifold)
and produce a limit cycle in a Hopf-like scenario. Using asymptotic method we analyze this novel
bifurcation and show the loss of stability of the pseudo-equilibrium and a birth of stable limit cycles
with the amplitude, say |x|, growing as the square root of the bifurcation parameter (|x| = O(

√
β),

where β refers to the bifurcation parameter).
In [K1] we also consider switched systems with dead-zone and purely positional feedback law, but

with the switching decision function that contains time delay. We investigate this system numerically
for small values of delay time τ = O(ε). We find that the system, considering the same parameter
values as in the non-delayed case, exhibits a Hopf-like bifurcation scenario under the variation of τ ,
which not only qualitatively but also quantitatively matches the Hopf bifurcation in the switched
system with no time delay. In control literature, it has been suggested that delays in positional
feedback laws may serve as approximation of velocity components since v ≈ (x(t + τ) − x(t))/τ .
However, in our case the time delay is included only in threshold detection and so the agreement
of the qualitative and quantitative nature in the case of the two types of novel Hopf-bifurcation
scenarios reported in the current work is somehow surprising. A theoretical explanation for this
agreement follows from the fact that for sufficiently small time delays the delayed switching line can
be approximated as a position-velocity switching line provided that the time of evolution between
switchings is greater than the delay time τ , which is, indeed, the case.

We should note here that similar systems have been analyzed in [8, 87] and there an onset of small
scale limit cycles born from a pseudo-equilibrium have been also reported. However, these systems
have been characterized by the presence of time delays in the position and velocity state variables as
well.
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Bifurcations which lead to the creation of limit cycles in switched systems, due to changes in the
control strategy, have been observed in different contexts, for example due to an introduction of small
hysteresis, see Sec. 2.1 in [72]. In some instances, these bifurcations can be seen as bifurcations from
infinity; from the point of view of perturbations applied not to the switching, but to a state variable,
see Sec. 2.2 in [72] and [36, 66] for further details. From these works, it is clear that limit cycles can be
born from a pseudo-equlibrium in switched systems in a variety of scenarios and their exhaustive and
unified classification seems extremely difficult. Perhaps one of the ways in which one could attempt
the classification of distinct Hopf-like bifurcations in nonsmooth systems would be by considering
scaling laws. That is, we should note that the bifurcation reported in the current section differs, for
example, from the Hopf-like bifurcation scenario analyzed in [46], by the scaling of the amplitude as
a function of bifurcation parameter β. In the other work, the amplitude of the limit cycle born in
the bifurcation grows linearly as a function of the bifurcation parameter. The question now arises
whether one could divide the Hopf-like bifurcations in switched systems into classes characterized by
different scaling laws.

4 Other research and results

4.1 Systems with time delays in switching function

Switched relay control systems, which are modelled by means of an idealised on/off relay control, or
a switch between two states, one positive one negative - termed as negative feedback control - often
feature hysteretic behaviour, symmetry as well as time delays in control inputs. As it will be discussed
later, one such an example is provided by the neuromuscular control in human subjects. For instance,
during quiet standing of healthy human subjects, the control input is sent by means of muscle spindles
with a delay time of around 150ms triggering jerk-like muscle movements. In [KO4,KO7], we study
dynamical systems that switch between two different vector fields, a hysteresis and with a delay in
the switching decision function.

In particular, the main results of [KO4] paper can be summarised as follows: 1. We show that, in
the case of negative feedback, the system with relay feedback, but no delay can only exhibit symmetric,
unimodal cycles (that is limit cycles charcterised by two switching events and one maximum) if they
exist. 2. We prove that positive feedback gives rise, instead, to the possibility of aperiodic trajectories
and chaotic behaviour in the nondelayed hysteretic relay system. 3. In the case of small delays (in
a sense that will be clarified when we discuss the results in [KO7]), we prove that the dynamics of
the delayed relay system are qualitatively the same as those of an appropriately selected nondelayed
relay system. 4. We derive analytically a diagram of the system’s behaviour in the two-parameter
space, showing the intricate interplay between the width of the hysteretic region and the amount of
delay acting on the system. 5. We describe a novel discontinuity-induced bifurcation event, named
an event-collision, that is unique to piecewise smooth systems with delayed switchings which is the
subject of investigations in [KO7].

When the delay reaches a problem dependent critical value so-called event collisions occur. The
work in [KO7] classifies and analyses event collisions, a special type of discontinuity induced bifur-
cations, for periodic orbits. Our focus is on event collisions of symmetric periodic orbits in systems
with full reflection symmetry, a symmetry that is prevalent in applications. We derive an implicit
expression for the Poincaré map near the colliding periodic orbit (Lemma 8 and Theorem 9 in Sec.
4.2). The Poincaré map is piecewise smooth, finite-dimensional, and changes the dimension of its
image at the collision. In the second part of the paper, we apply this general result to the class of
unstable linear single-degree-of-freedom oscillators where we detect and continue numerically collisions
of invariant tori. Moreover, we observe that attracting closed invariant polygons emerge at the torus
collision. The derivation of Theorem 9 can be generalised in a straightforward manner to other discrete
symmetries and other than binary switches (with more notational overhead) as long as the symmetry
can be reduced locally near the periodic orbit. The reduction extends the applicability of theory
and numerical methods that have been developed for smooth and piecewise smooth low-dimensional
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maps to systems with delayed switches. On the numerical side this includes direct continuation of
periodic orbits and their bifurcations and discontinuity induced events (such as grazing and collision)
and the continuation of smooth invariant curves. Robust and universal methods for continuation and
detection of discontinuity induced bifurcations for periodic orbits have been developed, among others,
by Piiroinen [78] and Dercole and Kuznetsov [31]. Methods for the continuation of closed invariant
curves have been also developed. See for example [28, 82] among other works. There is, however,
still a large gap between recent developments of numerical methods for closed invariant curves and
piecewise smooth systems and their actual availability in the form of software. Due to this gap the
investigation of the oscillator presented in Section 6 of the paper could not rely on generally available
tools. The analysis of the oscillator shows that dynamical phenomena of hybrid systems with delayed
switches can be systematically discovered with the help of numerical continuation and the reduction
theorem.

4.2 Dynamics of singularly perturbed PWS systems

An important question for the theory of one- and two-parameter DIBs is how these bifurcations are
affected by perturbations. In particular, in [KO8] we consider how sliding in a Filippov system with
two vector fields is affected by perturbations. If we add a small perturbation to the vector fields or to
the switching decision function (the derivative of the perturbation is also assumed to be small) then
any exponentially stable periodic orbit or equilibrium of a Filippov system persists, as we show in
[KO8], and remains stable. This also applies to pseudo-equilibria (equilibria of the sliding flow, sitting
exactly on the switching manifold) and to periodic orbits that have sliding segments. This persistence
mirrors the results of classical bifurcation and invariant manifold theory for smooth dynamical systems
[43]. Another typical perturbation arising in the modelling process are stable singular perturbations.
In a simple model one has replaced rapidly converging parts of the dynamics with their equilibrium,
making the assumption that this equilibrium follows the slow dynamics quasi-statically. In a more
complex case of the same system (or in reality) the equilibrium of the fast dynamics is not attained
perfectly, which constitutes a small perturbation. Practical examples of this type of perturbation are
small capacitances and inductances in electrical circuits, imperfect rigidity in mechanical systems, or
fast chemical reactions (or other processes) in biological systems. Again, for smooth dynamical systems
classical theory [43] proves that all hypberbolic equilibria, periodic orbits and, more generally, normally
hyperbolic invariant manifolds persist. That is, for example, an exponentially stable equilibrium or
periodic orbit (and any of its bifurcations) observed in a simple model obtained by making quasi-static
assumptions is also present when the fast dynamics is taken into account, as long as the difference
in time scale is sufficiently large. In general, in smooth dynamical systems any phenomenon that
persists under regular perturbations (perturbations of the right-hand-side) also persists under stable
singular perturbations. Fenichel’s Theorem reduces hyperbolic singular perturbations to regular ones
by proving the existence of a normally hyperbolic invariant manifold [43].

In [KO8], we prove that stable singular perturbations have a much stronger influence on the
dynamics in Filippov systems than in smooth dynamical systems. We demonstrate that stable pseudo-
equilibria and stable periodic orbits with sliding do not necessarily persist. We study periodic orbits
with an infinitesimally small sliding segment, that is, close to a grazing-sliding bifurcation. We found
two generic cases depending on the geometry: the local return map around the grazing periodic orbit
develops a discontinuity if the condition on the existence of an attracting sliding region is violated.
Otherwise, the continuity of the return map persists, but the asymptotic slope may have a change of
order 1 (uniformly for ε→ 0).

The qualitative change of the local return map induces qualitative changes to the dynamics on a
small scale. A piecewise discontinuous map with a square root singularity of the slope on one side
of the discontinuity, as occurs when a parameter determining the slope satisfies the inequality θ < 0
in the minimal example, shows inverted period-adding cascades of periodic orbits if one varies the
parameter through its critical value [39]. The parameter range where these cascades can be observed
is of order ε. In the other case, θ > 0, the observed dynamics depends strongly on the one-sided
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derivative s(θ; 0; 0) defined in Lemma 3. It can be chaotic if s(θ; 0; 0) < −1, which is possible for small
θ. Our analysis is valid on a scale of order ε2 in phase space and parameter space.

The results of Lemma 3 can be generalized to higher-dimensional slow-fast systems in a straightfor-
ward manner as long as the dimension of the fast subsystem is 1. There are, however, some technical
difficulties to generalizing the expressions of Lemma 3 for higher dimensional fast subsystems (y ∈ Rm,
m > 1); a trajectory following the dynamics inside the stable fibres (following a linear stable ODE)
may intersect the switching hyperplane several times. In R every trajectory in a stable linear system
approaches the origin in a monotone (increasing or decreasing) fashion, which is not true in R2 in the
Euclidean norm. Furthermore, the Poincaré-section Discontinuity Mapping is only implicitly given as
the root of a nonlinear equation. In general, this implicit expression is determined by the intersection
of a trajectory following a stable linear system with a hyperplane.

In [KO10] we study the qualitative dynamics of piecewise-smooth slow-fast systems (singularly
perturbed systems) which are everywhere continuous. We consider phase space topology of systems
with one-dimensional slow dynamics and one-dimensional fast dynamics. The slow manifold of the
reduced system is formed by a piecewise-continuous curve, and the differentiability is lost across the
switching surface. In the full system the slow manifold is no longer continuous, and there is an O(ε)
discontinuity across the switching manifold, but the discontinuity cannot qualitatively alter system
dynamics, which is a standard result which can be shown using directly Fenichel’s theory. The main
results of the paper is the description of phase space topology which is used to unfold qualitative
dynamics of planar slow-fast systems with an equilibrium point on the switching surface. In this case
the local dynamics corresponds to so-called boundary-equilibrium bifurcations, and four qualitative
phase portraits are uncovered. Our results are then used to investigate the dynamics of a box model
of a thermohaline circulation, and the presence of a boundary-equilibrium bifurcation of a fold type
is shown. In the context of applications of this work to the box model, the presence of multiple stable
states may indicate the possibility of flow reversal in thermoaline circulation.

The four scenarios observed in planar slow-fast systems will be observed in higher dimensions
(with n-dimensional slow dynamics), and it is very likely that additional dynamics will arise as well;
boundary-equilibrium bifurcations in three-dimensional piecewise-smooth flows lead, for instance, to
a non-smooth equivalent of a Hopf bifurcation with a limit cycle growing linearly in amplitude from
an equilibrium colliding with the switching manifold [35]. This rises the question whether additional
dynamics can be triggered by the presence of more than one fast dimension.

4.3 Dynamics of diverse classes of hybrid systems

The use of a digital computer as a controller device has grown in the past decades leading to a
widespread application of digital control systems [61, 80]. Nowadays digital control systems occur in a
plethora of applications ranging from chemical processes, aircraft and traffic control to process control
in industries such as machine tools production [47, 40]. The control, design and analysis of these
control systems involve understanding the interaction between continuous and discrete dynamics. For
example, the automated control of a car moving on a road is implemented by digital computer but the
motion of a car is continuous in time [56]. Computers that are used in such a system send a digital
signal which is then converted to an analogue signal and can be fed into the actuator. The digital
signal which corresponds to a finite sequence of numbers leaves or enters the computer at some time
intervals, say τ , which we will term a sampling time.

In [KO6,KO10,KOCf9] we investigate the dynamics of Filippov systems where the information on
switching is not a continuous function but is given at discrite time intervals.

In [KO6], we studied the dynamics of a simple one-dimensional on/off control system where the
control variable was given at discrete time intervals. In the case when the system evolution was
assumed linear in the on and off states we were able to obtain a re-scaled circle map that captures the
system dynamics. We have shown that depending on the system parameters we might encounter a
family of periodic orbits, quasi-periodic oscillations or a banding structure of quasi-periodicity. Using
equivalent methodology to that which allowed us to study the linear case we extended the analysis to
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the case when the system evolution is governed by generic non-linear functions. In particular, we have
shown that a fixed point attractor and chaotic dynamics are present in this more general case. Some
results that link the sampling time with the width of the interval on which the asymptotic dynamics
might settle have been also presented (Lemma 6.3).

In [KO10] we study Filippov type systems with digital sampling. It is shown that digital sampling
may lead to the onset of chaotic dynamics. A simple example is studied in detail to reveal the
mechanism leading to chaotic dynamics. The existence of at least one chaotic attractor is proved
rigorously, but we have not excluded the possibility that other attractors exist. Thus uniqueness (or
topological transitivity) of the attractor in the bounded region is still an open problem. We conjecture
that the chaotic attractor is indeed unique. It is shown that the size of the chaotic attractor, measured
as the distance between the chaotic attractor and a stable cycle of continuously sampled orbit is linear
for sufficiently small values of the sampling time τ . The results are generalized to planar Filippov
type systems with digital sampling. Using planar systems, we also show that in the limit when the
sampling time τ → 0, the Filippov’s method that gives the sliding flow of continuously sampled
system, converges to the vector field of the discretely sampled system. This result can then be used
to approximate the time of evolution along the switching surface which in turn can be utilized to
determine if the expansion/contraction due to the zig-zag evolution along the switching surface can
qualitatively alter system dynamics. Based on our finding we believe that the analyzed dynamics
will also occur in n-dimensional Filippov type systems when the variable that determines switchings
between different vector fields is sampled at discrete time intervals. To justify this conjecture we
investigate a third order relay feedback system and introduce digital sampling to continuously sampled
control variable. It turns out that, indeed, in certain instances we observe a transition from a stable
orbit with a segment of sliding motion, existing in a continuously sampled system, to a chaotic attractor
of digitally sampled system. Two scenarios are considered. In the first case the introduction of digital
sampling destroys the sliding segment – instead of the sliding flow the system switches along the
switching surface until it leaves off the switching plane. In the second case the introduction of digital
sampling leads to the creation of chaotic dynamics. It was shown in [79] that discrete control typically
creates a chaotic attractor in the vicinity of an unstable equilibrium. There are certain similarities
that lead to the onset of chaos in our case and in the case investigated in [79]. In our case we deal with
periodic orbits and if we wish to stabilize an unstable orbit that might correspond to some desired
oscillatory behavior of a control system the application of the digital control may quite likely lead
to the creation of a chaotic orbit, whereas control provided in continuous time will lead to a stable
orbit with a segment of sliding. In [79] it is claimed that artificial neural networks with reinforcement
learning are known to be able to learn such a control scheme. It would be interesting to investigate
further the link between our findings and neural networks with reinforcement learning. We should
also mention that the onset of chaotic dynamics triggered by this mechanism is similar to an abrupt
transition from a stable periodic orbit with sliding to a small scale chaotic dynamics that might occur
in Filippov type systems under an introduction of an arbitrarily small time delay in the switching
function [85].

4.4 Modelling and analysis of Filippov systems in the context of neuro-
muscular human balance control

In recent years, much of research effort has been spent on understanding the character of control
strategy during different tasks performed by human neuromotorcontrol system. For example, there
is currently an ongoing controversy whether human quiet standing can be better described by linear
continuous time models or intermittent control models. This controversy has led, broadly speaking,
to the use of two classes of control models. First class includes linear, continuous time systems, see
for instance [58, 60]. These models exclude thresholds, instantaneous switchings and time variant
processes such as open loops. However, impulsive like muscle movements have been detected during
quiet standing [70] leading to the use of switched and/or intermittent control models [48, 49, 68, 69, 67],
which are examples of hybrid (switched) systems. Another context in which intermittent control plays
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an important role is target tracking. Consider a manual control task in which, using a joystick, a person
has to place a beam on a computer screen at a specific location. In the experimental set-up, the motion
of the beam is electronically generated by an output from an unstable system, which is driven by noisy
disturbances, with a human acting as a controller in the loop. It seems that the best strategy to place
the beam in a neighbourhood of the desired location is by gently tapping the joystick. Thus it is not
a continuous time control, but an intermittent control which is used by the neuromuscular system. It
is worth noting that in certain instances, it is impossible to stabilise a system using a continuous time
control, but an intermittent (switched/hybrid) control action may stabilise a system. In particular,
it was shown in [86] that continuous time extended time-delayed feedback control cannot be applied
to stabilise an unstable periodic orbit. In contrast, an intermittent extended time-delayed feedback
control does stabilise an unstable periodic orbit. This result signifies that to achieve stability, in
certain conditions, it may be necessary to apply an intermittent (switched) control, not a continuous
time control.

Research in works [KO11,KO12,KO13,KO14,KO15] deals with mathematical modelling and in-
vestigations of the character of neuromuscular control during tasks such as quiet standing or the
aforementioned target tracking experiment. In particular in [KO11], we introduce a model of human
balance during quiet standing following the idea that a human body, on the macroscopic scale, can
be modelled by a single-link inverted pendulum, and balance is achieved using linear feedback control
with time delay in the proportional and derivative error signals. We assume a threshold value of the
angle of the sway below which the human neuromotorcontrol system cannot detect any sway motion.
We obtain a planar switched (hybrid) model. We find that to achieve stabilization, which is seen
as ‘small’ oscillations about an upright equilibrium, it is necessary that both the proportional and
derivative signals of the control system are used. These stable oscillations seem to represent closer to
observation stable state for upright standing than the equilibrium points [74]. Therefore, we study
the effects of parameter variations on their existence. Our parameter study leads to the detection
of a multiple number of stable oscillatory states existing for the same parameter values, and for a
wide range of the control parameters corresponding to the derivative term of the PD controller. We
also find a homoclinic bifurcation that gives birth to a stable symmetric orbit with a long period. In
particular, we show, using a numerical experiment, that close to a homoclinic bifurcation white noise
introduced additively may result in the system switching between the two regions where symmetric
stable solutions exist in the deterministic switched system leading to an apparent bi-stability; in other
words, the switched system with added noise evolves for some time in the neighbourhood of each one
of the two stable asymmetric limit cycles (present in the deterministic system) by switching between
their regions of existence. This scenario can explain switchings between a pair of stable asymmetric
attractors observed in the first-order model in [42], which in turn was used to explain different scaling
patterns that could be detected in human postural sway data.

This initial research, which was conducted in collaboration with experimentalists working on hu-
man balance conctrol, led to my further work aimed at 1. investigating the dynamics of switched
models of relevance to modelling human nueromusucular control system during tasks such as quiet
standing or target tracking; 2. using different techniques to determine some measure of time series data
which can then be used for the purposes of determinig whether, indeed, systems with discontinuous
nonlinearities are better descriptors for human neurmuscluar control in the case of aforementioned
tasks. In particular, the aforementioned collaboration led to a successful grant entitled “Abrupt
changes in the behaviour of hybrid systems in discontinuity induced multiple attractors bifurcations”
funded by the EPSRC under First Grant Scheme program, reference EP/K001353/1, where I was the
Principal Investigator. The value of the grant was 125 000£ (about 600 000 PLN) and the grant
commenced on the first of February 2013 and finished on the 31 August 2014. The grant led to 4 jour-
nal publications [KO12-KO15] (all published) and one conference proceedings. One of the important
contributions of the research conducted during the grant was the development of an algorithm for the
detection of discontinuous nonlinearites in switched systems with noise. In particular, the algorithm
was used on experimental data and the results support the existence of intermittent control action
of the neuromuscular system of humans during quiet stance [KO15]. The research conducted during
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the grant has led to a number of further research questions such as what is the link between control
strategy and discontinuity induced bifurcations in hybrid (switched) systems. Namely work [K1].

In [KO12], we examine whether an ARMA model can be fitted to a process characterised by
switched nonlinearities. In particular, we conduct the following test: we generate data from known
LTI and nonlinear (threshold/dead-zone) models of human balance and analyse the output using
ARMA. We show that both these known systems can be fitted, according to standard criteria, with
low order ARMA models. To check if there are some obvious effects of the dead-zone, we compare
the power spectra of both systems with the power spectra of their ARMA models. We then examine
spectral properties of three posturographic data sets and their ARMA models and compare them with
the power spectra of our model systems. Finally, we examine the dynamics of our model systems in
the absence of noise to determine what is the effect of the switching threshold (dead-zone) on the
asymptotic dynamics

When we compare the power spectrum of the switched system with the power spectrum of its
ARMA model as well as when we compare the power spectrum of the linear system with the power
spectrum of its ARMA model, the power spectra show a good fit in the lower frequency range (up
to around 2 Hz) with a mismatch for higher frequencies. This agrees with the theory because low
order ARMA models match low frequency bands. Moreover, there are no obvious qualitative differ-
ences in both cases. We then compare power spectra of three ARMA models of three representative
experimental posturographic data sets with ARMA models of the switched and linear systems. A
reasonably good fit, to both models, is observed in the lower frequency range (up to 1.5 Hz) with a
growing mismatch for larger frequencies. Thus, AMRA model fitting may lead to misinterpretation
of the results; that is, a good fit of a time series data with an ARMA model does not imply that
the underlying process is linear and time invariant. We also investigated the dynamics of underlying
models in the absence of noise. We found qualitative differences in the asymptotic dynamics of both
systems for parameter values used in our investigations; the dynamics of the linear system represents
the fluctuations of a noisy equilibrium, whereas the dynamics of the switched system is dominated by
switchings, due to noise, between attractors formed by two coexistent limit cycle oscillators (in the
absence of noise).

In [KO13], we propose a method based on wavelet and frequency analysis for detecting abrupt
changes in the process data of the van der Pol oscillator model with noise. The advantage of this
technique is that it allows us to decompose the data into a set of independent coefficients (mono-
components) corresponding to orthogonal basis functions. These mono-components are then analysed
and recombined into a signal that contains the instantaneous frequency reflections, but not the system
main response or noise. The output is a series of peaks, each of which occurs when the system
trajectory exhibits abrupt change. The effectiveness of the developed algorithm in detecting such
changes arises from the fact that abrupt changes manifest themselves as spikes in the time-frequency
plane. Thus, the proposed method is promising in detecting not only features such abrupt changes but
also discontinuities in time series data. The discontinuities which we seek to identify in such systems
occur due to switchings between differentiable vector fields.

In [KO14], we numerically investigate a switched system of human balance control during quiet
standing. Three analytical tools are applied to the time series data generated by the model system.
We start our analysis by investigating the dynamics of the underlying model in the absence of noise for
the parameter values corresponding to human balance control of quiet stance. The system dynamics
settles on limit cycle attractors. We then use the instantaneous frequency method to detect the
discontinuous nonlinearities present in the signal generated by our model system. We find spikes in
the time-frequency plot of the analysed simulated data which indicate the presence of discontinuities.
Moreover, for shorter delay times the spikes have smaller amplitude than for longer time delay. Longer
time delay can be seen as increased dead-zone. Thus there is a correlation between the computed
instantaneous frequency and the size of the dead zone. We then employed the entropy analysis for
the purpose of investigating the complexity of the system.

We found that the complexity of the switched model system is increased when the noise signal is
switched off. We conjecture that a certain level of noise, by smoothing out discontinuities, decreases
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the system’s complexity. We also find that there is a positive correlation between increasing the
length of the time delay (which can be viewed as increasing the width of the dead zone) and system’s
complexity. We also use fluctuation analysis as a measure of complexity in the model system. The
results demonstrate that the complexity increases when the the size of the time delay (or the width
of the dead-zone) increases. Finally, we perform entropy and fluctuation analyses for the collected
experimental data of healthy human subjects. Our results show that the complexity measures of
the experimental data correspond to Brownian noise and are similar to the complexity measures of
the switched system with noise when the value of the neuro-muscular delay in the model is set to
τ = 150ms, which is physiologically feasible.

We believe that there is a direct link between the size of the dead zone of the switched system and
the corresponding complexity measures. Such analysis may, therefore, reflect important properties of
the sway motion of healthy human subjects.

External Collaborations - dynamical systems and control
I have an ongoing collaboration with Prof. Paul Glendinning from the University of Manchester on

mathematical modelling and analysis of switched human balance control systems. Prof. Glendinning
is an expert in the analysis of bifurcations in discrete maps, which naturally arise in the process of
analytical reduction of switched flows. I also collaborate with Dr Arne Nordmark from the Royal
Institute of Technology (Sweden, Stockholm) on the analysis of bifurcations in nonsmooth systems.
The explorations of links between bifurcations and control, which is also an area of my interest, will
be conducted in collaboration with Dr Jan Siber from the University of Exeter.

Other journal publications of Dr Piotr Kowalczyk
[KO1] M. di Bernardo, P. Kowalczyk and A. B. Nordmark. Bifurcations of dynamical systems with

sliding: derivation of normal-form mappings. Physica D, 170:175-205, 2002.
[KO2] M. di Bernardo, P. Kowalczyk, and A. B. Nordmark. Sliding bifurcations: A novel mechanism

for the sudden onset of chaos in dry-friction oscillators. International Journal of Bifurcation
and Chaos, 13(10):2935-2948, 2003.

[KO3] P. Kowalczyk. Robust chaos and border-collision bifurcations in non-invertible piecewise-linear
maps. Nonlinearity, 18:485-504, 2005.

[KO4] A. Colombo, M. di Bernardo, J. Hogan and P. Kowalczyk. Complex dynamics in a relay
feedback system with hysteresis and delay. Journal of Nonlinear Science, 17(2):85-108, 2007.

[KO5] M. di Bernardo, C. Budd, A. R. Champneys, P. Kowalczyk, A. B. Nordmark, G. Olivar and
P.T. Piiroinen. Bifurcations in Nonsmooth Dynamical Systems. SIAM Review, 50(4):629-701,
2008.

[KO6] P. Glendinning and P. Kowalczyk. Dynamics of a hybrid thermostat model with discrete
sampling time control. Dynamical Systems, 24(3):343-360, 2009.

[KO7] J. Sieber, P. Kowalczyk, S.J. Hogan and M. di Bernardo. Dynamics of symmetric dynamical
systems with delayed switching. Special Issue of Journal of Vibration and Control on Dynamics
and Control of Systems with Time-Delay, 16(7-8), 2010.

[KO8] J. Sieber and P. Kowalczyk. Small-scale instabilities in dynamical systems with sliding. Physica
D, 239(1-2):44-57, 2010.

[KO9] P. Glendinning and P. Kowalczyk. Micro-chaotic dynamics due to digital sampling in hybrid
systems of Filippov type. Physica D, 239(1-2):58-71, (2010).

[KO10] P. Kowalczyk and P. Glendinning. Boundary-equilibrium bifurcations in piecewise-smooth
slow-fast systems. Chaos: An interdisciplinary Journal of Nonlinear Science, 2011.

[KO11] P. Kowalczyk, P. Glendinning, Martin Brown, Gustavo Medrano-Cerda, Houman Dallali and
Jonathan Shapiro. Modelling human balance using switched systems with linear feedback
control. Interdiscpilinary Journal of the Royal Society Interface, 2011.

[KO12] P. Kowalczyk, S. Nema, P. Glendinning, I. Loram and M. Brown. ARMA analysis of linear
and discontinuous models of human balance during quiet standing. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 2014.

[KO13] S. Nema and P. Kowalczyk. Detecting abrupt changes in a noisy Van der Pol type oscillator.
Differential Equations and Dynamical Systems, 2015.

36



[KO14] S. Nema, P. Kowalczyk and I. Loram. Complexity and dynamics of switched human balance
during quiet standing. Biological Cybernetics, 2016.

[KO15] S. Nema, P. Kowalczyk and I. Loram. Wavelet-frequency analysis for the detection of discon-
tinuities in switched system models of human balance. Human Movement Science, 2016.

Refereed publications in conference proceedings of Dr Piotr Kowalczyk
[KOCf1] M. di Bernardo and P. Kowalczyk. On a novel class of bifurcations in hybrid dynamical

systems – the case of relay feedback system. In Proceedings of 4th International Workshop
on Hybrid Systems Computation and Control, Springer-Verlag, pp. 361-374, 2001.

[KOCf2] M. di Bernardo and P. Kowalczyk. On the existence of stable asymmetric limit cycles and
chaos in unforced symmetric relay feedback system. In Proceeding to European Control
Conference, Porto 2001.

[KOCf3] J. Sieber and P. Kowalczyk. Event collisions in systems with delayed switches. Proceedings
of the 6th IFAC Workshop on Time-Delay Systems, Vol.39(10), pp. 66-71, 2006.

[KOCf4] Samia K. Genena, Daniel J. Pagano and P. Kowalczyk. HOSM Control of Stick-Slip Oscil-
lations in Oil Well Drillstrings. In Proceeding to European Control Conference, Kos, 2007.

[KOCf5] P. Kowalczyk. Grazing bifurcations: A mechanism for the sudden onset of robust chaos. In
Proceedings of the 10th Experimental Chaos Conference, Catania, 2008.

[KOCf6] P. Kowalczyk and A. B. Nordmark. Bifurcations in non-smooth models of mechanical
systems. In Proceeding of EUROMECH 500 conference on Non-smooth Problems in Vehicle
Systems Dynamics - Analysis and Solutions, pp. 173-185, Lingby, 2008.

[KOCf7] P. Kowalczyk and J. Sieber. Robustness of grazing-sliding bifurcations in Filippov type
systems. Proceedings of Second IFAC meeting related to analysis and control of chaotic
systems, Vol.42(7):71-75 London, 2009.

[KOCf8] P. Kowalczyk, P. Glendinning. Micro-chaos in Relay Feedback Systems with Bang-Bang
Control and Digital Sampling. In Proceedings of the 18th Word Congress of the International
Federation of Automatic Control, Milan, 2011.

Monographs and Chapters in books
[KB1] M. di Bernardo, A.R. Champneys, P. Kowalczyk. Corner-Collision and Grazing-Sliding: practi-

cal examples of border-collision bifurcations. Proceedings of the IUTAM Symposium on Chaotic
Dynamics and Control of Systems and Processes in Mechanics, Kluwer Academic, 2003.

[KB2] M. di Bernardo, A. R. Champneys, C. Budd and P. Kowalczyk. Piecewise-smooth Dynamical
Systems: Theory and Applications. Springer, 2008.

References
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