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4 Description of the achievements, set out in art. 219 para 1 point 2 of the
Act

4.1 The list of articles constituting the scientific achievements
To present my scientific achievements, I chose the following publications:

[H1] Legut, J.: Inequalities for a-optimal partitioning of a measurable space. Proc. Amer.
Math. Soc., 104, 1249-1251 (1988)

[H2] Legut, J. and Wilezytiski, M.: Optimal partitioning of a measurable space. Proc.
Amer. Math. Soc. 104, 262-264 (1988)

[H3] Legut J. and Wilezytiski M.: How to obtain a range of a nonatomic vector measure
in R?, J. Math. Anal. Appl. 394, 102-111 (2012)

[H4] Legut J.: Connecting two points in the range of a vector measure, Colloquium Math-
ematicum, vol. 153, No. 2, 163-167 (2018)

[H5] Legut J.: How to obtain an equitable optimal fair division Ann. Oper. Res. 284,
323-332 (2020)

[H6] Legut J.: Simple fair division of a square, J. Math. Econom., 86, 35-40, (2020)

All of the above articles have been published in journals on the Journal Citation Reports.
According to the current scoring system (MEIN list of December 21, 2021), the journal
in which the first two papers [H1| and [H2] were published is rated at 100 scors. The
remaining papers were published in journals rated with 70 scors.

4.2 Introductory information

The present application concerns a second procedure regarding awarding the post-
doctoral degree. I submitted the first application in April 2019 to Central Committee for
Degrees and Titles. Unfortunately, the conducted procedure of Commission for Academic
Degrees in the Mathematics Discipline of Wroctaw University of Science and Technology
ended by the decision to refuse awarding me the title of habilitated doctor (Resolution
3/2/2020 of March 3, 2020).

In the first application, as a scientific achievement, I presented 7 publications, of which
three |H3|, |H4| and [H5] I have left in this application. Following the suggestions of the
reviewers from the first procedure, I included my older publication [H1] and my joint
work [H2]. Paper [H6| was published after the commencement of the first habilitation
procedure and therefore it was not included in it.

My scientific achievements consist of four parts:

e game theoretical approach to problems of fair division

e applications of fair division results to mathematical economics



e investigating properties of the range of nonatomic vectors measures and their appli-
cations to the theory of fair division

e methods of optimal partitioning of a measurable space and their applications to fair
division and decision theory

The main results of the two first parts of my scientific activity were achieved in years
1984 - 1994. Most of these results were published in papers being in the base of JCR
(Journal Citation Reports) journals. Some of them were presented on two international
game theory conferences in USA (1988, 1991). I was also invited by various universities
(in USA, Israel, Holland) to give lectures on my results obtained that time. I established
cooperation with mathematicians from Holland as a result of which two joint articles
were written and published ([39, 40]).

After twenty years break in my scientific activity I returned to work on the fair division
problems. I have concentrated on the two last parts of my mathematical interests listed
above.

4.3 Discussion of the most important results obtained in the publications
that constitute the scientific achievement

4.3.1 Problem of fair division

Suppose we are given an object, (e.g. a cake) which is to be dvided among n persons
(players) in such way that each person receives at least 1/n of the total worth of the cake
according to his own value. We call such a division a fair one. A simple and well-known
method of effecting such division between two persons is "for one to cut, the other to
choose". At the beginning of this procedure, players decide, e.g. by drawing lots, which
of them will cut the cake and which will choose one of the two remaining pieces. Each
player may have a different opinion as to which pieces of the cake are most valuable to
him. Therefore, a person who selects a piece of cake has a chance to get more than 1/2 of
the value of the entire cake according to his rating. The problem of fair division was first
formulated and described in 1949 by Steinhaus [57]. He posed the question of whether
the "for one to cut, the other to choose" rule can be extended for n > 2. He found a
solution for n = 3, and then Banach and Knaster (see [31, 56, 57, 58]) showed that the
solution for n = 2 can be generalized to any number of players. Their result was later
modified by Dubins and Spanier [23|. In turn, Fink [27] gave an algorithm in which the
number of players need not be known. Brams and Taylor |7| discovered an interesting
method of getting an envy-free partition in which neither player is interested in any piece
of cake allocated to another player.

Dubins and Spanier [23| formulated the following mathematical model of the fair di-
vision problem. Let {p;}:_;, (n > 1), be nonatomic probability measures defined on a
measureable space {X,B}. This space represents the object (cake) which is to be di-
vided among the players and measures {y;};_; describe the individual evaluation of sets
belonging in B.



By an ordered partition P = {A;};_; of the measurable space {X,B} is meant a
collection of measurable pairwise disjoint sets Ay, ..., A, summing to X. Denote by &,
the set of all ordered measurable partitions and let I = {1,...,n} be the set of all players.

There exist several notions of fairness in the fair division theory literature.

Definition 4.1. Division P = {A;}!_, € &, is called:

e proportional if p;(A;) > 1/n for all i € I,

o enuvy-free if p;(A;) > pi(A;) for all 4,5 € I,

o cxact if p;(A;) =1/nforalli,je I,

o cquitable if p;i(A;) = p;(A;) forall i, j € I.

The problem of fair division has been considered in many variants depending on the
nature of goods to be divided and the fairness criteria. Different kinds of the players
preferences and other criteria for evaluating the quality of the division has been analysed

by various authors. The following two main directions are developed in the literature of
fair division theory:

e proving the existence of a partition of X satisfying given criteria (e.g. Dubins i
Spanier |23], Legut i Wilczyniski [H2|, [38], Sagara [48, 49|, Weller |61]),

e providing procedures or algorithms for obtaining a fair divisions and applications
of them to real-life situations (e.g. Brams i Taylor |7, 8], Brams, Taylor i Zwicker
19, 10], Woodall [62]),

In proving the existence of fair divisions, the famous theorem of Lyapunov [43] on the
range properties of a nonatomic vector measure is often used:

Theorem 4.2. If {y;};_, are nonatomic finite measures defined on the measurable space
{X, B} then the range [i(B) of the mapping i : B — R" defined by

ﬁ(A) - (/ul(A)7 S uun(A)) , A€ B,
s convex and compact in R,

The range fi(B) will be called hereinafter as Lyapunov set. Using the above theorem it
is easy to prove by induction the existence of exact fair divisions (cf. [37]).

Legut [32, 34| considered a problem of dividing a cake fairly among countably infinitely
many players and proposed also a fair division model for continuum of players.
The results of the fair division theory can be applied in economics in the exchange and
allocation of various commodities (cf. [33, 39, 44, 50]).

4.3.2 An a-optimal partition of a measurable space [H1,H2]

Let {4 };—, be nonatomic probability measures defined on a measurable space {X, B}.
Dubins and Spanier 23] showed that if at least two measures are different, then there



is a proportional partition, where each player can get more than 1/n of the value of the
entire cake X'. The fair division theory analyzes partitions that maximize the individual
measures of sets allocated to the players. Elton, Hill, and Kertz [26] defined an optimal
value v* of the fair division as follows

v* := sup min u;(A4;), (4.1)
Pc, el

and then they gave its estimation
(n+M-—1)"<v"<Mn?, (4.2)

where

Dubins and Spanier [23] extended the definition of proportional division for the case
where players may have different shares in dividing the cake. Let

Sn:{S:(Slg...,Sn)eRn,Si>0,iEI’ Zsi:]'}’

=1

be (n — 1)-dimensional open simplex and let S,, denote the closure of this set in R".
The coordinate «;, i € I, of the vector @ = (aq,...,a,) € S, represents the share

of the i-th player in division of the cake. Dubins and Spanier [23] showed that for any

a=(ag,...,q) €S, if at least two measures are different, there is a partition

P ={A;},_, € &, for which
wi(A;) > a; forall i€l

Inspired by the result of Dubins and Spanier [23| [ introduced in paper [H1] to the theory
of fair division the following definition.

Definition 4.3. A partition P* = {Af}! | € &, is called an a-optimal, if the following

equality holds
i(A] i(Ai
v" := min [M] = sup min [M] . (4.3)
1€l (0% pPe2, i€l Q;

The number v® is called an «a-optimal value of the problem of optimal partitioning of

the measurable space. This is the largest possible value of the expression min;c; [%}
which can be reached for a vector measure ji = (pi1, . .., ptn) when dividing X for a fixed

vector @ = (aq,...,ap) € Sy.
Definition 4.4. A partition P = {A;}._, € 2, is called an equitable optimal (or in
short optimal) if it is a-optimal for « = (1/n,1/n,...,1/n) € S,.

It is easy to see that v* = v*/n for a = (1/n,1/n,...,1/n) € S,, where v* is defined
by (4.1).

The existence of a-optimal partitions follows from the theorem of Dvoretzky, Wald and
Wolfowitz [25]:



Theorem 4.5. If {y;};_, are nonatomic finite measures defined on the measurable space
{X, B} then the range [ip(Z,) of the mapping jip : &, — R" defined by

fip(P) = (m(Ar), - pn(An)) , P = {Ai}iz, € P,

is convex and compact in R,

It also follows from Theorem 4.5 that there exists a partition P? = {Ag};l e 2,
satisfying the equality

M = sup ZMz‘(Az‘) = ZM(A?)
PePn iz i=1

The number M can be interpreted as a "cooperative" value of the fair division problem
(cf. [33]).
Let r; := u;(AY) and

m = min{r;j[r; —o;(M — D] : [ri —a;(M — 1]t > 0,4 €I}
In paper [H1] I presented elementary and short proof of the following theorem:

Theorem 4.6.
m < v < M. (4.4)

Inequalities (4.4) are not only a generalization of inequalities (4.2) for a-optimal parti-
tions, but can also yield in some cases better estimates of the optimal value v* defined by
(4.1). An example of such estimation is provided in [H1]. The original proof of inequal-
ity (4.2) given by Elton, Hill and Kertz [26] is long and complicated. It uses advanced
methods known from the measure theory. Due to the simplicity of the proof of inequality
(4.4) provided in [H1] it is presented below.

Proof of Theorem 4.6
At first we show the inequality v* < M. Suppose that v® > M. From the definition (4.3)

of the number v we obtain a; *p;(A}) > M for all i € I. Hence we have Z pi(A7) > M
i=1
which contradicts the definition of the number M.

To prove that m < v® we put €; := (0,...,1,...,0) € R™ (1 is placed on the i—th
coordinate). Clearly, e; € ji(Z?,) for all i € I. Let W denote the convex hull of the set
{r,{e;}! 1} where r = (r1,...,7,). It follows from Theorem 4.5 that W C i(22,). It is
now sufficient to find a real number t* := max{t € R : ta € W}. Solving the following
system of n + 1 linear equations

Bi +6n+17ni = Oy, 1€ ],
2?211 i=1

with respect to 5; > 0,7 = 1,2,...,n + 1, we obtain t* = m. Hence we conclude that

m < v® and the proof is complete.

[



The above method using the geometric properties of the i(<7,) was later used in many
publications concerning the estimation of optimal values related to various divisions of
the measurable space (cf. [1, 2, 16, 17, 20, 21]).

An interesting issue is to describe the construction of a—optimal partitions for nonatomic
measures. Together with Maciej Wilczytiski we presented in paper [H2| the general form
of such divisions.

We may assume throughout that measures {y;};_; are absolutely continuous with
respect to the same measure ¢ (e.g. ¥ = > | f1;). Denote by f; = du;/dV¥ the Radon-
Nikodym derivatives , i.e. functions f;, satisfying the equalities:

pi(A) = /Aﬁ dd, AeB,iel. (4.5)

Define the following measurable sets

Bi(p) = ﬂ {z € X :pioy'fi(x) > py‘@]lfy‘(x)},
J=Lj#i
Ci(p) = ﬂ {z € X piaj fix) > pjo ' fi(2)}
j=1
where a = (ay,...,a,) € S, p = (P1,...,Pn) € Sy and i € 1.
Legut i Wilczynski [H2| proved the following:

Theorem 4.7. For all « € S, there exists a point p* € S, and a corresponding partition
P* = {Ar}) | which satisfies
) Bilp') € 4 € Ciy), *
fii) v° = pAD) _ pe(4y) (A
o %) Oy
and is a-optimal. Moreover, any partition satisfying (1) and (ii) is c-optimal.

The proof of this theorem is based on Sion’s minimax theorem (see [4]).

Legut and Wilczyriski [38] also investigated the existence and construction of a—optimal
partitions for countable and infinite number of players. Denote by N := {1,2, ...} the set
of players and let {u;};—; be nonatomic probability measures defined on the measurable

space {X, B} describing individual assessments of measurable sets. Let o = {a;}3°; be
o0

an infinite sequence of positive numbers that satisfy the condition Z a; = 1 . Denote
i=1
by P the set of all measurable partitions {4;}7°;.

Legut 32| proved that for any sequence of positive numbers o« = {; }3°, summing to 1
and any nonatomic probability measures {;};—, there exists a partition {A4;}2, € P
such that

,u7(A7) = oy, 1€ N.
Legut and Wilczytiski [38] showed that the thesis of Theorem 4.7 is also true if it is
formulated analogously for the case of an infinite countable number of players.



The problem of a—optimal partitioning of a measurable space has been described and
studied in many publications (cf. [16, 17, 20, 21, 48, 49]).

The construction of a—optimal partitions for « = (1/n,1/n,...,1/n) € S,, shown in
Theorem 4.7 can be used in the following classification problem (cf. [28, 29, 30]). Suppose
we are given a continuous random variable X having one of the known distribution
described by density functions f; : [0,1] — Ry i € I . We don’t know which is the
true distribution of X. We consider a classification problem (cf. [28]) in which after one
observation of X (w) (realisation of the random variable X') we are to decide which is the
true distribution of X.

Definition 4.8. A partition P = {A;}_, € &, is called a decision rule if in case of
X(w) € A;, we guess that X has density function f;, i € I.

Our objective is to minimize the largest probability of misclassification

I;ilea}XIP(X ¢ A;| distX = f;),
over all measurable partitions P = {4;}_; € Z,. Denote by
R = inf {IEI?IX]P)(X ¢ Al distX = f;): {A}| € e_@n} :
a minimal possible risk of misclassification. We obtain (cf. [29, 30])

R = inf {majx(l — wi(A)) - {A}, € ,@n} =1—sup {mi}q wi(Ay) : {A Y, € @n} :
1€ 1€
Definition 4.9. A partition P* = {Af}! | € &, is said to be a minimax decision rule
if
R =1—minpu;(A7).
el

It is easy to see that the minimax decision rule P* = {A}! | € 2, defined above is
at the same time the equitable optimal partition in the sense of Definition 4.4.

Jozwiak and Legut [30] using Theorem 4.7 presented an example of decision rule con-
struction in the case of two-dimensional random variables.

4.3.3 Construction of the Lyapunov set in R? and its application in a—optimal
partitioning [H4]

In this section we present a method of finding the a-optimal value v® and a-optimal
partition of a measurable space {(0,1), 8} for two players. Here B denote the family of
measurable subsets of (0,1). Legut and Wilczyriski [H3| noticed that the Lyapunov set
f(B) can be specified by a continuous and nondecreasing function G : [0,1] — [0, 1] as

folllows
AB) = {(z,y) €[0,1]°: 1 -Gl —2) <y < G(x)}. (4.6)
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We show how to obtain this function. Denote by fi and fo density functions defined on
interval (0, 1) corresponding to measures p1, po respectively. Define functions

Fi(a:):/oxfi(t)dt, i=1,2. (4.7)

It follows from the compactness of the range ji(B) that for any ¢t € [0, 1] there exists a
set D(t) € B such that

a(D(#)) = max{p(A) : pu(A4) = t, A € B}, (15)
Let I4 denote the indicator function of a set A € B. Let
fz(ﬂf)>
r(xr) = Lee s, € (0,1). 4.9
@)= (2t € 0.1 (1.9)

Legut and Wilezyiiski [H4] used the Neyman-Pearson lemma (cf. [42]) to find the function
G describing the boundary of set fi(B). This methods depending on the property of the
function r are described in the proposition below.

Proposition 4.10. Assume that {z : fo(x) > 0} C {x : fi(x) > 0} = (0,1). Then the
following statements hold:

1. If the ratio r(z) is decreasing on (0,1), then
D(z) = (0, F; ' (z)) and hence G(z) = Fy(Fy '(z)).

2. If the ratio r(x) is increasing on (0,1), then
D(x) = (Fl_l(l — ), 1) and hence G(x) =1 — FQ(F1_1(1 —2)).

3. If the ratio r(x) is symmetric about xo = 1/2 and decreasing in x on (0,1/2), then
D(z) = (0, F, Y(z/2)) U (F, ' (1 — 2/2),1) and hence
G(x) = Fy (Ffl(:c/Q)) +1—-F (Ffl(l — 513/2))

4. If the ratio r(x) is symmetric about xo = 1/2 and increasing in x on (0,1/2), then
D(z) = (Fy ' (1525), F ' (152)) and hence G(z) = Fy (Fy'(152))—Fy (B 1(159)).

The following example presents a construction of function G using Proposition 4.10.

Example 4.11. Let f; be the uniform density on (0,1) and fo the Cauchy density
normalized and restricted to the interval (0,1). These densities are given by

™

filz) =1 and fo(z) = -~ [5(433 - l)f’ z € (0,1),

and the corresponding functions Fy and Fy defined by (4.7) satisfy

1 1 1
Fi(x) =2 and Fy(z)= 5 arctan (g (x — 5)) + 5 TE€ [0, 1].

Since the ratio r(x) is symmetric about zy = 1/2 and increases in z on (0, 1/2), it follows
from Proposition 4.10 that the function G(z) has the form:

G(z) = F (Fll (1 ; x)) _ R (Fll (1 3 x)) — arctan (Zm) € [0,1].
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[

Legut and Wilcezynski [H4] found a method of obtaining the function G for more general
densities f1, fo. Define

H(fv, f2) = {(/fldt/fgdt) AGB}

It is easy to see that Z(f1, fo)= . Define a function H : R — [0,1] by

1) = mlle s o) > vh@) = [ h@de (4.10)
{z: fo(x)>yfr(2)}
Define now function f5(x) by:

fo(x) = F_l(x) for all x € (0,1), (4.11)

where . o
H (x)=inf{ly>0: Hly) <z} forall 0<z<l.

Denote by

fi(@) =T (x) (4.12)
the uniform density defined on (0, 1).

Legut and Wilczytiski [H4| proved the following:

Theorem 4.12. Let f1, fo be probability density functions defined on {(0,1), B} and let
fi and f3 be the corresponding densities defined by (4.12) and (4.11) respectively. Then

%(flan) = ‘%(fik7f2*)

Moreover,
(I ) ={(r,y) eR? : 0< <1, 1 -Gl —-12)<y<G(a)},
where the function G : [0,1] — [0, 1] has the form

/fg(t) dt + /x f5(t)dt forall x € [0,1]. (4.13)
{t:f1(t)=0} 0

The above theorem can be also used to obtain the set jip(Z,). It is easy to verify that
fip(P) can be obtained by symmetric transformation of the set fi(B) with respect to

the line z = %, i.e.
ip(Ps) = {(z,y) € [0,1]*: (1 —z,y) € ji(B)}. (4.14)
It follows from (4.6) and (4.14) that
fip(2) ={(z,y) eR* : 0<2<1,1-G@)<y<Gl-un)}, (4.15)

where function G is defined by (4.13).
Legut and Wilczynski [H4| used Theorem 4.12 to obtain a-optimal value and a-optimal
partitions in two-dimensional case. They proved the following:
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Theorem 4.13. Let uq, po be probability measures defined on {(0,1), B} with corre-
sponding densities fi1, fo and let « = (aq, a0) € Sy. Then

v = Lo
a1 ’
where x,, 1s the root of the equation
o
—r=G(1—x). (4.16)
a1

Moreover, the a-optimal partition has the form {X \ AY, AS}, where AS is any sel
satisfying 1 (AS) =1 — x4 and

{z: fal2) > yafi(x)} C A5 CH{z: folr) = yafi(2)}, (4.17)
where yo = H (1 — z4).
The following example illustrates an application of the above theorem.

Example 4.14. Let f; be the uniform density defined on (0,1) and f5 be density given
by
fo(x) = [(0’%)(3;)(—83:@ —1))+ I[%yl)(x)8(x —1)% 0<z<l

Plots of the density functions f; and fo are shown in the figure below.

- fi(x)

0.8

0.6

0.4

0.2

N
0 02 04 06 08 1 7

Figure 1. Density functions f; and fs.

We find the a-optimal partition for measures pq, o with the above densities for

a = (%, %) First we need to construct function G describing the boundary of the range
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fip(Y5) by (4.15). None of the assumptions of Proposition 4.11 for the ratio r(x) defined
by (4.9) hold. Hence, for determining the function G we will use method presented in
Theorem 4.13. Note that function f; increases on (0,1/2) and decreases on [1/2,1). This
implies that for 0 <y < 2

{z: folz) > yfi(x)} = {z: folz) >y} = (21, 72),

where

1 2 —
$1:§— (89) and 9 =1— g

solve the equations
y=—8x(xr—1), 2€(0,1/2) and y=8(zx—1)% =€ [1/2,1)

respectively. Hence,

H(y) = /f1 dx—/dx—(l\/;><; @)

{z: fa(z)>yfi(x
To find the function H 71, we note that the equation H(y) = x yields
(y —1)* =1—16(1 — x)%2?,

which implies by a simple calculation that

— 1
H 1($):1—2(5L‘—§> V422 + 4z +1, z€(0,1).

Since [ fa(t)dt =0, it follows from (4.13) that f5(z) = F_l(x). Hence,

{t:1(t)=0}
/ Fi(t) (1 — 4z — Da)? - é. (4.18)
From the equation (cf. (4.16))
2:C:G(1—x)=1—x—i—é(1+4x(l—x))g é (4.19)

we obtain x, ~ 0.433 where G is given by (4.18).
The figure below shows the range fip(Z%) and the graphical solution of the equation
(4.19).



|9%) 1 N 14
o Yy = 2x
08| ) G(1—ux)
0.7
0.6
0.5
0.4
0.3 \ ﬁP(WQ)
02 1 —G(x)
0.1 i
0 01 02 03 0.4; 05 06 07 08 0.9 7
T4 ~ 0.433 1 H1

Figure 2. Graphical solution of the equation (4.19).

Next we calulate y, = f3(1—x,) ~ 0.811, where f5(z) =1-2 (z — ) V—42? + 4z + 1.
It is easy to see that

D(1 — z,) = [x1,x2],
where D(t) is the set given by (4.8) and

]_ 2_ o (0%
n= - %zo.lu and x2:1—,/%z0.681.

Finally we obtain the explicit form of the a-optimal partition:
A =~ (0,0.114) U (0.681,1), AS ~[0.114,0.681].
O]

An interesting issue in fair divisiom theory is estimating the minimum number of cuts
needed to obtain a partition that meets certain criteria of fairness. Many specialists in
this field have dealt with this issue (e.g. [5, 8, 47]). In the case of a-optimal partitioning
of (0,1) for two players, the minimum number of cuts can be easily estimated, because
the form of A§ (cf. (4.17)) depends on the number of the sign changes of the function
fo(z) — yafi(x). Legut and Wilczynski [H4| showed that for any natural number k£ € N
it is possible to construct such measures p1, pto for which obtaining a-optimal partition
requires the use of 2k cuts of (0,1).

4.3.4 Some properties of subsets of the Lyapunov set [H4]

Paper [H4| deals with some properties of the range of nonatomic vector measure
i = (p1, ..., ) defined on measurable subsets B of unit interval [0, 1]. Let U (k) denote
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a collection of all sets that are unions of at most k pairwise disjoint subintervals of [0,
Denote by (a,b) n—dimensional closed line segment connecting a = (aq,...,a,),b
(b1, ...,b,) € R™. Stromquist and Woodall [60] proved that

(0,1) C faU(n)), (4.20)

where 0 := (0,...,0), 1 := (1,...,1) € R". Legut [H4] showed that inclusion (4.20) can
be formulated in more general form:

Theorem 4.15. Let A € U(k), k € N. Then
(0,f(A)) C iU +k—1)).

It follows from Theorem 4.15 the following:

Proposition 4.16. If the boundary of i (B) is a subset of [f(U(k)) then
fi(B) =pUn+k—1)).

The main result of the paper [H4| is:

Theorem 4.17. Let A, B € U(k), k € N. Then
(i(A), fi(B)) C i (U(2n + 4k —3)).

Legut [H4| used Theorem 4.17 to present a simple proof of that part of the thesis of
Lyapunov’s Theorem (Theorem 4.2) which concerns the convexity of the range fi(B).
It can be concluded from Theorem 4.17 the following:

1].

Proposition 4.18. Assume that for some k € N all extreme points of fi(B) are in
g(U(k)). Then fi(B) = i(U((2n + 4k — 3)).

Consider now case of two-dimensional vector measure fi = (i1, p2) in which measures
1, p2 are defined on measurable subsets of (0, 1) respectively by density functions f; and

f2 satistying
{z: fi(z) >0} ={x: fi(x) >0} =(0,1).
It follows from Proposition 4.18 and 4.10 the following:

Proposition 4.19. Let r(x) be the function defined by (4.9). The following implications
hold

e Ifr(x) is monotone on (0,1), then fi(B) = [i(U(2)).
e If r(x) is monotone on (0,1/2) and symmetric about xo = 1/2, then ji(B) =
fiU(3)).
4.3.5 A method of optimal partitiong of interval [0,1) among n players [H5]

In this section we present an algorithm for obtaining an equitable optimal fair division of
measurable space {[0, 1), B} for nonatomic probability measures defined by some class of
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density functions f; : [0,1) = Ry, ¢ € I, (cf. (4.5)). Here B denote family of measurable
subsets of interval [0, 1).
Let [a;,aj41)}72; be a partition of interval [0, 1) such that

(l],aj+1 a1 =0, apy1 =1, Ajy1 > @ ] € J, (421)

||C§

where J = {1, ,m}
Dall’Aglio, Legut and Wilczytiski [22] found a method of a—optimal partition of inter-
val [0, 1] in case where density functions are simple, i.e.

= Z hij]I[aj,ajH) (x)
j=1

In their method they used linear programming algorithm. This method was generalized
by Legut [35] who considered piecewise linear density functions:

m

filw) = (cijw + dipl, a0 (),

J=1

where ¢;;x + d;; > Ofor allz € [aj,aj41), i€ 1, j € J.
Now we define some class of density functions f;, ¢ € I, using some properties of
monotone likelihood ratio.

Definition 4.20. Density functions f; : [0,1) — R, i € I, satisfy on interval [a,b) C
[0, 1) strictly monotone likelihood ratio property (in short SMLR) if for any i,k € I,

© # k, the ratios filz)
fr(@)
Definition 4.21. Density functions f; : [0,1) — Ry, ¢ € I, satisfy on interval [0,1)
piecewise strictly monotone likelihood ratio property (in short PSMLR) if there exists a
partition {[a;, a;j11)}7L; of interval [0, 1) satisfying (4.21) such that the density functions

fi have separately on each of the intervals strictly monotone likelihood ratio property
(SMLR).

The following proposition could be helpful for checking whether given density functions
fi, © € I, satisty the PSMLR property.

are strictly monotone on interval [a,b) C [0, 1).

Proposition 4.22. Assume that density functions f;, © € I, are differentiable. Functions
fi, 1 € I, satisfy PSMLR property iff the set

Q= {w e (0.1): fila)fula) = Hl) i), ik € Li £k} (422)
is finite.

It follows from Proposition 4.22 that polynomials of positive degree being density
functions defined on [0, 1) fulfill the PSMLR property.
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Consider the problem of the equitable optimal fair division for two players with the
following density functions

filz) =Tp1(z) and faox) = xsmé + ¢,

where c is the constant satisfying fol fi(z)dx = 1. It is easy to verify, that in this case
the set ) defined by (4.22) is infinite.
Define absolutely continuous and strictly increasing functions Fj : [0, 1] — [0, 1] by

F(t)= | filx)de, tel0,1], iel. (4.23)
0.

For construction of the equitable optimal partition we need the following:

Proposition 4.23. Suppose the densities f; satisfy PSMLR property. Then for any
numbers 61,02 satisfying a; < 01 < 0y < ajy1, j € J, and any i,k € I, i # k the one of
the two following inequalities
E(0) — E6) _ Filt) — Fi(0)
Fi(02) — Fi(61) — Fi.(62) — Fi.(61)
Fi(t) — Fi(61) _ Fi(t) — Fi(60)
Fi(02) — Fi(6h) = Fp(02) — Fr(61)
holds for each t € (01,02).

(4.24)

(4.25)

The inequalities (4.24) and (4.25) mean that there is a strict relative convexity rela-
tionship between the functions F; and Fy, i # k, defined by (4.23). If the inequality
(4.24) holds, then Fj is strictly convex with respect to F} . This property is equivalent to
the strict convexity of the composite function Fjo F ! on the interval (Fi(a;), Fi(aji1))
(cf. [45]). It follows from a result of Shisha and Cargo [54] (Theorem 1) that F; o F, ' is
filz)
Sr(x)
on (a;,aj+1). Hence the reverse implication in Proposition 4.20 is also true.

The relation of strict relative convexity induces on each interval (aj,a;41) a strict
partial ordering of the functions F; (cf. [45]). Let F; <, Fj denote that Fj is strictly
convex with respect to Fj, on (a;,a;j41). For each j € J define permutation o; : I — I,
such that

strictly convex on (Fj(a;), Fi(aj11)) if and only if the ratio is strictly increasing

Fose+1) =3 o),
for kK =1,...,n — 1. Hence for all ¢ € (a;,a;41) we have
Foy 1) (1) = Foy k1) () Foy ) (t) = Foy(9))
Fy ey (@j1) = Foygeany(ag)  Fo(ajn) — Fo ) (ay)

(4.26)

The following theorem proved by Legut [H5| presents an algorithm for obtaining an
equitable optimal fair division for density functions having the PSMLR property.
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Theorem 4.24. Let a collection of numbers z*, {:z:z(j)},k =1,...n—1,7 € J bea
solution of the following nonlinear programming (NLP) problem

max z

subject to constraints

with respect to variables z, {:Ug)}, k=1,...n— 1,5 € J, satisfying the following in-
equalities

Then the partition {A; Y, € P, of the unit interval [0,1) defined by

T I T A
Al = U [xgjj(i)_l,xaj‘?i)) ci€e 1, (4.27)
j=1

where xg(j) = aj, x:;(j) = aj41, J € J, is an equitable optimal fair division for the mea-
sures i, 1 € I and v = 2" 1s the optimal value.

If for some ¢ € I and j € J, the equality xz%)fl = xzi‘@) holds we set
ngj(g)—l’ xiﬁ%) = () in the union of intervals (4.27).
Theorem 4.24 can be generalized for the construction of a—optimal partitions, but the
formulation and proof of such theorem would be very complicated.
The following example presents the method described in the above theorem.

Example 4.25. Consider a problem of fair division for three players I = {1,2,3} es-
timating measurable subsets of the unit interval [0,1) using measures p;, i = 1,2,3,
defined respectively by the following density functions

fi(z) =12 (az — %) ,fo(x) == 2w, fy(x) =T (x), xe€[0,1).

We use the algorithm described in Theorem 4.24 to obtain an equitable optimal fair
division. First we need to divide the interval [0, 1) into some subintervals on which the
densities f;, ¢ = 1,2, 3, separably satisty SMLR property. For this reason we find the set
@ defined by (4.22). It is easy to check that @ = {1} and hence by Proposition 4.22 the

densities f;, 1 = 1,2, 3, satisfy the SMLR, property on intervals |0, %) and [%, 1). Denote
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cumulative strictly increasing distribution functions by Fj(¢ fo filz)dz, i = 1,2,3.
Then we have

Fi(t) =4t —6t* + 3t, Fy(t) =12, F3(t) =t, t€]0,1).

Based on the inequalities (4 26) we establish the proper order of assignments of subin-
tervals of the intervals [0,4) and [3,1) to each player as follows: we take midpoints {3}
and {2} of the two intervals and verify that

Fi(1/4) = F(0) _ F3(1/4) = F5(0) _ F2(1/4) — F5(0)
Fi(3) — F1(0) F3(5) — F3(0) Fy(5) — F(0)

and

F3(3/4) — F5(0) _ F2(3/4) — 13(0) _ F(3/4) — F(0)
F3(1) — Fs(3) (1) - F(3) Fi(1) = Fi(3)

Hence, we obtain permutations

(123 ’ (123
91=\{1 3 9) ¢ 2713 9 1)"

Now we are ready to formulate an NLP problem as in Theorem 4.24:

max 2
subject to constraints
2= F(2))) = Fu(0) + A(1) ~ Fi(x”),
(3) = Faa”) + Fa(”) — Fa(ay”),
2= Fy(") = Fa(a”) + Fa(ay)) = Fa(3).
with respect to the variables z, {:z:kj } k=1,2,7 = 1,2, satisfying the following inequal-

ities

1 2
ngg)gxg)

Solving the above NLP problem we obtain
7~ 04843, 27V ~ 0.1426, 1% = 4y = 0.5, 23V ~ 0.6269, 25? ~ 0.9367.

Hence, we get the equitable optimal fair division {AF}?_; € & of the unit interval [0, 1),
where

* *(1 *(2 * *(1 *(2 * *(1 *(1
A =[0,2;" U1, A5 = (e 23?) and A5 = [ a5,

The optimal value v = 2* =~ 0.4843. In the figure below the equitable optimal fair divi-
sion is presented.
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0.4 1
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Figure 3. Illustration of the equitable optimal fair division

Figure 3 shows areas marked with green, blue and red. The fields of these areas correspond
respectively to the values {u;(AF)}2_; of the sets {Af}2_; forming the optimal equitable
division.

O

Legut [H5] used the method presented in Theorem 4.24 to show how to obtain also
equitable e-optimal divisions in case where the set () defined by (4.22) is countably
infinite. The definition of an equitable e-optimal division is given below.
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Definition 4.26. A partition P* = {A5}) | € 22, is said to be an equitable e-optimal
fair division if for all ¢ € [
2% (Af) > U =€,

where v is the optimal value.

4.3.6 Simple fair division of square (0,1)? [H6]

The most interesting results in fair division (cake-cutting) problems were obtained for
cutting the unit interval X = (0, 1) into n subintervals {(zj_1, zx)}}_;, where

O=xo<1 <..<z2pp1 <25 =1,

in such a way that each player receives his piece as a contiguous interval. Such partition
is called simple division. Stromquist [59] and independently Woodall [62] proved under
some weak assumptions the existence of envy-free simple divisions of a cake represented
by the unit interval (0, 1). The existence of simple equitable divisions was also proved by
Cechlérova et al. [11] and Aumann and Dombb [3] . An interesting and very short proof
of the existence of an equitable and simple division of the unit interval (0, 1) relied on
the classical Borsuk-Ulam theorem and was given by Chéze [12].

I published in paper [H6| some results concerning the existence of simple fair division
of unit square (0, 1)2. In this section B denote family of measurable subsets of (0, 1)2.

Suppose that the i-th player evaluates the Borel subsets of (0,1)? using nonatomic
probability measure v; which are absolutely continuous with respect to the Lebesgue
measure A defined on Borel subsets of (0, 1)%. We assume that there exist density functions
ui(z,y) : (0,1)2 = R, such that

wi(z,y) >0 foral (z,9) € (0,1)* and (4.28)

vi(A) = //A ui(z,y)dxdy, forall A€ B. (4.29)

The partition of the unit square can be interpreted as the division of a land. Such
divisions are regarded by economists as one of the most important applications of the
fair division theory in practice. In the literature on this subject are presented various
procedures and algorithms for the division of two-dimensional objects that meet various
criteria (see 6, 19, 39, 40, 44, 50]). Woodall [62] noticed that the problem of dividing the
unit square fairly can be reduced to the problem of dividing a one-dimensional segment
by simply projecting the square (0, 1) onto (0, 1). Unfortunately, if the number of players
is large, the narrow rectangles obtained in this way are useless in practical applications.

Denote by C,, the following set of finite sequences

.
C,:={c=(c1,..,cy): ;eEN, j=1,..,m, ch =n, 2 <r <n}.
j=1

For a given ¢ = (cy, ..., ¢,) € C,, consider the following procedure of fair division:
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1. Divide the square (0, 1)? using horizontal cuts starting at heights {h1, ..., h,_1}.

2. Next, each of the resulting r rectangles (0,1) x (hj_1,h;), j =1,...,r, where h, =1
and hg = 0 , we leave unpartitioned (if ¢; = 1) or we divide it by cuts parallel to the
Oy axis into ¢; > 1 parcels.

Using this procedure we obtain n rectangles to be assigned to the n players. We introduce
a two-dimensional version of the one-dimensional definition of simple divisions.

Definition 4.27. A partition P. = {4;},_, is called a simple division of (0,1)* for
c = (c1,...,¢) € Gy, if there exist numbers {h;}"_, and {x,(gj)}?:o satisfying

O=ho<hi <..<h_1<h,=1, (4.30)
and . . .
0=z <o’ <. <2 =1, (4.31)

such that each set A; is given by:
. . ]71
Ai= (@) 2 x (hjohy) & i= ) en + K, (4.32)
m=0

where ¢g = 0.

It follows from the assumption v; < A, ¢ € I, that the boundaries of sets A; have
measure ( according to v;, ¢ € I. Hence

For this reason, to simplify the notation, we consider open sets A; defined by (4.32). The
division scheme described in Definition 4.27 is illustrated by an example presented in
Figure 4.

hg - 1
Ag Az Ag
h
Ig&) xé&)
Ay As
£ @
2
Ty
A A.
1 A2 3
h() =0
x(()l) =0 rgl) xél) xgl) =1

Figure 4. An example of the division scheme of square (0,1)? for n =8 and ¢ = (3,2, 3).

I proved in paper [H6] the following theorem.
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Theorem 4.28. For any probability nonatomic measures v; < A, 1 € I, defined by
(4.29), satisfying (4.28) and for any ¢ = (c1,...,c;) € C, there exist numbers {h;}"_,

and {x,&j)}zj;o fulfilling (4.30), (4.31) such that the following equalities hold
Vi(Ai) = v(Aw)  forall i,m eI,

where P, = {A;}!_, is a simple division defined by (4.32). Moreover, the division
P, = {A;}_| is unique.

The equitable partition P. = {A;};_; mentioned in the thesis of the above theorem does
not have to be a proportional division. The proof of Theorem 4.28 is not constructive and
is based on the Borsuk-Ulam theorem. The method of constructing a simple proportional
division of square (0, 1)? was presented in the proof of the following theorem:

Theorem 4.29. For any probability nonatomic measures v; < A, 1 € I, defined by
(4.29), satisfying (4.28) and for any ¢ = (c1,...,c;) € C, there ewist numbers {h;}"_,

and {x,&j)}zj;o fulfilling (4.30), (4.31) and a permutation o : I — I such that:
1
Vo(iy(Ai) > —  forall i€, (4.33)
n

where P, = {A;};_, is a simple division defined by (4.32).

The following example illustrates the constructive method of obtainig proportional
division of the unit square among three players.

Example 4.30. Suppose three players I = {1,2,3} estimate measurable subsets of
square (0,1)? using probability measures {v;}3_; with corresponding density functions
u;, ¢ € I, given by

u(z,y) =z +y, uxx,y) =4day, wus(z,y)=4z(l—1y), for (z,y)<c (0,1)%

We show a method of obtaining a proportional simple division of the unit square for
c = (1,2) € Cs. The division scheme is presented in figure below.

Ay | Aj

X

Ay

Figure 5. Division scheme for ¢ = (1,2) € C;.



24

We need to find only two numbers y* = Ay and " = x§2) (cf. Figure 4 and 5) and a
permutation o : I — I such that

1
Vo) (A1) = v51)((0,1) x (0,y7)) > 37
* * 1

1/0'(2)(‘/42) - VU(Q)((Oax ) X (y 71)) > 57
* * 1

Vo(3)(A3) = vp3)((z%, 1) X (¥, 1)) > 3

Presented method below is based on a procedure of fair division of a cake found by
Banach and Knaster and reported by Steinhaus [57] in 1949.
Define continuous functions w; : [0, 1] — [0, 1] by

t 1
w;(t) ::/ dy/ wi(z,y)dz, i€l.
0 0

Performing simple calculations, we obtain

wl(t):%(t+t2), wy(t) =12, ws(t) =2t —t* te]0,1].

Let
X . 1
y* = min {t : max w;(t) > g}

i€l

The way of determining the number y* is illustrated in the figure below.

1 ______________
ws(t) :
|
|
wi (2) ':
1 |
s |
| wo(t) |
l |
yr=1- g ].

Figure 6. Graphic illustration of determining the number y*.
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Simple calculations show that

2 1
y=1- 3~ 0.184, and ws(y*) = 3
Hence
1

v3(A1) = v,1)((0,1) x (0,y%)) = 3’
and the set A; = (0,1) x (0,y*) is assigned to the third player. Then we set o(1) = 3.
It is easy to see that

i=1,2.

Wl o
g
L]

vi((0,1) x (y7,1)) =

Rectangle (0,1) x (y*,1) can be easily divided fairly among the remaining two players
by a cutting it at a point z*. For this reason we can apply the procedure "for one to
cut, the other to choose". Assume that the second player is to cut the rectangle into two
parts and the first player is to choose one of the resulting piece. The second player must
cut vertically the rectangle at point x* satisfying

o((0,27) x (y*, 1)) = a((x*, 1) x (y*, 1)) (4.34)
to ensure that he receives at least half of the rectangle (0,1) x (y*, 1) according to his

own measure. Solving equation (4.34) with respect to z* we obtain x* = ? Now the
first player estimates the resulting rectangles according to his own measure:

n((0,2%) x (47, 1)) = %(—zﬂ + 43 4+ /6) ~ 0, 546,

n((@1) x (5, 1)) = %(—4 1+ 2v2 — 43 + 5V/6) ~ 0, 346.

Hence the first player obviously chooses the rectangle (0, z*) x (y*, 1) and the remaining
piece (z*,1) x (y*, 1) is assigned to the second player with

vo((2*,1) x (4, 1)) = %(%6 ~ 1) ~0,483.

We set 0(2) =1 and 0(3) = 2. Finally we get the following permutation o : [ — I

(129) e

establishing the assignmets of sets A;, ¢« € I, to the players and obtained partition is
proportional.

[

The main result of the paper [H6| is proving the existence of an equitable simple and
proportional division of square (0,1)?. The proof of this theorem is based on Theorem
4.28 and 4.29.
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Theorem 4.31. For any probability nonatomic measures v; < A, 1 € I, defined by
(4.29), satisfying (4.28) and for any ¢ = (c1,...,¢,) € C,, there exists a permutation
o : I — I and an equitable simple and proportional division {A;}._, defined by (4.32)
such that:

1
Vo(iy(Ai) > - forall iel. (4.36)

The construction of proportional fair division presented in Example 4.30 determines
the assigment of sets A;, ¢ € I, to the players according to the permutation (4.35). It
follows from the proof of Theorem 4.28 that this permutation remains the same for an
partition which is at the same time simple, equitable and proportional.

It turns out that the thesis of Theorem 4.31 can be extended to more complex parti-
tions. Suppose n = 8. We start the division scheme with one horizontal cut, then each of
the two resulting rectangles we divide by two vertical cuts. We finish with four horizontal
cuts of the remaining four rectangles obtaining in the end 8 parcels.

Figure 7. An example of the division scheme obtained by mixed horizontal and vertical cuts.

In my further research, I plan to generalize the result of Theorem 4.31 to the case of
simple division of set (0,1)* for k > 2. Also, I plan to investigate existence a simple
division of the (0,1)? square that is also envy-free.

4.4 Contribution description of the postdoctoral researcher to the scientific
achievement

Papers [H1, H3, H5, H6| were written by myself.
Paper [H2]

e The idea to investigate whether there are methods to construct an a—optimal par-
tition is the postdoctoral student’s own contribution.

e The hypothesis and the concept of the paper were developed together with the co-
author.
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e The formulation of Theorem 3 and its proof were developed together with dr hab.
Maciej Wilczynski.

[ estimate my participation in writing the paper [H2| at 50%.
Paper [H4]

e The formulation of the problem concerning the construction of a range of two-
dimensional nonatomic vector measure is the postdoctoral’s own contribution.

e Theidea for writing the paper was developed together with dr hab. Maciej Wilczyiiski.

e Putting a hypothesis on the method of determining the range of a vector measure is
the habilitation candidate’s own contribution.

e I estimate my participation in proving Theorem 2 at 30 %

e The development of three examples illustrating the obtained results constitutes my
own contribution.

e The entire Chapter 4 on application of obtained results to fair division problems was
written by myself.

I estimate my participation in writing the paper [H4] at 50%.

4.5 Discussion of selected publications of the scientific achievements

My other scientific achievements are presented in the following articles:

[D1] Legut J.: Market Games with a Continuum of Indivisible Commodities, International
Journal of Game Theory, 15, 1-7 (1985)

[D2] Legut J.: The Problem of Fair Division for Countably Many Participants, J. Math.
Anal. Appl., 109, 83-89 (1985)

[D3] Legut J. : A Game of Fair Division with a Continuum of Players. Colloquium Math-
ematicum, vol LIII, 323-331 (1987)

[D4] Legut J.: A Game of Fair Division in Normal Form, Colloquium Mathematicum,
vol LVI, 179-184 (1988)

[D5] Legut J. and Wilczytiski M.: Optimal partitioning of a Measurable Space into Count-
ably Many Sets, Probability Theory and Related Fields, 86, 551-558 (1990)

[D6] Legut J.: "On Totally Balanced Games Arising from Cooperation in Fair Division",
Games and Economic Behavior, 2, 47-60 (1990)

[D7] Legut J., Potters J.LA.M. and Tijs S.H.: Economies with Land - A Game Theoretical
Approach, Games Econom. Behav. vol. 6, Issue 3, 416-430 (1994)

[D8] Legut J., Potters JLA.M. and Tijs S.H. (1995): A transfer Property of Equilibrium
Payoffs in Economies with Land , Games Econom. Behav. vol. 10, Issue 2, 355-375
(1995)
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[D9] Dall’Aglio M., Legut J., Wilczytiski M.: On Finding Optimal Partitions of a Mea-
surable Space, Mathematica Applicanda, vol. 43(2), 193-206 (2015)

[D10] Legut J.: Optimal Fair Division for Measures with Piecewise Linear density Func-
tions, International Game Theory Review, vol. 19, No. 2, 175009, (2017)

[D11] Legut J.: On a method of obtaining an approximate solution of an exact fair division
problem, Mathematica Applicanda, vol. 46 (2), 245-256 (2018)

[D12] Legut J. and Wilczytiski M.: How to obtain mazimal and minimal subranges of two-
dimensional vector measures. Tatra Mt. Math. Publ. 74 85-90 (2019)

The first three papers [D1, D2, D3| concern the use of the results of game theory in the
problem of fair division and constituted the basis of my doctoral dissertation.

In paper [D1] I introduced a model of a new class of market games in which players
exchange goods described by means of measurable subsets of a certain space, and utility
functions are represented by nonatomic probability measures. Then I showed that the
new class contains totally balanced games (see ([52])) and overlaps with the class of
market games previously defined by Shapley and Shubik [55].

The results of papers [D2| and |D5| were mentioned in Section 4.3.2 in commentary to
Theorem 4.7.

In |D3| I proposed a fair division model in which an infinite number of players are
represented by the unit interval [0.1]. T showed that in this model there exist partitions
which are e— fair.

Paper |D4] concerns the representation of fair division games in a strategic form. The
main result of this work is proving the existence of a Nash equilibrium point of these
games in pure strategies. This equilibrium point corresponds to the optimal division of
a measurable space.

The publications |D1, D2, D3, D4, D5| were cited in book entitled "Fair division-from
cake-cutting to dispute resolution" written by well-known specialists in the fair division
theory - Brams and Taylor [8].

In paper [D6] I proposed a method of analysing a secondary division of an object X
using the theory of cooperative games. In this method players form coalitions to improve
the initial partition and then a cooperative game is defined. It turned out that these
games are totally balanced and then have nonempty core. A method of obtaining an
imputation from this core is found. A characterization and some properties of such class
of games are presented. This results were considered in the literature of fair division and
cooperative games theory (cf. [13], [14], [18], [17]).

In paper [D7| a cooperative game vg associated with an economy with land E (an
economy of Debreu-type in which land is the unique commodity) is defined. The set of
all TU-games of type vg is investigated and the set of equilibrium payoffs (in the TU-
sense) of the economy FE is described as a subset of the core of vg. The authors proved
that equilibrium payoffs can be extended to population monotonic allocation schemes in
the sense of Sprumont. The results of this article were mentioned in other papers (cf.
|20, 21, 46, 50, 51])
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Paper [D8| deals with an exchange economy of Debreu type with only one commodity
(land). The authors investigate NTU-games connected to these kinds of economies. The
main result of this paper is that equilibrium payoffs is the NTU-model are connected to
equilibrium payoff in the TU-model considered in [D6] by b-transfer - a concept introduced
by Shapley [53].

Papers [D9] and [D10] were mentioned in the introductory part of Section 4.3.5. They
concern the methods of constructing the optimal division of a measurable space according
to the measures defined with the help of the density functions described by simple ([D9])
and piecewise linear functions ([D10]).

In paper [D11] I proposed an algorithm of obtainig the approximate solution to the
problem of exact fair division of the unit interval [0.1]. Resulting partition is at the same
time proportional, exact and equitable (see Definition 4.1). In addition, [ have provided
an example to illustrate this algorithm for three players.

Paper [D12] deals with certain properties of a two-dimensional range of a nonatomic
vector measure. Let (X, B) be a measureable space with a nonatomic vector measure
i = (p1, ). Denote by R(Y) ={ji(Z) : Z € B,Z C Y}. For a given p € ji(B) consider
a family of measurable subsets B, = {Z € F : [i(Z) = p}. Dai and Feinberg 15| proved
the existence of a maximal subset Z* € B, having the maximal subrange R(Z*). They
showed also existence of a minimal subrange M* € B, having the minimal subrange
R(M?*). In paper [D12]| we present a method of obtaining the maximal and the minimal
subsets. Hence, we get simple proofs of the results of Dai i Feinberg [15].

5 Presentation of significant scientific or artistic activity carried out at more
than one university, scientific or cultural institution, especially at foreign
institutions

At the beginning of my research activity in 1988 (in July) I visited the Faculty of Math-
ematics of the Georgia Institute of Technology in Atlanta (USA) and I gave a lecture on
the fair division theory with the presentation of my own scientific results.

In the early nineties, I started a scientific cooperation with the Faculty of Mathematics
of the Catholic University in Nijmegen (the Netherlands), which I have visited many
times. The result of this collaboration was the publication of two scientific articles on
applications of the fair division theory in economics (|39, 40]). I presented the results of
our cooperation in 1991 at the International Conference on Game Theory and Economics
at Stony Brook University in New York.

In 1992 (in July), I gave a lecture at the Economics Department of Tel Aviv University
on some applications of game theory in problems of fair division.

In 2013 (in October), I established cooperation with Professor Marco Dall’aglio from
the Luiss Universita Guido Carli in Rome. The results of this cooperation regarding some
methods of fair division were published in paper [22].

In 2022 from April 1 to June 30 I completed an internship at the Mathematics In-
stitute of the University of Silesia, whose supervisor was prof. dr hab. Szymon Plewik.
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The purpose of this internship was to establish scientific cooperation in research on the
properties of a range of a nonatomic vector measure.

6 Presentation of teaching and organizational achievements as well as achieve-
ments in popularization of science or art

During my professional career at the Wroctaw University of Science and Technology,
I gave lectures on many mathematical subjects, such as: linear algebra, mathematical
analysis, statistics, probability theory, differential equations, and survey data analysis.

[ have received the following awards for my teaching activities:

e Award of the Dean of the Faculty of Fundamental Problems of Technology for didactic
achievements - 1986

e Award of the Director of the Institute of Mathematics for didactic achievements -
1989

e Rector’s Award in recognition of outstanding contribution to the university’s activi-
ties - 2017

In the years 2016-2022 I was the promoter of 20 bachelor’s theses and 9 master’s theses
in mathematics. Some of these works concerned the subject of my research. These were
the following theses:

Bachelor’s theses:

e Michal Krzastek - Application of the theory of cooperative games in the assessment
of the bargaining power of political parties

e Bartosz Lewandowski - Application of game theory in the fair division of a holding
company

e Taras Kostiuk - Analysis of the competitive strategies of companies entering the
market based on the models of non-cooperative games

e Krystian Kasprzyk - Optimal fair division of two-dimensional objects

e Patrycja Niewegtowska - The method of fair division of two-dimensional objects with
imposed restrictions and its application in practice

e Piotr Trzeciak - Determining the image of a two-dimensional vector measure and its
applications

Masters theses:

e Krystian Kasprzyk - Minimax decision rules for identifying an unknown distribution
of a random variable

e Sandra Mroz - Applications of fair division theory in cooperative games

When it comes to activities that popularize mathematics, in 2018 I took part in the
commission checking works of the mathematics olympiad organized for secondary schools.
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