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4.1 Introduction
Heat kernels are basic objects in mathematical analysis, as fundamental solutions to parabolic
differential equation (heat equations), as well as in the theory of stochastic processes, playing
the role of transition probability densities. They are also, or maybe primarily, important
from the point of view of physics, since they describe evolution of particles, temperature
and other phenomena. Studies on the behaviour of heat kernels related to various kinds of
operators and domains or manifolds have very long history and there is an enormous number
of research papers on this topic including many beautiful and general results (see, among
others, [62, 15, 22, 23, 28, 39, 67] and the references therein). Nevertheless, it turns out that
there are still many open question even in the most classical case, i.e. the one involving the
Laplace operator (or, equivalently, the Brownian motion) in Euclidean space, which is the
subject of articles [H3] and [H4].

Another operator/process set examined in the achievement is the half of the Bessel op-
erator 1

2Lµ and the related Bessel process R(µ), where µ ∈ R denotes its index. For indices
of the form µ = n/2 − 1, n = 1, 2, 3, ..., Lµ is the radial part of the n-dimensional Laplacian
and the Bessel process may be described as a norm of n-dimensional Euclidean Brownian
motion. The process is also closely related to the geometric Brownian motion by the Lam-
perti relation. Furthermore, in form of the Bessel-Brownian diffusion, it plays a crucial role
in approach to hyperbolic Brownian motion [1, 14] and is used to represent symmetric stable
processes as well [45]. Finally, it is exploit to model stock prices and has further applications
to mathematical finance [25, 27, 65].
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Our goal is to study the behaviour of probability transition densities of the aforementioned
diffusions killed when exiting a given set. In other words, we examine Dirichlet heat kernels
for the Bessel and Laplace operators. We consider mainly bounded sets, for which long-time
behaviour usually follows from general spectral theory, which leads to series representations
involving eigenfunctions and eigenvalues of an operator in a given set. Unfortunately, such
representations happen to be completely unhelpful when dealing with small times, since the
sum is highly oscillating and the cancellations between the terms matter in that case. The
first estimates addressing short time behaviour of the heat kernels are associated with the
property of not feeling the boundary introduced by M. Kac in [37], which says that for points
x, y from a domain D such that the interval xy is contained in D it holds

pD(t, x, y)
p(t, x, y)

t→0−→ 1, (1)

where p(t, x, y) and pD(t, x, y) are the global and Dirichlet heat kernels, respectively. Later
on, this property has been proven and generalized in many other settings. Nevertheless,
its weakness is that the space arguments x and y are fixed or, at least, far away from the
boundary of D. On the other hand, there are numerous results on the estimates of the heat
kernels which take into consideration the boundary behaviour. However, they share another
weakness - lower and upper bounds are completely incomparable for some range of argument,
which does not enable one to catch the precise behaviour of the Dirichlet heat kernels, or
their ratio to the global heat kernel. The achievement consisting of the articles [H1]–[H4] is
devoted to solving this problem in the case of the sets (0, 1) and [0, 1) for the Bessel process
and of a large class of C1,1 domains for the Brownian motion. Namely, estimates are derived
such that the the lower and upper bounds are, up to a multiplicative constant, the same.
We will call such estimates sharp. Some results for the distribution of the first exit time and
place are established as well. We refer the reader to [6, 7, 8, 31, 48, 49] for some other recent
articles focused on sharp estimates of heat kernels in other settings. Such precise estimates
for Dirichlet heat kernels are very rare. In the case of the Brownian motion they have been
known only in such basic cases as a half-line and an interval (and their multidimensional
extensions and products) as they are given by simple explicit formulae. For the Bessel process
the Dirichlet heat kernels for a half-line have been recently estimated as well [8, 9], but it
required some substantial effort. After analyzing the literature, one can observe that most
approaches to the heat kernel estimates are purely analytical, which usually leads to different
constants in exponents in Gaussian-type estimates and this causes a significant gap between
lower and upper bounds. In comparison, our approach relies on probabilistic methods which
yield some additional representations of the heat kernels. Furthermore, they provide us with
many intuitions and help us with understanding of the behaviour of the studied functions,
which plays an important role in proper approximation of the heat kernels. Nevertheless,
despite of the strength of the probabilistic methods, they still require to be complemented
with rough analysis and this mixture turned out to be very efficient in the topic.

The description of the results is organized as follows. In Section 4.2 we collect some
preliminary material. Section 4.3 is devoted to the Bessel process, which is studied in the
articles [H1] and [H2]. Section 4.4 corresponds to results from [H3] and [H4], that concern
the Dirichlet heat kernels estimates for Brownian motion. Note that in the case of articles
[H1] and [H3] not only general methods are mentioned, but sketches of the proofs are given
as well, since these articles contain only one main result each. Finally, Section 4.5 specifies
my contribution to the articles included in the achievement and in Section 4.6 one can find
the summary of the results and their significance.
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4.2 General definitions and notation
In this subsection we gather basic facts and introduce notation related to the general theory
of stochastic processes and semigroups.

Let X = {X(t)}t⩾0 be a n-dimensional diffusion and denote by Px and Ex the probability
law and the expected value of the process X starting from x ∈ Rn, respectively. The transition
probability density of the process is a function p(t, x, y) satisfying

Px(X(t) ∈ A) =
∫

A
p(t, x, y)m(y)dy, t ⩾ 0, A ∈ B(Rn), (2)

where m(dy) = dy is the Lebesgue measure in the case of the Brownian motion and the
speed measure m(y)dx =2y2µ+1dy in the case of the Bessel process. Note that in Section 4.3
we use notation p(µ) instead of p in order to indicate the index µ ∈ R of the Bessel process
(see Section 4.3.1) and to distinguish its transition probability density from the density of
the Bessel process.

The definition (2) ensures the symmetry p(t, x, y) = p(t, y, x). Furthermore, the following
Chapman - Kolmogorov identity (semigroup property) holds for s, t ⩾ 0 and x, y ∈ Rn:∫

Rn
p(s, x, z)p(t, z, y)m(z)dz = p(s + t, x, y). (3)

The infinitesimal generator of the process is given by

Af = lim
t→0+

1
t

(∫
Rn

p(t, x, y)f(y)m(y)dy − f(x)
)

, f : Rn → R.

Note that the transition probability density p(t, x, y) is a solution to the problem
∂

∂t
u(t, x, y) = Au(t, x, y), t > 0, x, y ∈ Rn,

lim
t→0+

u(t, x, y)m(y) = δx(y).
(4)

The limit is understood in the distributional sense and δx stands for the Dirac delta distri-
bution. The first equation is known as the heat equation and therefore p(t, x, y) is called the
heat kernel.

For a fixed set D ⊂ Rn (if D is connected and open we call it a domain) we define the
first exit time from D by

τD = inf{t > 0 : X(t) /∈ D}.

The density of this random variable will be denoted by qD(t, x). Next, we define qD(t, x, y)
as we the density of exit time and place of the process X from D, i.e. for Borel sets A ⊂ ∂D
and T ⊂ [0, ∞) we have

Px(τD ∈ T ; X(τD) ∈ A) =
∫

A

∫
T

qD(t, x, y)dt σD(y)dy,

where σD(y)dy is the surface measure on ∂D generated by m. It clearly holds qD(t, x) =∫
∂D qD(t, x, y)dy.

The process XD is defined as the process X killed when exiting the domain D:

XD(t) =
{

X(t), for t < τD,

∂, for t ⩾ τD ,
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where ∂ is an additional state called cemetery. The transition probability density of the
process XD will be denoted by pD(t, x, y), i.e. for a Borel set A ⊂ Rn we have

Px
(
XD(t) ∈ A

)
= Ex[t < τD; X(t) ∈ A] =

∫
A

pD(t, x, y)m(y)dy.

If D is regular enough (of C1,1 type, for example), the function pD(t, x, y) satisfies the heat
equation (4) with additional Dirichlet condition u(t, x, y) = 0 for y ∈ ∂A, and is also called
the Dirichlet heat kernel.

Furthermore, the Strong Markov property leads to the representation

pD(t, x, y) = p(t, x, y) − Ex [τD < t; p(t − τD, X(τD), y)]

= p(t, x, y) −
∫ t

0

∫
∂D

p(t − s, z, y)qD(s, z, y)dz ds. (5)

known in the literature as the Hunt formula [34]. Note that the function pD(t, x, y) also
satisfies the Chapman-Kolmogorov identity (3) with x, y ∈ D. One of the consequences of
the Hunt formula is the following monotonicity property: for A1 ⊂ A2 ⊂ Rn it holds

pA1(t, x, y) ⩽ pA2(t, x, y), x, y ∈ A1, t > 0. (6)

Throughout the whole description |x − y| denotes the Euclidean distance between x, y ∈
Rn. Furthermore, since many expressions depend on a distance of a point to the boundary
of a given set D, we define for x ∈ D ⊂ Rn

δD(x) = inf{|x − z| : z ∈ ∂D}.

By B(x, r) we denote a ball of radius r > 0 centered at x ∈ Rn. If the dimension of
a ball in consideration is different than n, we indicate it in the subscript, i.e. Bk(x, r) is a
k-dimensional ball.

Finally, for two nonnegative functions f and g we denote f ≲ g whenever there exists a
constant c > 0 such that f ⩽ cg holds in an indicated range of arguments. If f ≲ g and
g ≲ f we write f ≈ g and estimates of that type will be called sharp. Additionally, if the
constant c depends on some parameters, we put these parameters over the sign ≲ or ≈. We
also use the notation a ∧ b := min{a, b} and a ∨ b := max{a, b} for a, b ∈ R.

4.3 The Bessel process
4.3.1 Basic properties

We denote by R(µ)(t) the Bessel process with index µ ∈ R and starting from the point x > 0.
It is a diffusion on [0, ∞) with generator given by

1
2Lµ = 1

2
d2

dx2 + 2µ + 1
2x

d

dx
. (7)

Another common parameter of the Bessel process is its dimension given by ρ = 2µ + 2.
One of the difficulties to deal with is the behaviour of the Bessel process at zero, which

depend on the value of the index µ. For µ ⩾ 0 the process never riches zero, and for µ ⩽ −1
we impose that the point zero is killing. In the case of µ ∈ (−1, 0) we may consider one of
both: killing or reflecting condition at zero. In the case when µ ⩾ 0 or µ ∈ (−1, 1) and zero
is reflecting one can start the process from x = 0 as well, however, all the presented results
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come then by continuity, so we assume always x > 0 in order to simplify the presentation of
results and proofs.

We write P(µ)
x and E(µ)

x for the probability law and the expected value of a Bessel process
with an index µ ∈ R on the canonical path space with starting point x > 0. The natural
filtration of the process R(µ)(t) is denoted by Ft = σ

{
R(µ)(s) : s ⩽ t

}
. The laws P(µ)

x and P(ν)
x

of Bessel processes with indices µ ∈ R and ν ∈ R, respectively, are absolutely continuous and
the corresponding Radon-Nikodym derivative is described by (see [55], p. 450, and [44], p.
314)

dP(µ)
x

dP(ν)
x

∣∣∣∣∣
Ft

=
(

R(ν)(t)
x

)µ−ν

exp
(

−µ2 − ν2

2

∫ t

0

ds

[R(ν)(s)]2

)
, (8)

where x > 0, and the above given formula holds P(ν)
x -a.s. on {τ(0,∞) > t}. Taking ν = −µ > 0

and assuming R(µ) is killed at zero, one can see that potential theory of processes with
opposite indices are closely related. In particular, transition probability densities are equal
up to a simple factor (y/x)2µ.

Let us note that the Bessel process with index µ = n/2 − 1 (which corresponds do the
dimension n), n = 1, 2, 3, ..., may be represented as follows

R( n−2
2 ) d=

√
W 2

1 + ... + W 2
n ,

where (W1, ..., Wn) is a n-dimensional Brownian motion (i.e. a diffusion generated by 1
2∆)

starting from z ∈ Rn satisfying |z| = x. Additionally, for n = 1 we may impose a killing
condition at zero and then R(−1/2) represents simply the Brownian motion killed at 0.

By p(µ)(t, x, y) we denote the transition density function (with respect to the speed mea-
sure m(dx) = m(x)dx =2x2µ+1dx) of the process R(µ)(t) with µ > −1 and reflecting condition
at zero. We have (Section 21 in Appendix 1 in [10])

p(µ)(t, x, y) = 1
2t

(xy)−µ exp
(

−x2 + y2

2t

)
Iµ

(
xy

t

)
, x, y, t > 0, (9)

where Iµ denotes the modified Bessel function of the first kind. Using its asymptotic be-
haviour we get

p(µ)(t, x, y)
µ
≈ e−(x−y)2/2t

(yx + t)µ+1/2 √
t
, x, y, t > 0. (10)

4.3.2 The Fourier-Bessel heat kernel

Consider now the Bessel process with index µ > −1 starting from 0 < x < a, reflected at zero
and killed when hitting the level a (when exiting the interval [0, a), equivalently). We denote
its density by p(µ)

a (t, x, y). Due to the scaling property p(µ)
a (t, x, y) = a p1(t/a2, x/a, y/a) we

narrow our attention to the case a = 1. Note that the absolute continuity property (8) allows
one to easily extended the result presented in this section onto the case when µ < 0 with
killing condition at zero.

It turns out that 2p
(µ)
1 (2t, x, y), µ > −1, is known also as the Fourier-Bessel heat kernel

Gµ
t (x, y), which is represented in terms of the Bessel functions of the first kind Jµ(z) and its

successive positive zeros λn,µ in the following way

Gµ
t (x, y) = 2(xy)−µ

∞∑
n=1

exp
(
−λ2

n,µt
) Jµ(λn,µx)Jµ(λn,µy)

|Jµ+1(λn,µ)|2 , x, y ∈ (0, 1), t > 0. (11)
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Unfortunately, this explicit representation can be only used to examine the behaviour of the
heat kernel for large times. Indeed, it is well-known that Gν

t (x, y) behaves then like the first
term of the series. The description of the behaviour of Gν

t (x, y) for small times is very difficult
to obtain from the above-given series representation, since the sum is highly oscillating and
the cancellations between the terms matter in that case.

The Fourier-Bessel heat kernel Gν
t (x, y) and its counterparts has been studied for a long

time in many different contexts, such as the study of the fundamental operators associated
with the Fourier-Bessel expansions (see [17], [18], [19], [20], [21]) or the related Hardy spaces
[26] (see [46] for more references). The estimates of Gν

t (x, y) has been recently studied in
[46] and [47], where the provided two-sided estimates of Gν

t (x, y) were quantitatively sharp,
i.e. the different constants appear in the exponential terms of the lower and upper bounds.
It makes the estimates not sharp, whenever |x − y|2 >> t. In the main result of the article
[H1] given in Theorem 1, the exponential behaviour of the kernel is described explicitly, i.e.
the exponential terms in the lower and upper bounds are exactly the same. Note that in
the papers [9, 8] the sharp two-sided estimates for the Dirichlet heat kernel of the half-line
(a, ∞) associated with the Bessel differential operator has been obtained.

Theorem 1 (Theorem 1 in [H1]).
For every µ > −1 we have

p
(µ)
1 (t, x, y)

µ
≈ (1 + t)µ+2

(t + xy)µ+1/2

(
1 ∧ (1 − x)(1 − y)

t

)
1√
t

exp
(

−|x − y|2

4t
− λ2

1,µt

)
. (12)

whenever x, y ∈ (0, 1) and t > 0.

Remark. Note that by (10), the estimate (12) is equivalent to

p
(µ)
1 (t, x, y)

p(µ)(t, x, y)
µ
≈
(

1 ∧ (1 − x)(1 − y)
t

)
(1 + t)µ+2 exp

(
−λ2

1,µt
)

, (13)

which shows the relation between the Dirichlet and global heat kernels.

Sketch of the proof of Theorem 1.
Since estimates for large times are known (see [47]), we narrow our attention to t < t0 for
some t0 < 1/4 to be fixed later (this, by Chapman-Kolmogorov identity, implies estimates in
the range t < T for any T > 0). Under this assumption, the assertion is equivalent to (see
(13))

p
(µ)
1 (x, y)

µ
≈
(

1 ∧ (1 − x)(1 − y)
t

)
p(µ)(t, x, y).

Furthermore, due to the symmetry p
(µ)
1 (t, x, y) = p

(µ)
1 (t, y, x), we assume y > x.

Lower bound.
Let us consider first x, y ⩾ 1/32. Since both of the space arguments are bounded from
zero, so for small times the behaviour of p

(µ)
1 (t, x, y) is expected to be similar to the classical

heat kernel for Laplacian. To obtain the proper lower bound, we use first the inequality
p

(µ)
1 (t, x, y) ⩾ p

(µ)
(x/4,1)(t, x, y) (see (6)). Then, by the absolute continuity property (8) we get
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for a set Borel A ⊂ (x/4, 1)∫
A

p
(µ)
(x/4,1)(t, x, y)m(µ)(dy) = E(µ)

[
t < τ(x/4,1); R(t) ∈ A

]

= E(−1/2)

t < τ(x/4,1); R(t) ∈ A;
(

R(t)
x

)µ+1/2

exp

−
µ2 −

(
1
2

)2

2

∫ t

0

ds

[R(s)]2


 .

One can show that the last factor which appeared under the expectation is bounded and
bounded away from zero on {t < τ(x/4,1)} with x > 1/32 and consequently

p
(µ)
(x/4,1)(t, x, y)

µ,t0≈ p
(−1/2)
(x/4,1)(t, x, y)

µ,t0≈
(

1 ∧ (1 − x)(1 − y)
t

)
p(t, x, y), x, y ∈ (1/32, 1), t < t0, (14)

where the last estimate follows from (31) and (10), as p
(−1/2)
(x/4,1)(t, x, y) is simply the transition

probability density function of the Brownian motion killed on exiting the interval (x/4, 1).
Assume now x, y ⩽ 1/4. In this case both of the space argument are bounded away from

the killing point and for small times the behaviour of p
(µ)
1 (t, x, y) is expected to be similar to

the behaviour of p(µ)(t, x, y). The Hunt formula (5) takes the form

p
(µ)
1 (t, x, y) = p(µ)(t, x, y) −

∫ t

0
q[0,1)(s, x)p(µ)(t − s, 1, y)ds. (15)

We will show that the subtrahend is significantly smaller then the minuend. Indeed, using
the estimate (10) one can show that for t0 > 0 sufficiently small it holds

p(µ)(t − s, 1, y)
µ

≲
e−9/32t

tµ+1

µ

≲ p(µ)(t, x, y)
(

xy + t

t

)µ+1/2
e−9/32t+|x−y|2/2t

µ,t0
≲ p(µ)(t, x, y)e−1/4t

tµ+1

µ

≲ p(µ)(t, x, y)e−1/8t.

Thus we get∫ t

0
q[0,1)(s, x)p(µ)(t − s, 1, y)ds

µ,t0
≲ p(µ)(t, x, y)e−1/8t

∫ t

0
q[0,1)(s, x)ds ⩽ p(µ)(t, x, y)e−1/8t,

as required.
In the remaining case x < 1/32, y > 1/4 we employ the Chapman-Kolmogorov identity

(3) narrowing suitably the integration interval as follows

p
(µ)
1 (t, x, y) ⩾

∫ 1/4

1/32
p

(µ)
1 (t/8, x, z)p(µ)

1 (7t/8, z, y)dm(µ)(dz).

Note that the choice of the time moments t/8 and 7t/8 is crucial and reflects the intuition
that after the time t/8 the process is expected to be around 7

8x+ 1
8y which should be included

in the integration interval. Next, since x, z ⩽ 1/4 and y, z ⩾ 1/32 we may take advantage of
the previous cases and, after careful estimation of the integral, conclude the required bounds.
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Upper bound.

Due to the inequality p
(µ)
1 (t, x, y) ⩽ p(µ)(t, x, y) (see e.g. (6)), it is enough to consider the

case (1 − x)(1 − y)/t < 1 only. We will show then the bound

p
(µ)
1 (t, x, y)

µ,t0
≲

(1 − x)(1 − y)
t

p(µ)(t, x, y).

Furthermore, by the assumptions y > x and t < 1/4, we obtain 1 − y <
√

t < 1/2, and
consequently y > 1/2. The main idea is to rewrite the Hunt formula (15) into the following
manner∫

A
p

(µ)
1 (t, x, y)dy = E(ν)

x [t < τ[0,1); R(t) ∈ A]

=
(
E(ν)

x [R(t) ∈ A] − E(ν)
x [R(t) ∈ 2 − A]

)
+
(
E(ν)

x [R(t) ∈ 2 − A] − E(ν)
x [t ⩾ τ[0,1); R(t) ∈ A]

)
,

where A ⊂ (0, 1). This gives us

p
(µ)
1 (t, x, y) = k1(t, x, y) + k2(t, x, y),

where

k1(t, x, y) = p(t, x, y) −
(

2 − y

y

)2µ+1

p(t, x, 2 − y)

and

k2(t, x, y) =
(

2 − y

y

)2µ+1

p(t, x, 2 − y) −
∫ t

0
q[0,1)(s, x)p(µ)(t − s, 1, y)ds

=
∫ t

0
q[0,1)(s, x)

(2 − y

y

)2µ+1

p(t − s, 1, 2 − y) − p(µ)(t − s, 1, y)
 ds.

This representation is supposed to mimic the reflection principle for Brownian motion (and
other symmetric diffusions), as 2 − y is a reflection of y with respect to the killing point 1.
Normally, k2(t, x, y) vanishes. In this case it does not happen, but we will show that it is
significantly smaller than k1(t, x, y). Let us also note that estimates of the function q1(s, y)
were not known at the time (but have been derived later on in [H2] from Theorem 1), which
would be very useful here.

Using the formula (9), monotonicity of the modified Bessel function Iµ(·) and the bound

Iµ(y)
Iµ(x) ⩽ ey−x

(
y

x

)µ+1
, µ > −1, y > x > 1,

derived in Lemma 2.1 in [H1], we get for w ∈ (0, 1] and t < t0

1 − y
µ,t0
≲ 1 −

(
2 − y

y

)2µ+1
p(t, w, 2 − y)

p(t, w, y)
µ,t0
≲

1 − y

t
,

which gives us for x ∈ (0, 1/2)

k1(t, x, y)
µ,t0
≲

(1 − x)(1 − y)
t

p(µ)(t, x, y)
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as well as

k2(t, x, y)
µ,t0
≲ (1 − y)

∫ t

0
q[0,1)(s, x)p(µ)(t − s, 1, y)ds ⩽ 2(1 − x)(1 − y)p(µ)(t, x, y),

as required. Note that we simply bounded
∫ t

0 q[0,1)(s, x) ⩽ 1 and therefore we omitted the
problem of unknown form of q[0,1)(s, x).

In the case x ∈ (1/2, 1) we apply strong Markov property in the following manner

p
(µ)
1 (t, x, y) = p

(µ)
(x/4,1)(t, x, y) +

∫ t

0
q

(µ)
(x/4,1)(s, x, x/4)p(µ)

1 (t − s, x/4, y)ds, (16)

where q
(µ)
(2/4,1)(s, x, x/4) is the density of hitting time at x/4 before hitting 1. The first term

represents the paths from x to y that are included in the interval (x/4, 1), while the other
one represents the paths that are included in the interval [0, 1) but have left (x/4, 1) at some
point. The first term of the right-hand side in (16) has been estimated in (14). Regarding
the other term, one can show by some nontrivial analysis and using the already proven upper
and lower bounds of p

(µ)
1 (t, x, y) for x < 1/2 that

p
(µ)
1 (t − s, x/4, y)

µ

≲ e−1/64tp
(µ)
1 (t − s, x/2, y).

Since additionally
q

(µ)
(x/4,1)(s, x, x/4) ⩽ q

(µ)
(x/2,1)(s, x, x/2),

by strong Markov property we estimate the integral in (16) as follows∫ t

0
q

(µ)
(x/4,1)(s, x, x/4)p(µ)

1 (t − s, x/4, y)ds

µ

≲ e−1/64t
∫ t

0
q

(µ)
(x/2,1)(s, x, x/2)p(µ)

1 (t − s, x/2, y)ds

⩽ e−1/64tp
(µ)
1 (t, x, y).

Applying this and (14) to (16) we arrive at

p
(µ)
1 (t, x, y) ⩽ cµ

((
1 ∧ (1 − x)(1 − y)

t

)
p(t, x, y) + e−1/64tp

(µ)
1 (t, x, y)

)
,

for some constant cµ > 0. Taking t0 such that cµe−1/64t < 1/2 for t < t0, we obtain the
required bound.

□

4.3.3 Exit time of the Bessel process from the intervals (0, 1) and [0, 1)

Another important object to study when dealing with the Bessel process on the interval
(0, 1) (or [0, 1)) is the distribution of the first exit time (and place, if the point 0 is killing).
In particular, for µ = (n − 2)/2, n = 1, 2, 3, ..., it is equivalent to the distribution of the
first exit time of n-dimensional Brownian motion from a unit ball. Our aim is to provide
asymptotics and uniform estimates of the first exit time (and place) density in whole range
of index µ ∈ R. Note that analogous results, for µ ∈ R, are already known in case of the
half-line (1, ∞) [13, 32, 60], but they are obtained by usage of completely different methods.
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Although in our case the domain is bounded, we need to deal with its singular behaviour at
zero.

In the case when zero is reflecting, the only exit point is 1. When zero is killing, there
are two exit points: 0 and 1, and therefore those cases are not that similar to each other as
in the case of the transition density functions. For this reason we introduce the following
notation. For µ > −1 and reflecting condition at zero we define

q
(µ)
1 (t, x) = P(µ)

x

(
τ[0,1) ∈ dt

)
, x ∈ (0, 1), t > 0.

Furthermore, when µ < 0 and zero is killing we denote

q
(µ)
(0,1)(t, x, y) = P(µ)

x

(
τ(0,1) ∈ dt; R(µ)

(
τ(0,1)

)
= y

)
,

where x ∈ (0, 1), y ∈ {0, 1} and t > 0. Note that the absolute continuity property (8) we
have the following relation for µ > 0

q
(µ)
(0,1)(t, x, 1) = x−2µq

(−µ)
1 (t, x), x ∈ (0, 1), t > 0. (17)

It is also worth mentioning that in 1980, J.T. Kent yielded in his paper [38] the following
series formula

q
(µ)
1 (x, t) = x−µ

∞∑
n=1

jµ,n
Jµ(jµ,nx)
Jµ+1(jµ,n)e−j2

µ,nt/2, (18)

which can not be directly use to study the short time behaviour.
The first main result from the article [H2] shows how densities of first exit times might

be represented by means of the transition density function of the killed process.

Theorem 2 (Theorem 3.1 in [H2]).
Let x ∈ (0, 1). For µ > −1 we have

q
(µ)
1 (t, x) = −∂−

∂y
p

(µ)
1 (t, x, y)

∣∣∣∣∣
y=1

, (19)

where ∂−/∂y denotes the left-sided derivative. Furthermore, for µ < 0

q
(µ)
0,1 (t, x, 1) = − ∂−

∂y
p

(µ)
0,1(t, x, y)

∣∣∣∣∣
y=1

, (20)

q
(µ)
0,1 (t, x, 0) = lim

y→0
y2µ+1 ∂

∂y
p

(µ)
0,1(t, x, y)

= −2µx−2µ p
(−µ)
0,1 (t, x, 0). (21)

The proof of Theorem 2 starts with justifying identities

q
(µ)
1 (t, x) = − ∂

∂t

∫ 1

0
p

(µ)
1 (t, x, y)m(y)dy

= −
∫ 1

0
(1

2Lµp
(µ)
1 )(t, x, y)m(y)dy

= −
∫ 1

0

∂

∂y

(
m(y) ∂

∂y
f(y)

)
dy,

11



where properties of the Bessel functions of the first kind Jν were employed. This allows us to
conclude (19). The remaining formulas were derived similarly, but required more calculations
and manipulations.

Theorem 2 together with Theorem 1 allow us to obtain the estimates for the first exit
times densities presented in Theorem 3. Note that generally estimates of a given function
do not imply estimates of its derivative, however, it is possible to deduce them at the points
where the function vanishes. For instance, we have

q
(µ)
1 (t, x, 1) = − ∂−

∂y
p

(µ)
1 (t, x, y)

∣∣∣∣∣
y=1

= lim
y→1+

p
(µ)
1 (t, x, y)

1 − y
, (22)

since p
(µ)
1 (t, x, 1) = 0.

Theorem 3 (Theorem 3.3 in [H2]).
For µ > −1 we have

q
(µ)
1 (t, x)

µ
≈ (1 − x)(1 + t)µ+2

(x + t)µ+1/2t3/2 exp
(

−(1 − x)2

2t
− 1

2λ2
µ,1t

)
,

where x ∈ [0, 1), t > 0. For µ < 0 we have

q
(µ)
0,1 (x, t, 1)

µ
≈ x−2µ(1 − x)

(x + t)−µ+1/2
(1 + t)−µ+2

t3/2 exp
(

−(1 − x)2

2t
− 1

2λ2
−µ,1t

)
,

q
(µ)
0,1 (x, t, 0)

µ
≈ x−2µ(1 − x)

1 − x + t

(1 + t)−µ+2

t−µ+1 exp
(

−x2

2t
− 1

2λ2
−µ,1t

)
,

where x ∈ (0, 1), t > 0.

Let B(t) be the n-dimensional Brownian motion starting from x ∈ Rn. By qn(t, x) we
denote the density function of the first exit time of Brownian motion from the unit ball
B(0, 1) centered at the origin. Since |B(t)| is a Bessel process with index n/2 − 1 (with
reflecting condition at 0 for n = 1), we have qn(t, x) = q

(n/2−1)
1 (t, |x|) and, consequently,

Corollary 4. For x ∈ B(0, 1) we have

qn(t, x) n≈ (1 − |x|)(1 + t)n/2+1

(|x| + t)(n−1)/2t3/2 exp
(

−(1 − |x|)2

2t
− 1

2λ2
n/2−1,1t

)
.

Another consequence of Theorem 2 are the following formulae for q
(µ)
0,1 (t, x, y). Indeed,

employing additionally the representation (11) and properties of the Bessel function Jν(x),
we get

Corollary 5 (Corollary 3.2 in H2).
For µ < 0 and x ∈ (0, 1) we have

q
(µ)
0,1 (t, x, 1) = x−µ

∞∑
n=1

j−µ,n
J−µ(j−µ,nx)
J−µ+1(j−µ,n)e−λ2

−µ,nt/2,

q
(µ)
0,1 (t, x, 0) = 2x−µ

Γ(−µ)

∞∑
n=1

(j−µ,n)−µ J−µ(j−µ,nx)
|J−µ+1(j−µ,n)|2

e−λ2
−µ,nt/2.

12



Finally, we present uniform asymptotics of the first exit time densities, that involve situa-
tions when x/t or (1−x)/t (depending on the killing point) tend to zero or infinity. We start
with introducing Oµ notation. For two functions f, g : R2 → R we denote f(x) = Oµ (g(x))
whenever |f(x)|

µ

≲ g(x) for x in an indicated range.

Theorem 6 (Theorem 4.2 in [H2]).
There exists t0 > 0 such that the following asymptotics hold for all t < t0:
for µ > −1 we have

q
(µ)
1 (t, x) = 1 − x√

2πt3

e−(1−x)2/2t

xµ+1/2

(
1 + Oµ

(
t

x

))
, x ∈ [0, 1), (23)

q
(µ)
1 (t, x) = 1 − x

tµ+1
e−(1−x)2/2t

2µΓ(µ + 1)

(
1 + Oµ

((
x

t

)2
+ t

))
, x < 1/2. (24)

If µ < 0, then

q
(µ)
0,1 (t, x, 0) = 2x−2µe−x2/2t

(2t)−µ+1Γ(−µ)
(
1 + Oµ

(
e−2(1−x)/t

))
, x ∈ [0, 1), (25)

q
(µ)
0,1 (t, x, 0) = 8(1 − x)x−2µ

(2t)−µ+2Γ(−µ)e−x2/2t
(

1 + Oµ

(1 − x

t
+ t

))
, x ∈ (0, 1). (26)

Remark. The asymptotic behaviour of q
(µ)
0,1 (t, x, 1) follows from the above-given theorem and

the relationship (17).

The proof of Theorem 6 fills up the whole Section 4 in the article [H2]. First, in theorem
4.1 in [H2] we derive asymptotics in terms of the functions p(µ)(t, x, y) and q

(−1/2)
x/4,1 (t, x, y).

This is achieved by several tools: strong Markov property, inequalities for the modified
Bessel function of the first kind Iν(x), absolute continuity property (8) and some calculations
reflecting intuitions worked out while studying the problem. The proof of Theorem 4.2 in
[H2] focuses mainly on proper usage of the series representation of q

(−1/2)
x/4,1 (t, x, y) (related to

(30)), which is equivalent to the hitting time density of the point 1 for the Brownian motion
in the interval (x/4, 1).

4.4 The Brownian motion
4.4.1 Context and known results

We define the Brownian motion as the process generated by the half of the Laplacian 1
2∆. The

corresponding n-dimensional (global) heat kernel is given by p(t, x, y) = (2π)−n/2e−|x−y|2/2t.
Concerning the Dirichlet heat kernels, we recall the following general bounds provided by
E. B. Davis in [23] (upper bound) and Q. S. Zhang in [66] (lower bound). For a C1,1 bounded
domain D there are constants c1, c2, c3, c4, T > 0 such that

c1
(

(1−|x|)(1−|y|)
t

∧ 1
) e−c2|x−y|2/t

tn/2 ⩽ pD(t, x, y) ⩽ c3
(

(1−|x|)(1−|y|)
t

∧ 1
) e−c4|x−y|2/t

tn/2 (27)

for every x, y ∈ D and t < T . Unfortunately, the constants c2 and c4 are different and
different than 1/2, which appears in the global heat kernel. Therefore, the lower and upper
bounds are incomparable with each other and incomparable with the global heat kernel for
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large |x − y|2/t. There are some results with correct exponents, but they completely fail in
describing the boundary behaviour (see e.g. [61, 62, 63]). For instance, the main result of
[62] (combined with Theorem 7), for simplicity restricted to convex domains, states that

pD(t, x, y) ⩾ c

(
1 ∧ (δD(x) ∧ δD(y))2

t

)
e−λt/(δD(x)∧δD(y))2(

1 + 1
t

(δD(x) ∧ δD(y))2
)(n+2)/2 p(t, x, y),

for some c > 0, where λ stands for the first eigenvalue of −∆ in the unit ball. However,
the article was focused on asymptotics of the heat kernels with fixed space arguments, where
the boundary behaviour plays marginal role. Until recently, precise two-sided estimates for
Dirichlet heat kernels have been known only in such basic cases as a half-line and an interval
(and their multidimensional extensions) as they are given by simple explicit formulae. Even
the case of such a classical set as a ball turned out to require a more subtle approach, which
will be shown in the next section.

As a quantitative version of the property of not feeling the boundary (cf. (1)) Michiel van
den Berg showed in [61] the following bounds:

p(t, x, y) ⩾ pD(t, x, y) ⩾ p(t, x, y)
1 − e−ρ2/t

n∑
k=1

2k

(k − 1)!

(
ρ2

t

)k−1
 , (28)

where ρ is the distance between the interval xy and the boundary ∂D of the domain D, i.e.

ρ = inf
w∈xy
z∈∂D

|w − z|.

A simple observation is that for ρ > c
√

t the above bounds induce sharp two-sided estimates
of pD(t, x, y). Nevertheless, this is the simplest case and is helpful only when the boundary
has no major influence, which is indicated in the name of the property anyway.

Note that the long-time behaviour (i.e. for t ⩾ T , where T > 0 is fixed) of pD for
bounded domains D can be easily deduced from the general theory (see [23], [24]), i.e. there
is a comparability between pD and

δD(x)δD(y)e−λ1t,

for every x, y ∈ D and t ⩾ T , where λ1 stands for the first eigenvalue of −∆ on D. Note
that this kind of result can be derived from the spectral series representation of the kernel pD

in terms of the eigenfunctions and eigenvalues of the Laplacian in D (see for example [33]),
i.e. it can be shown that for large times t the first component of the series dominates the
others. However, this representation is ineffective for small t, when we have to deal with the
cancellations of highly oscillating series - similarly as in the case of the Bessel process in the
interval (0, 1).

There are few examples of sets, where the heat kernel is expressed by means of elementary
functions, which allows one to obtain precise estimates. The simplest example is a half-line
(as a subset of R). Let it be (0, ∞), for simplicity. Due to the famous reflection principle we
have for x, y, t > 0

p(0,∞)(t, x, y) = p(t, x, y) − p(t, x, −y) = p(t, x, y)
(
1 − e−2xy/t

)
≈
(

1 ∧ xy

t

)
p(t, x, y).
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Since the coordinates of a Brownian motion are independent and due to rotational and
translational invariance of heat kernels, the above estimate may be extended to any half-
space H ⊂ Rn, i.e. we have

pH(t, x, y) = p(t, x, y)
(
1 − e−2δH(x)δH(y)/t

)
≈
(

1 ∧ δH(x)δH(y)
t

)
p(t, x, y). (29)

Another example is an interval (a, b), −∞ < a < b < ∞:

p(a,b) = 1√
2π

∞∑
k=−∞

[
exp

(
−(x − y + 2(b − a))2

2t

)
− exp

(
−(x + y + 2k(b − a))2

2t

)]
. (30)

Making some effort, one can show that for 0 < t < 1 and x, y ∈ (a, b) it holds

p(a,b) ≈ 1
b − a

p(t, x, y)
(

1 ∧ (x − a)(y − a)
t

)(
1 ∧ (b − x)(b − y)

t

)
. (31)

4.4.2 Dirichlet heat kernel of a ball

One can observe that the non-exponential factor in (31) is not comparable with the one in
(27). Namely for a = −1, b = 1 and x < −1/2, y > 1/2 those factors are comparable with
(1 + x)(1 − y)/t2 and (1 + x)(1 − y)/t, respectively. This mismatch happens already for an
interval, which is one of the simplest sets. The question that arises is ”what are the estimates
for more complex sets?”.

An interval in the one-dimensional space R might be understand as a one-dimensional
ball. Thus, the natural generalization of (31) would be estimates of the Dirichlet heat kernel
for a ball in higher dimensions. This problem turns out to be significantly more complex, due
to much more complicated relations between x, y and the boundary of the ball. Nevertheless,
in the next theorem, which is the main result of [H3], we provide desired estimates for the
ball B = B(0, 1) in any dimension.

Theorem 7 (Theorem 1 in [H3]).
For every n ⩾ 1 and T > 0 we have

pB(t, x, y)
d,T
≈ h(t, x, y)p(t, x, y), (32)

for every |x|, |y| < 1 and t < T , where

h(t, x, y) =
(

1 ∧ (1 − |x|)(1 − |y|)
t

)
+
(

1 ∧ (1 − |x|)|x − y|2

t

)(
1 ∧ (1 − |y|)|x − y|2

t

)
. (33)

Before passing to the proof, let us make some comments.

1. The first term in the definition of h is the same as the factor in (27). However, adding
the other term turns out to be crucial.

2. Is not obvious, but in dimension one estimates (32) and (31) are comparable. To see
this, let us observe that if x and y are close to each other, the first term in (33) is
dominating (since [(1 − |x|) ∨ (1 − |y|)] ≳ |x − y|), and if x and y are far away from
each other, the other one.

15



3. Theorem 7 may be partly considered as an extension of Theorem 1 for µ = (n − 2)/2,
since for such indices the Bessel process is equivalent with the norm of Brownian motion,
and then p

((n−2)/2)
1 (t, x, y) =

∫
|z|=x pB(t, x, z)dσ(z), where σ is the spherical measure on

∂B. Thus estimating the integral, we obtain estimates of p
((n−2)/2)
1 (t, x, y).

4. he estimates in Theorem 7 have been complemented in [57] with uniform short-time
asymptotics with convergence rates under the conditions when the ratio δB(x+y

2 )/
√

t
tends to 0 or infinity.

5. The density function qD(t, x, z) of the joint distribution of the first exit time and place
is a normal inward derivative of pD(t, x, y) (see [33]) and consequently Theorem 7
immediately leads to its sharp two-sided estimates. This extends estimates of the first
exit time density (without its dependence on exit place) derived in Corollary 4.

Corollary 8 (Corollary 2 in [H3]).
For any T > 0 we have

qB(t, x, z)
d,T
≈
(

1 − |x|
t

+ |x − z|2

t

(
1 ∧ (1 − |x|)|x − z|2

t

))
p(t, x, z) (34)

whenever |x| < 1, |z| = 1 and t < T .

Sketch of the proof of Theorem 7.
First, let us introduce some notation. For x ∈ B − {0} we denote by Hx the half-space that
includes B and whose boundary is the hyperplane tangent to B at x

|x| .

x

x
|x|

y

Hx

B
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Upper bound.
Combining (3), (6) and (29) and noting that δHx(x) = 1 − |x|, we get

pB(t, x, y) =
∫

B(0,1)
pB(t/2, x, z)pB(t/2, z, y)dz

⩽
∫

B(0,1)
pHx(t/2, x, z)pHy(t/2, z, y)dz

≲
∫

B(0,1)

(
1 ∧ 1 − |x|

t

)
p(t/2, x, z)

(
1 ∧ 1 − |y|

t

)
p(t/2, z, y)dz

≲

(
1 ∧ 1 − |x|

t

)(
1 ∧ 1 − |y|

t

)∫
Rn

p(t/2, x, z)p(t/2, z, y)dz

=
(

1 ∧ 1 − |x|
t

)(
1 ∧ 1 − |y|

t

)
p(t, x, y),

which turns out to be equivalent to (32) whenever 1 − |x| ⩾ ε or |x − y| ⩾ ε for a fixed ε > 0.
When 1−|x|, |x−y| < ε and additionally x ∈ B(y/2|y|, 1/2), then it holds δHy(x) < 2(1−|x|)
and hence

pB(t, x, y) ⩽ pHy(t, x, y) ⩽
(

1 ∧
δHy(x)δHy(y)

t

)
p(t, x, y)

⩽ 2
(

1 ∧ (1 − |x|)(1 − |y|)
t

)
p(t, x, y) ⩽ 2h(t, x, y)p(t, x, y).

The remaining case, it is when 1 − |x|, |x − y| < ε and additionally x ∈ B − B(y/|y|, 1/2), is
the most challenging one.

We start from the simple inequality, that follows from the monotonicity property (6)

pB(t, x, y) ⩽ pHx∩Hy(t, x, y).

Unfortunately, there exist no satisfactory estimates of pHx∩Hy(t, x, y) in the literature, al-
though they are equivalent to estimates of the heat kernel in a two-dimensional cone (an
interior of an angle). Let us denote by αx,y the angle between vectors x and y. We apply
very precisely the Strong Markov property and obtain for αx,y < π/2

pHx∩Hy(t, x, y) ⩽ pHy(t, x, y) − pHy(t, x̄, y), (35)

where
x̄ = 2 − |x|

|x|
x

is a reflection of x with respect to the boundary ∂B of B. This somehow mimics the reflection
principle. Note that the assumption x ∈ B − B(y/|y|, 1/2) ensures x̄ ∈ Hy. Next, after some
calculations, one can show that

pHy(t, x, y) − pHy(t, x̄, y) = (a(t, x, y) + b(t, x, y))p(t, x, y),

where

a(t, x, y) =
(
1 − exp

[
− (1−|x|)(1−|y| cos αx,y)

t

]) (
1 − exp

[
− (1−|y|)(1−|x| cos αx,y)

t

])
,

b(t, x, y) = exp
[
− (1−cos αx,y)((1−|x|)+(1−|y|))

t

] (
1 − exp

[
−2 cos αx,y(1−|x|)(1−|y|)

t

])
.
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Bounding the first factor defining b(t, x, y) by 1 and using the estimate 1 − e−u ≈ 1 ∧ u,
u > 0, we easily obtain b(t, x, y) ≲ 1 ∧ ((1 − |x|)(1 − |y|)/t), which gives the first term in
(33). Furthermore, some geometrical arguments allow to us derive the bound

1 − |x| cos αx,y = (1 − |x|) + |x| sin2 αx,y

1 + cos αx,y

≈ |x − y|2,

and consequently

a(t, x, y) ⩽
(

1 ∧ (1 − |x|)|x − y|2

t

)(
1 ∧ (1 − |y|)|x − y|2

t

)
,

as required.

Lower bound.
Let us note that for x ∈ B((1 − r)y/|y|, r), for a fixed r ∈ (0, 1/2), we may expect that
pB(t, x, y) ≈ pHy(t, x, y) (the upper bound is obvious, by virtue of (6)). This is because the
distances from x to ∂B and ∂Hy are comparable, i.e. δHy(x) r≈ δB(x).

y
x

0
r

δB(x)
δHy(x)

(1 − r)y/|y|

Using strong Markov property, we may write

pB(t, x, y) = pHy(t, x, y) − R(t, x, y),

with
R(t, x, y) =

∫ t

0

∫
∂B

qB(s, x, z)pHy(t − s, z, y) dσ(z)ds,
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where σ denotes the spherical measure on ∂B. Since the upper bound for pB(t, x, y) is already
proven, it implies the upper bound in Corollary 7. Thus, we get

R(t, x, y) =
∫ t

0

∫
∂B

(
1 − |x|

t
+ |x − z|2

t

(
1 ∧ (1 − |x|)|x − z|2

t

))
p(s, x, z)

×
(

1 ∧
δHy(x)δHy(y)

t − s

)
p(t − s, z, y) dσ(z)ds.

It is shown in the proof of Proposition 3 in [H3], by some elaborate analysis, that for x ∈
B(15

16
y

|y| ,
1
16) it holds

R(t, x, y)
r

≲ pHy(t, x, y)
(

e−|x−y|2/16t + t

δ2
B(x)

)
.

This gives us comparability of pB(t, x, y) and pHy(t, x, y) under additional assumption of
|x − y|/

√
t and δB(x)/

√
t being large enough (however, the first one is easy to omit as small

values of |x − y|/
√

t are covered by (27)). Furthermore, this allows to obtain (Proposition 4
in [H3])

pB(t, x, y) ≳
(

1 ∧ (1 − |x|)(1 − |y|)
t

)
p(t, x, y), (36)

for any x ∈ B( y
3|y| ,

2
3), δB(x) ⩾ m

√
t and t < t0, for some m, t0 > 0. The final step takes

advantage of properly applied Chapman-Kolmogorov identity. For any |x − y|/
√

t > 4
√

m
we have

B(x+y
2 , m

√
t) ⊂ B( x

3|x| ,
2
3) ∩ B( y

3|y| ,
2
3)

and, by some geometrical arguments,

δB(z) = 1 − |z| ≳
√

t + |x − y|2, z ∈ B(x+y
2 , m

√
t).

x

y

x+y
20

B( x
3|x|,

2
3)

B( y
3|y|,

2
3)

B(x+y
2 , m

√
t)

B( x
3|x|,

2
3) ∩ B( y

3|y|,
2
3)

19



Thus

pB(t, x, y) ⩾
∫

B((x+y)/2,m
√

t)
pB(t/2, x, z)pB(t/2, z, y)dz

⩾
∫

B((x+y)/2,m
√

t)

(
1 ∧ δB(x)δB(z)

t

)(
1 ∧ δB(y)δB(z)

t

)
p(t/2, x, z)p(t/2, z, y)dz

m,t0
≳

(
1 ∧ δB(x)(t + |x − y|2)

t

)(
1 ∧ δB(y)(t + |x − y|2)

t

)

×
∫

B((x+y)/2,m
√

t)
p(t/2, x, z)p(t/2, z, y)dz

≳ h(t, x, y)p(t, x, y),

where comparability of the last integral with p(t, x, y) is separately proven in Lemma 1 in
[H3]. For |x − y|/

√
t ⩽ 4

√
m one may shift the center of the integration domain above by

m
√

t inward the ball B. This ends the proof.
□

4.4.3 Dirichlet heat kernel of C1,1 convex domains

Once we know the estimate from Theorem 7 the next natural direction of research is to
generalize them onto C1,1 domains. This problem has been addressed in the article [H4].
It is well known that C1,1 sets satisfy the inner and outer ball condition, which means that
for any point z from the boundary ∂D of the set D there are two balls tangent to D at z
such that one of them is completely included in D, and the other one in Dc. Furthermore,
if D is bounded, then there exists a radius r > 0 such that for any z ∈ ∂D the condition is
satisfied with balls of radius at least r. We will denote the class of sets with such a property
by C1,1

r (Rn).
We also make an additional assumption of convexity of the domains in order to obtain

exponential behaviour of Dirichlet heat kernels of the same order as in the global heat kernel
p(t, x, y). Namely, S. R. S. Varadhan showed (Corollary 4.7 in [64]) that for a domain D

lim
t→0

t ln (pD(t, x, y)) = 1
2d2

D(x, y),

where dD(x, y) is the infimum of lengths of arcs included in D and connecting x and y. If
D was concave, there would be x, y ∈ D such that dD(x, y) > |x − y| and consequently
e−d2

D(x,y)/4t << e−|x−y|2/2t for t small enough. One could clearly try to obtain estimates with
the term −d2

D(x, y)/2t in the exponent, but this seems to be a much more challenging task
and rather a material for further research, as there is expected an additional exponential
factor of the form ec(x,y)/t1/3 related to Buslaev conjecture [12, 35].

Another question that might be asked when analysing Theorem 7 is whether |x − y|2
appearing in (33) is related to the exponent e−|x−y|2/2t in the global heat kernel p(t, x, y) or
rather to the geometry of the ball. Indeed, for x, y on (for simplicity) the boundary ∂B of
the unit ball the expression |x − y|2 is comparable to the following distances (see the figure
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below)

d1(x, y) := δB

(
x + y

2

)
= 1 −

√
1 − 1

4 |x − y|2,

d2(x, y) := δHx

(
x + y

2

)
= δHy

(
x + y

2

)
= 1

4 |x − y|2.

yx x+y
2

δB

(
x+y

2

)
δHx

(
x+y

2

)

The definition of Hx and the distances d1(x, y) and d2(x, y) might be easily extended for
C1,1 domains. Indeed, Hx stands for any half-space such that D ⊂ Hx and δD(x) = δHx(x).
Such a half-space might not be unique but the Lebesgue measure of points with such a
ambiguity is zero.

The first presented result is the general upper bound for heat kernels, which involves the
distance of type d2(x, y).

Theorem 9 (Theorems 3.2, 3.4 and Corollary 3.5 in [H4]).
Let D ⊂ Rn be a C1,1

r , r > 0, domain. There is a constant C = C(T, n, r) > 0 such that

pD(t, x, y)

⩽ C p(t, x, y)
[(

1 ∧ δ(x)δ(y)
t

)
+
(

1 ∧ δHx(x)δHx (y)
t

)(
1 ∧

δHy(y)δHy (x)
t

)]

⩽ 4Cp(t, x, y)
(1 ∧ δ(x)δ(y)

t

)
+
1 ∧

δHx(x)δHx

(
x+y

2

)
t

1 ∧
δHy(y)δHy

(
x+y

2

)
t

 ,

where x, y ∈ D, t < T . Furthermore, if ∠(Hx, Hy) ⩾ 1
2π, then the constant C is absolute.

The general idea of the proof was similar as in the case of a ball, but when comes to the
details there were more challenging problems to solve.

The lower bound is of similar form, but d2(x, y) is replaced with d1(x, y).
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Theorem 10 (Theorem 4.3 in [H4]).
For any convex set D ∈ C1,1

r and T > 0 there is C = C(n, r, T ) such that

pD(t, x, y)

⩾ Cp(t, x, y)
(1 ∧ δD(x)δD(y)

t

)
+
1 ∧

δD(x)δD

(
x+y

2

)
t

1 ∧
δD(y)δD

(
x+y

2

)
t

 (37)

≈ Cp(t, x, y)
1 ∧

δD(x)
(
δD

(
x+y

2

)
+

√
t
)

t

1 ∧
δD(y)

(
δD

(
x+y

2

)
+

√
t
)

t

 .

The first step in the proof was to show the bound pD(t, x, y) ⩾ C
(
1 ∧ δD(x)δD(y)

t

)
p(t, x, y)

in the case of the set D = JR,L := Bn(0, R) ∪ ((0, L) × Bn−1(0, R)) (a half of a ”pill”) and
x = (L−

√
t, 0, 0, ..., 0), y1 ⩽ 0, where C does not depend on R and L. Next, it was generalized

for any D ∈ C1,1
r and δD(x) ⩾

√
t by inscribing JR,L in D such that δJR,L

(x) = δD(x).
Eventually, using suitably Chapman-Kolmogorov we obtain (37).

y
x2R

L

If, for a convex set D ∈ C1,1
r , there is a constant C such that 1 < δHx

(
x+y

2

)
/δD

(
x+y

2

)
< C

holds for any x, y ∈ D, then the bounds in Theorems 9 and 10 are equivalent (up to a mul-
tiplicative constant) and they provide two-sided sharp estimates. Unfortunately, such a con-
stant may not exist. In order to describe sets for which we can establish two-sided estimates,
let us introduce the following two characteristics of a a strictly convex C1,1 domain D:

QD := inf
w,z∈∂D,w ̸=z

δD

(
w+z

2

)
δHw

(
w+z

2

) ,

RD := min

 inf
w,z∈∂D,w ̸=z

δD(w+z
2 )⩽1

δD

(
w+z

2

)
δHw

(
w+z

2

) , inf
w,z∈∂D,w ̸=z

δD(w+z
2 )>1

sup
m∈wz

δD(m)>1

δD (m)
δHw (m)

 ,

as well as the corresponding families of sets:

SQ :=
{
D ∈ C1,1(Rn) : D is strictly convex, QD > 0

}
,

SR :=
{
D ∈ C1,1

r (Rn) for some r > 0 : D is strictly convex, RD > 0
}

.

The condition QD > 0 means that for any w, z ∈ ∂D the distance from the midpoint w+z
2

to the boundary ∂D is comparable with the distances to Pw and Pz. In case RD > 0 the
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condition is weaker whenever δD

(
w+z

2

)
> 1, as we only require existence of a point at the

interval wz whose distance to ∂D is greater than 1 and comparable to distance to Pw. Some
additional comments:

1. 0 ⩽ QD ⩽ RD ⩽ 1.

2. In the definition of QD and RD the points w and z are taken from the boundary of D
only, and not from its interior, which makes it easier to estimate these characteristics.

3. If D ∈ SQ, then D is bounded (Lemma 5.2 in [H4]). In fact, RD is introduced in order
to deal with unbounded domains.

4. We assume strict convexity since else the complexity of the problem appears to be
unexpectedly high and general two-sided bounds seems extremely difficult to derive.
We refer the reader to Example 3, where a behaviour of the heat kernel of a very simple
non-strictly convex set is examined.

5. Both of the classes SQ and SR contain nontrivial and important examples (see Examples
1 and 2). It seems also not easy to construct a strictly convex C1,1

r set which does not
belong to SR.

Theorem 11. If D ∈ SQ then

pD(t, x, y)

r,QD,T
≈ p(t, x, y)

(1 ∧ δD(x)δD(y)
t

)
+
1 ∧

δD(x)δD

(
x+y

2

)
t

1 ∧
δD(y)δD

(
x+y

2

)
t


QD≈ p(t, x, y)

[(
1 ∧ δD(x)δD(y)

t

)
+
(

1 ∧ δHx(x)δHx (y)
t

)(
1 ∧

δHy(y)δHy (x)
t

)]

holds for x, y ∈ D, 0 < t < T .

Moreover, it turns out that SQ is the exact subclass of C1,1 domains for which the lower
bound from Theorem 10 is equivalent (up to a multiplicative constant) to the upper bound.

Theorem 12. Let D be a strictly convex C1,1 set. Then D ∈ SQ if and only if

pD(t, x, y) (38)

D,T
≈ p(t, x, y)

(1 ∧ δD(x)δD(y)
t

)
+
1 ∧

δD(x)δD

(
x+y

2

)
t

1 ∧
δD(y)δD

(
x+y

2

)
t

 .

holds for x, y ∈ D, 0 < t < T .

After relaxing the condition QD > 0 into RD > 0, the heat kernel pD(t, x, y) keeps
admitting two-sided estimates of the form of the upper bound from Theorem 9.

Theorem 13. If D ∈ SR, then

pD(t, x, y)
r,T,RD≈ p(t, x, y)

[(
1 ∧ δ(x)δ(y)

t

)
+
(

1 ∧ δHx(x)δHx (y)
t

)(
1 ∧

δHy(y)δHy (x)
t

)]

holds for x, y ∈ D, 0 < t < T , where Hx, Hy are any half-spaces such that D ⊂ Hx, Hy and
δD(x) = δHx(x), δD(y) = δHy(y).
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Remark 14. Similarly as in (22) and Corollary 8, the density function qD(t, x, y) of the joint
distribution of the first exit time and place is a normal inward derivative of pD(t, x, y), and
therefore one can easily transform every Dirichlet heat kernel estimates, denoted generally
by f(t, x, y), to the estimates of qD(t, x, y) by calculating the limit

lim
δ(y)→0

f(t, x, y)
δ(y) .

For example, by virtue of Theorem 13, we deduce that if D ∈ SR, then qD(t, x, y) admits
two-sided estimates of the form

lim
δ(y)→0

p(t, x, y)
δ(y)

[(
1 ∧ δ(x)δ(y)

t

)
+
(

1 ∧ δHx(x)δHx (y)
t

)(
1 ∧

δHy(y)δHy (x)
t

)]

= p(t, x, y)1
t

[
δ(x) +

(
1 ∧ δHx(x)δHx (y)

t

)
δHy(x)

]
,

where we used δ(y) = δHy(y).

Examples

The first example concerns domains that are interiors of a paraboloid and its generalizations.
Such sets are usually difficult to study, since neither they are bounded nor their complements
are bounded; see [2, 41] for some result concerning the first exit time of such sets and [30]
for quantitatively sharp heat kernel estimates.

Example 1 (Proposition 5.6. in [H4]).
Consider a domain U = {x ∈ Rn : xn > a|(x1, ..., xn−1)|p}, where p ⩾ 2, n ⩾ 2 and a > 0.
Then U ∈ SR. As a consequence, the heat kernel pU(t, x, y) admits estimates from Theorem
13 with constants depending on n, T, a, p.

Next, we consider bounded domains in R2 with analytical boundary.

Example 2 (Proposition 5.7. in [H4]).
For n = 2 the class SQ contains strictly convex bounded domains with analytical boundary.
As a consequence, the heat kernels of such sets admit estimates from both: Theorem 13 and
Theorem 12.

Finally, let us define the following set

S =
(
B2((−1, 0), 1)

)
∪
(
(−1, 1) × (−1, 1)

)
∪
(
B2((1, 0), 1)

)
⊂ R2,

which is a square (−1, 1) × (−1, 1) with two semicircles added to its left and right sides. It
is known as a stadium. The next example shows that for some range of arguments the heat
kernel pS(t, x, y) is comparable neither to the bound from Theorem 9 nor to the one from
Theorem 10. Note that the space arguments realizing the indicated behaviour of pS(t, x, y)
are located at opposite ends of the ’flat’ part of the boundary, which suggests that non-strict
convexity is indeed the property that impacts on the incomparability of the bounds.
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Example 3 (Example 5.1. in [H4]).
Let x, y ∈ S be such that x1 < −1, y1 > 1, x2, y2 = 1 − tγ, γ > 0, and δS(x), δS(y) < t1+γ

with t < 1 (see the picture below).

x y

S

tγ

For 0 < γ ⩽ 1
2 we have

pS(t, x, y) ≈ p(t, x, y)
[(

1 ∧ δ(x)δ(y)
t

)
+
(

1 ∧ δHx(x)δHx (y)
t

)(
1 ∧

δHy(y)δHy (x)
t

)]
,

and for γ ⩾ 2
3 it holds

pS(t, x, y) ≈ p(t, x, y)
(1 ∧ δS(x)δS(y)

t

)
+
1 ∧

δS(x)δS

(
x+y

2

)
t

1 ∧
δS(y)δS

(
x+y

2

)
t

 .

However, for 1
2 < γ < 2

3 we have

pS(t, x, y) ≈ δS(x)δS(y)
t3(1−γ) p(t, x, y), (39)

while (
1 ∧ δS(x)δS(y)

t

)
+
1 ∧

δS(x)δS

(
x+y

2

)
t

1 ∧
δS(y)δS

(
x+y

2

)
t

 ≈ δS(x)δS(y)
t

and(
1 ∧ δ(x)δ(y)

t

)
+
(

1 ∧ δHx(x)δHx (y)
t

)(
1 ∧

δHy(y)δHy (x)
t

)
≈ δS(x)δS(y)

t2−γ
= δS(x)δS(y)

t
3(1−γ)+2

(
γ− 1

2

) .
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4.5 Description of contribution
Below, I specify my contribution to each of the articles in the achievement.

[H1] Concept and execution of the proof of upper bounds of p
(µ)
1 (t, x, y) (Proposition 3.2)

and of crucial steps in the proof of lower bound (Proposition 3.1), i.e. in the case when
x ⩽ 1/4 and µ > −1/2. The co-authors have earlier obtained bounds covering some
of these results, but the methods they proposed were either standard or have not been
used in the article.

[H2] Full contribution.

[H3] The upper bound has been proven mainly by me, except the inequality (35) ((3.2) in
[H3]), which I proposed anyway. In the case of the lower bounds I authored the ideas of
the proofs and performed initial calculations. While working on upper bounds I have
proposed the correct hypothesis.

[H4] Full contribution.

4.6 Summary and significance
My achievement might be generally described as derivation of sharp estimates of Dirichlet
heat kernels and first exit time and place distribution densities for the Brownian motion
and the Bessel process, with special care of exponential behaviour. These two processes are
closely related to each other, since the norm of Brownian motion is distributed as the Bessel
process with a suitable index. The studied functions are fundamental in their fields and
they are extremely important from the point of view of not only stochastic processes, but
mathematical analysis and physics as well, and they have been intensively studied for many
years. Nonetheless, the presented results are first of their kind. Such precise estimates give
better insight to the behaviour of the studied functions, allow one to compare the Dirichlet
heat kernels with the global ones and enable further research on e.g. asymptotics or resolvent
kernels. Estimates of the obtained form are already known for Green functions or Poisson
kernels for the said processes (see [29, 68]), and also for the heat kernels of a big class of
Lévy and Markov processes (see e.g. [6, 7, 16, 31] and references therein), where however
the exponential behaviour does not exist. It was therefore a natural direction of research
to tackle analogous problems in the case of Dirichlet heat kernels for the Brownian motion
and the Bessel process. I have shown that they might be approached successfully, which
encourages one to explore the topic deeper.

The success of the research was possible thanks to the combination of the probabilistic
and analytical methods. Many geometrical arguments played also an important role. This
mixture seems to be crucial to obtain optimal results in this field. Such an approach should
be also adaptable to other settings, which includes e.g. other diffusions or sets with less
smooth boundary. In fact, some ideas from [H3] have been already used in [54] to obtain
uniform estimates for the Green function of the hyperbolic ball.

The topic of the achievement, despite its long history, still belongs to the mainstream
of research in mathematics. The obtained results have been not only mentioned, but also
applied or extended by other mathematicians. In particular, the estimates of the Fourier-
Bessel heat kernel from [H1] have been used to estimate the probability density of a maximum
of the Bessel bridge [36], to prove boundedness of a γ-Littlewood-Paley-Stein operator [5]
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and a maximal operator associated with Fourier-Bessel expansion [40], and to show uniform
L1 boundedness for the semigroup acting on some atoms related to atomic Hardy spaces
[11]. Furthermore, the estimates of the first exit time density for the Bessel process from
[H2] helped the author of [59] with finding the asymptotic population growth rate and the
authors of [3] with bounding a distance between càdlàg Lévy process X on a separable Banach
space and the family of processes adapted to the natural filtration of X. Additionally, in [4]
new bounds, independent of the index, for tails and moments of the first exit times of Bessel
process have been found, while the one that could be concluded from [H2] depend on the
index. Finally, the article [H3] was one of the motivations to conduct the research that led
to the article [48]. The last item from the achievement, the paper [H4], has not been cited
yet, but it is very recent. Nevertheless, it seems to be the most valuable one, as it deals with
a large class of sets and, for example, it includes the main result of [H3] as a special case.

Summing up, my achievement contributes to the classical potential theory by estimating
Dirichlet heat kernels and first exit time and place distribution densities for the Brownian
and the Bessel process, comparing them to the global heat kernels. Such a problem relates
to the property of not feeling the boundary introduced by Marc Kac in 1950 and might be
considered as a continuation of research in this direction. The innovative approach was based
on combing probabilistic and analytical methods and may be adapted to other settings. The
obtained results have already gained some recognition and have been successfully applied by
other mathematicians. Finally, my contribution to each of the articles from the achievement
is full or dominating, which confirms my abilities to conduct research.
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5 Significant scientific activity carried out at more than one uni-
versity or scientific institution, especially at foreign institutions

In the periods of time 13/05/2015–30/09/2015, 2/10/2017–18/02/2018 and 18/02/2019–
25/08/2019 I completed 3 research internships at Nanyang Technological University (NTU),
Singapore, where I was hired as a Research Fellow. My supervisor there was prof. Nicolas
Privault. I got for the first internship through an application, while two other were by in-
vitation. In particular, I helped with preparing the grant application from which my third
stay was funded. Relatively short periods of duration are due to private reasons only: a long
distance from Poland and my wife’s inability to work in her profession in Singapore - the
country is famous of its very strict regulations.

During the internships I researched problems related to the Stein method, approximation
of the normal distribution and their application to random graphs. Singapore seems to
be a perfect place to explore these topics, as a student of Charles Stein and, at the same
time, the author of the Stein-Chen method (a variation of the Stein method) Louis Chen is
Singaporean and he works at National University of Singapore. Despite the fact that the
studied topics were new to me, the cooperation with prof. Privault quickly developed and we
finished in 2015 first joint work [50], finally published in 2018. Since then we have published
three more articles [51, 52, 53]. One of the most important results of our collaboration is
solving a 30 years long standing problem of the convergence rate to the normal distribution
of the normalized number of copies of a fixed graph in the Erdős-Rényi random graph model
G(n, p) [51].

Although about 3 years have passed since the last stay in Singapore, we are with prof.
Privault in constant contact and continue our cooperation. In particular, I visited him for
two weeks in March 2022 and we are conducting some new research that are planned in my
grant.

6 Teaching and organizational achievements as well as achieve-
ments in popularization of science.

Teaching achievements:

• During my employment, that is from 2010 (I completed my PhD as an assistant) I have
conducted 121 courses - both: tutorials (111) and lectures (10). Most of them (106),
which is rather typical at the Wrocław University of Science and Technology, were con-
ducted for non-mathematical studies (science studies) at various university faculties.
Four of them were held in English. Furthermore, I have taught 12 courses for math-
ematics students, that includes Mathematical Analysis, Introduction to Probability,
Probability Theory, Discrete Mathematics and Introduction to Logic and Set Theory.
In addition, as a substitute, I conducted courses such as Statistics or Introduction to
Stochastic Processes. In the detailed list below, I only included the courses of which
I was the main lecturer.
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Courses for non-mathematical studies:
Course Tut. Lect.
Mathematical Analysis (part 1 or 2)1 47 4
Algebra1 26 1
Discrete Mathematics 22 1
Probability Theory 1
Mathematics (in English) 1 1
Algebra1 (in English) 2

Courses for mathematical studies:
Course Tut. Lect.
Introduction to Probability 4
Probability Theory 4
Functional Analysis 1
Discrete Mathematics 1 2
Introduction to Logic and Set Theory 1
Mathematical Analysis M2 1
Mathematical Analysis M3 1

• I am a supervisor of two groups of courses at the Faculty of Pure and Applied
Mathematics - Discrete Mathematics and (co-supervisor) of Graph Theory. I am re-
sponsible for preparing and developing the program and defining learning outcomes of
these courses.

• I was the auxiliary supervisor in Kamil Bogus’ PhD thesis.

• Three students were given the bachelor’s degree title under my supervision:
Jana Wilczyńska (2019)
Klaudia Pytel (2020)
Barbara Maziarz (2021).

Organizational achievements:

• In 2019, together with Prof. K. Bogdan, Dr. Sc. K. Kaleta and Dr. Sc. Sztonyk
we founded and continue to run a scientific seminar Random graphs and discrete
structures. The aim of the seminar is to expand scientific interests at the university
towards discrete mathematics, and in particular random graphs, which play an impor-
tant role in modern mathematics. One of the motivations for starting the seminar was
my research on random graphs together with prof. Nicolas Privaut during my research
stays in Singapore.

• In 2015 and 2019, I was a member of the organizing committee of the international
conference Probability and Analysis held in Będlewo, Poland. In this year’s edition
I belong additionally to the scientific committee.

• During the years 2011–2014 I was a member of the Council of the Faculty of Fundamen-
tal Problems of Technology at Wrocław University of Science and Technology. Since
2021 I am a member of the Council of the Faculty of Pure and Applied Mathematics.

1Under this name various similar courses are gathered.
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• In 2011-2014 I helped with the organization of national finals of qualifications
for the �International Championship of Mathematical and Logical Games held at the
Wrocław University of Technology, whose winners take part in the international finals
in Paris.

• In 2009, I was a co-founder of the students Mathematics Science Club, which is
still active today.

Popularization of science:

• In the winter semester of the academic years 2020/21 and 2021/22 I conducted an
original course within Studium Talent program. Courses of this type are intended for
high school students - their goal is to interest students in a given subject (mathematics,
in this case) and, through the final exam, enable them to gain additional points in
recruitment to the Wrocław University of Science and Technology.

• On 9th of October 2021 I gave a popular science lecture titled ”Grapho-mania” as
a part of a countrywide event Night of innovations.

• On 25th and 28th of April 2022 I gave two lectures for high school students as a part of
a voivodeship event Week of Mathematics organized by Wrocław University of Science
and Technology.

• In the summer semester of the school year 2021/22 I was running a math club in a
high school.

• In the academic year 2021/2022 I was a tutor of a talented high school student and
was developing his interest in Mathematics.

7 Other important information about professional career

• In 2022 my project Central limit theorem for general functionals with applications to
random graphs received funding from the National Science Centre (the “NCN”) under
the SONATA 17 call.

• In 2021 I was elected for two years to Academia Iuvenum - a new body at the
Wrocław University of Science and Technology associating (currently) 24 outstanding
young (up to 35 years old) scientists from the university. The aim of Academia Iuvenum
is to support young scientists and to motivate them to interdisciplinary intellectual
exchange.

• In 2014, 2017 and 2021 I received Wrocław University of Science and Technology Rec-
tor’s prize for outstanding contribution to the development of the university

• In the winter semester 2018-19 I received targeted subsidy from the Ministry of
Science and Higher Education for young scientists.

• In 2010 I won the 3rd prize in the XLIV national Competition for the best student
thesis in the theory of probability and applications of mathematics organized by the
Polish Mathematical Society.
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